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ABSTRACT

Selection of superior genotypes and measuring heritability are some of the basic objectives of  plant
breeding. For this purpose, plant breeders grow crops across environments. Understanding the pattern
of response across environments is an integral component of selection of superior and stable
genotypes. The objective of this study was to improve selection strategies in barley breeding of
Ethiopia through modeling spatial field trend.   A set of multi-environment trials (MET) data from the
national variety trial series conducted over four years, was taken from the Ethiopian Barley Breeding
Programme, spanning stages from early generation to national variety trial testing for yield, was used
in this study.  The trials were analysed in a linear mixed model framework. Then, fitting a one-stage
model for MET data, including a correlated spatial process for field trend within each trial, and combining
a factor analytic (FA) model for genotype by environment interaction was conducted.   The genetic
correlations from this MET analysis were then used to cluster the environments based on their
similarity.  Performance of genotypes across these environmental clusters indicate broad (Bekoji-2005
and Bekoji-2004) and specific adaptation (Sgonder-2007 and Sgonder-2006) of genotype to certain
types of environments.  In addition, analysis of this historical MET data shed light on how breeding
programme design can be improved to capture responses across the target population of environments,
as it can inform the adequacy of the current number of barley grown areas in Ethiopia and the
improvement in measuring heritability.

Key Words:   Barley MET, heritability, linear mixed model

RÉSUMÉ

La sélection de génotypes supérieurs et la mesure de l’héritabilité font partie des objectifs fondamentaux
de la sélection végétale. Dans ce but, les selectionneurs de plantes font pousser des cultures dans
tous les environnements. Comprendre le modèle de réponse dans les environnements fait partie
intégrante de la sélection de génotypes supérieurs et stables. L’objectif de cette étude était d’améliorer
les stratégies de sélection dans l’élevage d’orge en Éthiopie en modélisant la tendance des champs
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spatiaux. Un ensemble de données d’essais multi-environnementaux (MET) de la série d’essais de
variétés nationaux menés sur quatre ans a été tiré du Programme de sélection éthiopien de l’orge, qui
couvre les stades de la première génération aux essais de variétés nationaux pour le rendement, a été
utilisé dans cette étude. Les essais ont été analysés dans un cadre de modèle mixte linéaire. Ensuite, on
a ajusté un modèle en une étape pour les données MET, y compris un processus spatial corrélé pour
la tendance de terrain dans chaque essai, et combiné un modèle d’analyse factorielle (FA) pour une
interaction génotype par environnement. Les corrélations génétiques de cette analyse MET ont ensuite
été utilisées pour regrouper les environnements en fonction de leur similarité. La performance des
génotypes de ces groupes environnementaux indique une adaptation large (Bekoji-2005 et Bekoji-
2004) et spécifique (Sgonder-2007 et Sgonder-2006) à certains types d’environnements. En outre,
l’analyse de ces données MET historiques a permis de mieux comprendre comment améliorer la
conception du programme de sélection pour capturer les réponses dans la population visée
d’environnements, car elle peut contribuer à l’adéquation du nombre actuel de zones de culture d’orge
en Éthiopie et à l’amélioration de la mesure d‘ héritabilité.

Mots Clés:  Orge MET, héritabilité, modèle mixte linéaire

INTRODUCTION

The aim of plant breeding is most often to
select either high performing genotypes for
target environments or stable genotypes across
a given set of environments. Breeders are also
interested in stable genotypes, given that such
genotypes are among the winner genotypes.
But the challenge is to get high performing
stable genotypes, mainly due to interactions
between genotypes and environments.
Therefore, in order to achieve this objective,
breeders usually design trials across several
locations within a given agro-ecology and  for
a number of years. Several statistical techniques
have been proposed to facilitate estimation and
interpretation of genotype by environment
interactions (Welham et al., 2010).

The classical statistical techniques mostly
used for analysis of  multi-environment trial
(MET) is the two cross classifications
(genotype by environment interaction) of
Analysis of Variance (ANOVA). However, while
this technique can adequately explain only the
main effects, and identify genotype
environment interactions as a source of
variation, it fails to decompose and analyse the
inherent interaction effects. This is due to the
additive nature of the ordinary ANOVA model,
which does not allow for analysis of non-

additive interaction components. Therefore,
other statistical approaches are required to
identify the pattern and complexity of
interaction. Oakey et al. (2007) compared the
performance of the ANOVA method with the
regression method, and found that ANOVA fails
to detect significant interaction components;
and the regression approach accounts for only
a small portion of the interaction sum of
squares, only when the pattern fits a specific
regression model.

MET is usually analysed using a two-stage
approach, in which variety means are first
estimated separately for each trial and then
combined to form the data for an overall
analysis. The latter methods include mixed
effect models (Talbot, 1984; Smith et al.,
2005) and the fixed effects AMMI (additive
main effects and multiplicative interactions)
model  (Welham et al., 2010). The two-stage
approach is an approximation of the combined
analysis of the raw plot data from all trials. If
there is error variance heterogeneity between
trials and spatial variation or unequal replication
within trials, the approximation may be poor
in estimation by classical ANOVA. Smith and
Cullis (2001) presented a weighted mixed
model for the second-stage analysis that aimed
at accommoding these sources of error
variation, thereby reducing efficiency losses.
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The superior approach, however, is the spatial
MET analysis of Kelly et al. (2007), in which
individual plot data are analysed and a separate
spatial covariance structure and error variance
allowed for each trial.

Spatial variation within trials and error
variance heterogeneity between trials occurs
routinely, and if unaccounted for, will result
in biased and inefficient estimates of variety
effects. Historically, many authors assume
common error of  variance within trials; which
is inappropriate for all trials. In MET data
analysis, usually there is interest in the analysis
of both overall performance of each variety
(across all environments) and whether variety
performance is affected by these interaction
effect (genotype by environment interaction).

The approach of multiplicative models for
the interaction effect allows for a separate
genetic variance for each trial, and provides a
parsimonious, and interpretable model for the
genetic covariances between pairs of trials.
Then, the genetic model can be regarded as a
random effects analogue of the additive main
effect and multiplicative interaction (AMMI)
model. Hence, this approach combines the
strength of AMMI with the advantages
afforded by the mixed model framework.

Therefore, in this study, a linear mixed
effect model was used to analyse MET data,
with the specific objective of clustering barley
testing environment based on the correlation
(the way in which the locations respond to
each genotype) of the trials, to show
advantages of using advanced statistical
methods for precise estimation and
improvement in heritability in barley breeding
programme in Ethiopia. So, to achieve this
objectives, the field trend at each trial was
included in LMM to capture spatial field trend
to increase precision and accuracy of the
estimation. Then,  at the second stage of
analysis under LMM, combining the trial
through Factor Analytic (FA) model to capture
correlated trial, as well as clustering of each
trial, based on their correlations.

MATERIALS  AND  METHODS

The data used for this study were taken from
the malt barley breeding programme of the
Ethiopian Institutes of Agricultural Research
(EIAR). The trial was grown across different
environments in Ethiopia; while the
environment was considered as the
combination of years and locations. The trials
included Preliminary Variety Trial (PVT in
20014), National Variety Trials (NVT1 in 2005,
NVT2 in 2006 and NVT3 in 2007) across five
locations (Adet, Asasa, Bekoji, Holeta and
Sgonder) for four consecutive years (2004-
2007) of environments. The preliminary variety
trial in 2004 of Adet was excluded from the
combined analysis, due to zero genetic variance
and this occurred since high damage of the
trial in this specific year. Hence, 19 trials were
included in this study with their respective row,
column and genotypes in each trial. No missing
plot was observed in all of the trials.

  At PVT level the number of genotypes
included in the study were different from that
of NVT since the NVT genotypes were
selected from their previous PVT trials, and
this is common in plant breeding programmes,
since a high yielder genotype is promoted for
the next trial for further evaluation. Therefore,
49 genotypes were tested at PVT; while 15
were selected for NVT1, NVT2 and NVT3.
All trials were designed as Randomised
Complete Block design (RCBD), with four
replication.

Modeling of field trend in MET.  Most often,
field experiments are laid out in a rectangular
form like jth trials j= 1. . .  p, which consist
N

j
, plots with r

j
, rows and c

j
 columns (N

j 
= r

j

x c
j
) (Smith and Cullis, 2001).  Therefore, the

vector is sorted accordingly rows

with in columns. Hence, the combined vector
of data across all environments can be modeled
as:
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j
), n =  is given by

     y = X + Zu+ e ................................ (1)

Where:

 and  are vectors of fixed and

random factors, respectively; while  

and  be associated design matrices for

fixed and random effects with the former
assumed to be of full column ranks and e is
vector of the residual. The joint distribution

of (  is assumed to be:

Where:

 and   are vectors of variance parameters.

Then, the distribution form of the vector data
y, is a Gaussian distribution with mean X and
variance matrix H= ZGZ ' + R.  In addition,
the error term contains a vector of sub-error
{e

j
}, where  is vector of plot errors for a given

jth trial and decomposed into a spatially
dependent process; while the independent
white noise process is η

J
.  The matrix of the

error term for trial j can be written as:

Where:

Σ
J
 is the matrix of spatial correlation which is

a  function of   α
J
  with associated  variance

σ
J 

2; while σ
ηJ 

2 is variance parameters of the
white noise process.

The spatial process     
 
is assumed to be the

second order stationary, given that the
correlation between plot depends on the lag
distance. Furthermore, the column and row

dimensions are separable. Hence, one can
write:

Where:

Σ
CJ

  and Σ
rJ

 are the two dimensional
correlations respectively.

However, a number of research findings
show that the first ordered autoregressive
which is denoted by  AR1xAR1, most often
provides an adequate variance structure for
local spatial trend (Smith et al., 2001).

The random effect u consists of sub-
vectors {µ

i
} , where µ

i 

(bix1) is the vector of
effect for the ith random term, i=1. . .q. the
matrix Z is partitioned conformably as [Z1 . .
.Zq]. It was assumed that the sub-vectors of
u were mutually independent. Variance matrix
G

i
 for the ith random term has many possible

forms including the standard variance
component structure:

G
i 
=

Let u
g 

 be the mpx1 vector of genetic effect
for m varieties for each p environments,
ordered as varieties with in environments. It
represents a two dimensional (varieties by
environment) arrays of effect, namely, where
U

g
=vec( U

g  
). It was assumed that the associated

variance structure had separable forms with:

Where:

G
e
 and G

V
 are the symmetric p x p and m x m

component matrices for environment and
varieties, respectively. When G

V 
= I

m
, just for

simplicity, therefore,
and the matrix                  is the so called
genetic variance matrix.  The diagonal elements
are genetic variance for individual
environments, and the off –diagonal elements
are genetic covariance between pairs of
environments.

��  

 �� = { �� � ′ } 
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The spatial mixed model for MET can then be
written as:

                                        .................. (2)

The fixed effect τ includes environmental main
effects and trial specific effects for extraneous
field variation (Gilmour et al., 1997).  µ

g
 is

variety effects at each environment with
associated design matrix Ζ

g
 (nxmp); and  µ

o

comprising of an additional random effect,
with design matrix, and variance matrix.

In breeding programmes, there are many
possible forms of  genetic variance matrix
structures. Under the linear mixed model, the
standard structure is given by:

Where:

σ
v

2 and σ
ve

2 are the variance components for
variety main effects and  interaction effects,
respectively; where j

p
 is a p x p matric of one.

This implies that all environments had
constant genetic variance and all pairs of
environment had the same genetic covariance.
In this case, since inefficient estimation
variance covariance, Smith and Cullis (2001)
consider an alternative variance structure
model; which is known as  Factor Analytic
model; which is analogous of AMMI model.

In multi-environment trial data, this model
captures the nature of heterogeneous variance
covariance. The Factor Analytic (FA) model
is a regression-type model (y=ax+b), which
can be fitted for an increasing number of
dimensions, k.  The model for factor analytic
is given as:

Where:

Therefore, in this study, the first spatial field
trend and global variability (variability from one
corner to the other in the experiment) were
considered for each specific trials, and
considered as the first stage of analysis. Then,
combined analysis followed through FA model,
considering all information at individual trials
through Linear Mixed Model (LMM).

RESULTS  AND  DISCUSSION

A visual display of residual variation before
spatial adjustment and residual variation after
adjustment are presented in Figure 1a and b.
In large field trials, field variations are a
substantial source of error, since neighbouring
plots show similar characteristics compared
to those far apart. Therefore, unless accounted
for, this spatial variability can bias the estimated
potential of a given genotype, when compared
with other candidate genotypes. Hence,
neighbour lines of plots was used to model
the systematic field trends to minimise bias,
and reduce error to increase precision in
estimation for some trials in this study. Figure
1a indicates areas of high and low yields in
the field. It also shows that neighbouring plots
tended to be more similar than those far apart.
Thus, there is need to include spatial correlation
in variance-covariance analysis, to handle field
trend that extend from one point to the other
at the plot level.

This study identified the relative genetic
merits of different lines or hybrids where trials
are correlated. When trials are correlated
(similar response of genotypes at some
environment) selecting best materials in a
given environment is the same as selecting
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Figure 1.    Residual variation in field trial before spatial adjustments and after spatial adjustments.
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best material in another environment. Then,
information from multiple environment can be
combined to improve accuracy of genetic gains
of particular trials. In this case, MET analysis
can also help to understand the broad and
specific adaptation of genotypes over a range
of target populations.

In this study, the factor analytic model was
used for MET data analysis. Then, the
correlations between environments ranged
from -1 and 1. Correlations of -1 indicates
that the performance of the environments fall
in opposite direction (the angle between the
two environment is more than 90 degree),
implying that the highest performing genotypes
in one environment were the lowest performing
genotypes in other environment.

Correlation of +1 is an indication of perfect
similarity between two environments, hence
sellection of superior genotypes based on one
environment is the same as selection for
another environment. In Figure 2, for instance,
Holeta-2004 had nearly 0 correlation with
Adet-2005, Asasa-2006, Bekoji-2007,
Sgonder-2004 and Asasa-2005; while Holeta-
2006 with Holeta-2007  had nearly perfect
correlation. But sometimes,  there may be
indication of none or even reverse correlations
between trials within the same locations, but
for different years due to seasonal effect or
other factors; for example Holeta-2004 with
Holeta-2005 (Fig. 2).

Generally, correlations ranged from
negative to positive (Figs. 2 - 4) both sides.

Figure 2.   Heatmap to show patterns of genetic correlation in barley experiment of fifteen trials in
Ethiopia.

Genetic correlation matrix - maltbarley 2004-2007
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Figure 3.   List of environments and best performing genotypes at each environment.

For example, Bekoji-2004 had negative
correlation with Adet-2005; hence selection of
best genotypes based on one trial may be lower
in the other trials. Holeta-2004 had no
correlation with Adet-2005,  Holeta-2006 with
Holeta-2007. Therefore, it is important to
classify the trial for selection strategies in to
different clusters based on the correlation
structure in a trials.

Graphical description of MET data is
commonly used to explain genotype by
environment.  In Figure 3, the concepts of
genotypes won and where is illustrated. Plots
show that the environment with longest line
from the centre measures the
discriminativeness of that environment when
compared with others. For example, Holleta-
2007, Bekoji-2006,  Adet-2006 and Asasa-2006

were among the most discriminative
environments; this means that environments
had considerable contributions in discriminating
genetic variations. On the other hand,
environments with less distances from the
centre were those stable environments, hence
they explained less genetic variations. In
addition, when a specific genotype is close to
a given environment, it indicates that the
genotype is the winner for that specific
environment. That means, that this genotype
is the best performer for that trial. For
example, EH1847 was the winner genotype at
Bekoji-2006, Asasa-2007. and also in other
environments.

Figure 4 is about correlations between the
trials. Environments with less angle (less than
90 degree) between their two lines are more
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Figure  4.  Correlation between barley trial environments in Ethiopia.

correlated. Then, selection of the best
genotypes based on one of the two
environments does not change the ranks of
the genotypes in another environment,  for
example Holeta-2006 and Bekoji-2004.  When
an angle between two lines is greater than 90
degrees, selection based on the two
environments can change the ranks of
genotypes; for example, Asasa-2004 and
Sgonder-2006.   It is also important to cluster
environments based on their correlation.
According to Figure 5, two large clusters are
evident; but such type of clustering depends
on the required homogeneity in the clusters.

Heritability analysis is another objective of
breeding programmes, which requires
specialised statistical analysis methods for best
selections. Heritability can be estimated more
precisely through appropriate statistical
methods, without additional costs. Figure 6
indicates improvement in heritability generated

from different statistical models; including
heritability in classical RCBD, in spatial
modeling and in spatial plus correlated trials
(MET). In Figure 6, the horizontal axis is the
list of barley trials; while the vertical line is the
percent of heritability for each trial in different
statistical models. In most of the trials, there
was an improvement in heritability when spatial
plus correlated trials were modeled
simultaneously. This means that if there is a
spatial field trend in the trial, heritability
improves through modeling field trends. Also,
in MET there is improvement in heritability
since it borrows information from different
trials.

It is well known that the reliability of
varietal selection from a single trial is greatly
improved with the use of sound design and
analysis techniques. Consideration of spatial
trend in field experiments increased gains in
accuracy and precision, as this study indicated,
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Figure 6.   Improvement in heritability only through use of advanced statistical models.

for which also many authors recognised the
need to model spatial trend within a field trial
(Cullis et al., 2006).

If not considered, spatial variability can bias
the selection of genotypes; implying that
genotypes are selected only due to the plot
where they are planted. For example Figure
1a indicates potential existence of field trends,
which is usually expected in large trials. Hence,
for selection purposes, adjustment for spatial
variability is important. The adjustment is
simultaneously fitted under linear mixed model,
with other source of variability at a time.

The Factor Analytic (FA3) model was used
to indicate the correlation between trials. In
Figure 2, there are environments with positive
correlations such as Adet-2005, Sgondor-
2007, Adet-2006, Holeta-2007, with Holeta-
2005.  Environments with negative correlations

include  Asasa-2004 with Adet-2005 and
Holeta-2005; and Bekoji-2004 with Adet-2005
and Holeta-2005.

This study showed which genotype was
the winner and in which environments, as well
as the correlations between environments
based on  angles of the two environmental axes
(Figs. 3 and 4). Discriminative environments
are also identified in this study (Fig. 3); this
means environments with high interaction with
genotypes. Environments with smaller
distances from centre are indications of stable
environment. Performance of each genotype
is determined by the closest environment, and
one genotype can be closer to one or more
environments; that means this genotype is
superior in these environments; an observation
that agrees with the ideas of  Yan and Tinker
(2006).
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TABLE 1.   Summary of malt barley trials including rows, column and number of genotypes

                    Rows                Columns            Genotypes          Mean yield

Adet-2005 15 4 15 2.11
Adet-2006 15 4 15 4.84
Adet-2007 15 4 15 4.31
Asasa-2004 7 14 49 2.74
Asasa-2005 15 4 15 3.95
Asasa-2006 15 4 15 1.64
Asasa-2007 15 4 15 1.58
Bekoji-2004 7 14 49 4.16
Bekoji-2005 15 4 15 4.48
Bekoji-2006 15 4 15 3.43
Bekoji-2007 15 4 15 1.65
Holeta-2004 7 14 49 3.39
Holeta-2005 15 4 15 3.3
Holeta-2006 15 4 15 2.85
Holeta-2007 15 4 15 2.85
Sgonder-2004 7 14 49 2.95
Sgonder-2005 15 4 15 1.16
Sgonder-2006 15 4 15 4.22
Sgonder-2007 15 4 15 3.89

Based on the closeness in terms of
discriminating the genotypes, the 19 malt barley
environments were clustered in to two mega-
environments using a dendrogram (Fig. 5).
There is high improvement in heritability
through use of spatial plus MET analysis (Fig.
6). The improvement in heritability under the
different statistical methodologies are
illustrated in Figure 6; for example heritability
gained under classical RCBD, heritability under
spatial analysis and heritability under spatial
plus MET through use of correlated
environments are compared. In general, there
is high improvements of heritability through
modeling spatial field trend with MET under
linear mixed effect model.

CONCLUSION

This study underscores the importance of
spatial correlation plus the  use of the Factor
Analytic model to account for structural

correlation among testing environments in
Ethiopian malt barely breeding programme.
Maximum likelihood estimations of linear
mixed model is more appropriate and applicable
for the analysis of MET, since it can handle
and fit simultaneously all source of variations
(extraneous variations, random variations and
trend variations) at a time. In addition to select
best performing genotype, it is better to
consider the correlation between environments
and cluster them accordingly.   Smith and Cullis
(2001) also strongly suggested the need of
considering field trend in experiment for
precise estimation.
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