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ABSTRACT

Nitrogen plays an important role in plant nutrition and sustainable agriculture. The objective of this
study was to assess the distribution pattern of  nitrogen in arable land of Benin. A Bayesian Maximum
Entropy (BME) method was used for spatial mapping.  Hard data consisted of a total of 305 sampled
locations of nitrogen collected at 20 cm depth across the country. Soft data were generated from
environmental variables using geographical weight regression (GWR) technique. The study revealed
very low (<0.03%) N concentrations across the country.  The N concentrations ranged from 0 to 0.8.10-

6 %, with higher concentrations in the north and low concentrations beginning from the centre toward
the south. In general, low prediction errors (around 0.005) were observed across the country (0.005 to
0.04). The maximum values around 0.035 were due to low sampling density observed at the boundary.
These results are important for rational management of nitrogen in fertilisation programmes in Benin.

Key Words:   Bayesian Maximum Entropy, Geographical Weight Regression

RÉSUMÉ

L’azote (N) joue un rôle important dans le sol et la vie humaine et sa connaissance est essentielle dans
la gestion de la fertilité des sols. L’étude a permis d’analyser la structure spatiale de la teneur en azote
au Bénin en utilisant l’approche du Bayesian Maximum Entropy (BME).  BME est une méthode de
cartographie spatio-temporelle de plus en plus utilisée en science du sol. Au total, 305 emplacements
sont échantillonnés et les valeurs de concentration d’azote (N) collectée à une profondeur de 20 cm à
travers tout le pays et considéré comme hard data. Les données secondaires (soft data) ont été
générées à partir des variables bioclimatiques en utilisant la technique de régression par poids
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géographique (GWR). Les données de grandes précisions (hard data) et les données de faibles
précisions (soft data) ont été utilisées. Cette étude a révélé des teneurs très faibles en azote (<0,03%)
dans tout le pays. La carte de distribution de N a révélé des concentrations allant de 0 à 0,8.10-6 % avec
des concentrations plus élevées dans la partie nord du pays et des concentrations faibles commençant
du centre vers la partie sud du pays. En général, de faibles erreurs de prédiction (0.005) ont été
observées dans l’ensemble du pays (0,005 à 0,04). Les valeurs maximales observées (0.035) à l’extrême
nord du pays étaient dues à la faible densité d’échantillonnage observée dans cette zone. Les résultats
obtenus sont importants pour une gestion rationnelle de la fertilisation azotée au Bénin.

Mots Clés:   Bayesian Maximum Entropy, Geographical Weight Regression

 INTRODUCTION

Nitrogen is a major nutrient affecting crop
production in sub-Saharan Africa (Sadej and
Przekwas, 2008). Together with phosphorus
and potassium, they have the power to
profoundly influence terrestrial processes by
changing the physicochemical makeup of the
soil and the behavior of soil microbes, and
performance of crops (Hati et al., 2008;
Quilchano et al., 2008; Guan et al., 2017). In
sub-Saharan Africa, arable soils are invariably
extensively depleted of mineral N to the extent
of leveraging from spatial nutrient distribution
maps. In Africa, several countries possess soil
property map (Hounkpatin et al., 2018; Silatsa
et al., 2020), generated mostly using classical
interpolation approaches such as ordinary
Kriging (OK) and machine learning method
(Hounkpatin et al., 2018); inverse distance
weighting, natural neighbour, spline, radial
basis functions, local polynomial, Kriging and
bayesian maximum entropy (Liu et al., 2011;
Hamzehpour and Mola, 2020; Shan et al.,
2021).

Bayesian maximum entropy (BME), a
spatiotemporal method of prediction
(Christakos, 1990), is the most reliable
approach for spatial prediction. It is a
knowledge-based approach, with a strong
mathematical background and inferences
scheme (He and Kolovos, 2018). BME
computation process gives room to researchers
to include several types of data, referred to as
general knowledge, into prediction (Gengler
and Bogaert, 2016). Its performance compared

to other methods of interpolation leads to wide
applications in many fields, including
environmental sciences, soil sciences, ecology,
remote sensing and public health (Yang et al.,
2016). This approach can be used to assess
the spatial variability in nitrogen as
understanding soil nutrient distributions is
crucial for fertiliser management and
environmental protection in vulnerable
ecological regions (Gao et al., 2019). The
determination of soil mineral N patterns and
variability is extremely important for
agricultural management and planning
(Pawlak, 2008; Staszewski, 2011). Therefore,
this study aimed at assessing the pattern of
nitrogen distribution in arable soils of Benin.

MATERIALS  AND  METHODS

Study area. This study was carried out in the
Dahomey gap, located between 6-10°N and
0.40-3°E in Benin Republic, West Africa. The
climatic zones are mainly; The Guinean zone
(6°252 N to 7°302 N), with an average yearly
rainfall of 1200 mm, and with temperature and
relative humidity between 25 -29 °C and 69-
97%, respectively. The Sudano-Guinean zone
(7°302 N to 9°452 N), has an annual rainfall
around 900 mm; temperature between 25 and
29 °C, and the relative humidity between 31
to 98%. On the other hand, the Sudanian zone
(9°452 N to 12°502 N), has a mean annual
rainfall below 1000 mm, the relative humidity
(18 to 99%), and the temperature varying
between 24 to 31 °C (Hounkpèvi et al., 2020).
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Data collection.  Hard data for the BME were
made up of a total of 306 samples collected
randomly at 30 cm depth using an auger across
Benin in crop lands (Fig. 1). The soil samples
were first dried, grounded, sieved and then,
the nitrogen content for each sample
determined in the soil laboratory.
Environmental data (http://www.worldclim.
org/bioclim,  De Santana et al., 2019) and
nitrogen attributes were used to generate soft
data based on the Geographical weight
regression techniques (Leung et al., 2000;
Fotheringham et al., 2002; 2003; Zhang and
Yang, 2019). 

Data analysis. Bayesian Maximum Entropy
(BME) was applied to predict N concentration
at the unsampled locations, and generate a

continuous map (Xu et al., 2016). The
computational process involved three major
steps: prior, meta-prior and the posterior stage
(Douaik et al., 2004). Data on the general
knowledge (previous experiences, beliefs,
etc.) were collected during the prior stage. On
the other hand, data collected on site (hard
and soft data) were used to build up the site-
specific knowledge base at the Meta prior stage.
For the posterior stage, data from prior and
meta prior were combined to build the
posterior pdf, which was used to derive the
conditional mean, mode and median (He and
Kolovos, 2018). The analysis was carried out
in Matlab, using BMElib packages (Christakos
et al., 2001).  During the soft data computation
process, 305 sampling points were split into
calibration and validation (70 and 30%).

Figure 1.   Location of the study area and sampled locations in Benin.
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Nitrogen level was classified using Sys
(1993), as high (>0.08%), moderate (0.045%-
0.08%), low (0.03%-0.045%) and very low
(<0.03%).

RESULTS   AND  DISCUSSION

Descriptive statistics. The coefficient of
variation was 73%, suggesting the existence
of high variability of N across areas. The
coefficient of Kurtosis and skewness were
low, with a value of 2.23 and 0.56,
respectively; indicating that nitrogen
distribution was close to a normal distribution.

Variogram modeling. The experimental
variogram representing the measure of  spatial
variability of N between pairs of points at
various distances presented in Figure 2,
shows that East-West and North-South
Empirical variograms were not influenced
directionally, indicating an isotropy.

BME prediction. The map generated from 205
hard and 1000 soft data shows nitrogen
concentrations between 0 to 0.8.10-6 % (Fig.

3). Higher concentrations of nitrogen were
observed toward the north; while lower
concentrations began from the center toward
the south. In general, low prediction errors
were observed across the country (0.005 to
0.04). The maximum values of prediction
errors were due to low sampling density
observed at the boundary.

The spatial map revealed very low N
concentration (<0.03%) across Benin (Fig. 3).
Nitrogen is often the most limiting nutrient crop
to production in smallholder farms in Africa
(Kiboi et al., 2019). Many soils of Africa are
low in N due to low inherent nutrient reserves,
N mining, low buffering capacity, as well as
rapid decomposition of soil organic matter
triggered by high tropical temperatures and
changes in land use (Tully et al., 2015).

Lower concentrations were observed from
the centre toward the south. Low prediction
error was observed across the study area,
indicating the accuracy of the map. This also
shows that BME produces maps with minimum
variance (Christakos, 2000).

Figure 2.   Experimental variogram of mineral nitrogen concentration in Benin.
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CONCLUSION

A N distribution map has been generated from
hard and soft data, showing N concentrations
range of 0 to 0.8.10-6 % in the arable soils of
Benin. Higher concentrations were observed
in the northern part of the country; while lower
concentrations began from the centre toward
the south. In general, low prediction errors
were observed across the country (0.005 to
0.04); with maximum values attributed  to low
sampling density observed at the boundary.
This study revealed very low  N concentrations
across the country; however, these results are
important for a rational management of N
fertilisation programmes in Benin.
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