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ABSTRACT

Knowledge about future climate provides valuable insights into how the challenges posed by climate change and
variability can be addressed. This study assessed the skill of the United Kingdom (UK) Regional Climate Model
(RCM) PRECIS (Providing REgional Climates for Impacts Studies) in simulating rainfall and temperature over
Uganda and also assess future impacts of climate when forced by an ensemble of two Global Climate Models
(GCMs) for the period 2070-2100.  Results show that the models captured fairly well the large scale flow signals
influencing rainfall and temperature patterns over Uganda. Rainfall and temperature patterns were better resolved
by the RCM than the GCMs. The rainfall and temperature patterns differed among the three seasons. Rainy
season March to May (MAM) is likely to experience increment in both surface temperature (0.9 oC) and rainfall
(0.2 mm day-1). For September to October (SON) rainy season, an opposite trend in the two climate parameters,
temperature and rainfall, will be registered with the former increasing by 0.9 oC and the latter dropping by 0.7 mm
day-1. For the dry season, June to August (JJA), both temperature and rainfall are projected to decrease by 0.3 oC
and 0.4 mm day-1, respectively.
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RÉSUMÉ

La connaissance du climat de demain fournit un aperçu sur la manière dont les défis posés peuvent être adressés.
Cette étude a évalué  la compétence du Modèle Climatique Régional (RCM) PRECIS du Royaume Uni (fournissant
des climats régionaux pour des études d’impacts) dans la simulation de la pluviométrie et la température en
Ouganda et, d’autre part, étudier les impacts des climats une fois forcée par un ensemble de deux Modèles
Climatiques à l’échelle de l’Univers (GCMs) pour les périodes 2070-2100. Les résultats montrent que les
modèles ont raisonnablement saisi une large échelle du flow des signaux qui influencent la tendance de la  pluviométrie
et la température en Ouganda. Les tendances de la pluviométrie et la température étaient mieux déterminées par
RCM que GCMs. Les tendances de la pluviométrie et la température différaient au cours des trois saisons. La
saison pluvieuse Mars à Mai (MAM)  connaitra probablement une augmentation de la température (0.9 oC) et de
la pluviométrie (0.2 mm jr-1). Pour la saison de pluie de Septembre à Octobre, une tendance contraire dans les deux
paramètres climatiques sera enregistrée avec la même augmentation de 0.9 OC et une diminution de 0.7 mm jr-1 de
pluie. Pour la saison sèche de Juin à Août (JJA), les projections montrent une diminution de la température et de
la pluie de 0.3 OC et 0.4 mm jr-1, respectivement.

Mots Clés:   Modèles Climatiques du Globe, température de surface
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INTRODUCTION

Climate change is among the most pressing
environmental development challenges globally
(UNCTAD/WTO, 2007). With the expected global
temperature increases of 1.4 to 5.8 °C by the end
of the twenty first century,  Sub-Saharan Africa
in general, and Uganda in particular, are vulnerable
to the adverse impacts of climate change and
variability because their economies are tightly
bound to climate (Houghton et al., 2001; IPCC,
2007; Lukwiya, 2009). Agriculture is a major Gross
Domestic Product (GDP) contributing sectors of
Uganda’s economy.

Several studies show that  rainfall is likely to
increase in humid areas and decline in semi-arid
areas across the tropics (Hulme et al., 2001; Hulme
et al., 2005; Christensen et al., 2007). However,
these studies are based on global Climate Models
(GCMs) projections which are not capable of
capturing the detailed processes associated with
regional/local climate variability and changes that
are required for regional and national climate
change assessments. Hence, their outputs are
not very useful in designing appropriate
adaptation and mitigation strategies to reduce
the impact of climate change for the small holder
farmers in countries such as Uganda.

Dynamical downscaling using high
resolution Regional Climate Models (RCMs), is
one of the alternative solution available for
providing finer spatial and temporal detail than
the GCM (Pisnichenko and Tarasova, 2007). The
RCMs resolve mesoscale forcings associated
with mountains, coastlines, lakes and vegetation
characteristics that exert a strong influence on
the local climate (Giorgi and Mearns, 1999;
Vernekar, 1995; Pal et al., 2000), and are generally
nested within a GCM. At its lateral boundaries,
the RCM is driven by winds, temperature and
humidity variable outputs every 6 hours from the
GCM. This is referred to as one-way nesting, since
the RCM does not feed information back to the
GCM.

The objective of this study was to assess the
skill of the ensemble mean output of ECHAM4
and HadAM3P in simulating the climatology of
Uganda and, thereafter, use this to project rainfall
and surface temperatures over Uganda for the
period 2071-2100.

METHODOLOGY

The study area.  The study covered the whole of
Uganda using weather observing stations located
in different parts of the country. Uganda is located
between 4° North and 1° South and 29.5° West to
35.5° East (Fig. 1). It has a total area of 241,040
Km2, a north-south scope of about 650 Km and a
maximum east-west scope of about 500 Km.
Uganda shares with Kenya and D.R. Congo the
same features of equatorial climate with moderate
humid and hot climatic conditions throughout
the year; this is modified by the elevation of the
country  . The altitude ranges between 620 m
(Albertine Rift) and 5110 m (Mt. Rwenzori), with
a mean of 1200 m above sea level. The country
receives uni-modal (northern part) and bi-modal
(central, western and eastern parts) types of
rainfall.  The long rains fall between March and
May (MAM), while the light/short rains fall
between September and November (SON) (State
of the Environment Report for Uganda, 1996).  The
bimodal patterns is influenced by the circulation
of air masses associated with the equatorial
trough or Inter-tropical Convergence Zone-ITCZ
(State of the Environment Report for Uganda,
1996). The dry seasons occur between June and
August (JJA) and December and February (DJF)
when temperatures are highest. Annual rainfall
and temperature range from 500 mm to 2500 mm;
and  2 to 26 oC, respectively (McSweeney, 2008).

Model data.  The Hadley Center Atmospheric
global Climate Model (HadAM3P) and the
European Community Hamburg Model version 4
(ECHAM4) were combined to get the ensemble
output GCMs data as well as ERA-40 reanalysis
were used to provide initial and boundary
conditions for the PRECIS model. The European
Centre provides atmospheric data for Medium-
Range Weather Forecasts (ECMWF) 40-yr Re-
Analysis (ERA-40), including mean monthly
rainfall and temperature. These data are available
on 2.5° x 2.5° latitude–longitude regular grid
globally for the period 1979 to 2001. The data
were obtained from the ECMWF Web site (http:/
/data.ecmwf.int/data/) in 2010.

Model description.  The RCM used in this study
is the PRECIS (Providing Regional Climates for
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Figure 1.   Map of Uganda and selected key features.

Impacts Studies). This is the Hadley Center’s
current version of the Regional Climate Model
(HadRM3P) based on HadAM3P, an improved
version of the atmospheric component of the
latest Hadley Centre coupled Atmosphere Ocean
Global Circulation Model (AOGCM), HadCM3,
(Gordon et al., 2000). PRECIS has been used with
horizontal resolutions of 50 Km with 19 levels in
the atmosphere (from the surface to 30 Km in the
stratosphere) and four levels in the soil. The RCM
uses the same formulation of the climate system
as in the GCM which helps to ensure that the
RCM provides high-resolution regional climate
change projections generally consistent with the
continental scale climate change projected by the
GCM. The HadRM3P model ran the ensemble
GCMs outputs  downscaling them at 50-Km
horizontal resolution for the present climate
(1961–1990) using ERA-40 Re-analysis for base-
line lateral boundary conditions (LBCs) and for
future scenarios 2071–2100) using the A2 special

report on emissions scenarios (SRES) of the
Intergovernmental Panel on Climate Change
(IPCC) and ECHAM4 and HadAM3P (Omondi,
2010).

RESULTS

Performance of the RCM.  Figures 2 and 3 show
the simulated rainfall climatology (1961-1990) of
Uganda and the model bias. The model
reproduced fairly well the rainfall around the cattle
corridor and badly the rainfall around Mt
Rwenzori and over Lake Victoria.  The model bias
is relatively higher during SON compared to other
seasons.

Simulated surface temperature and  the model
bias is depicted in Figures 4 and 5. Areas with
relatively high bias included the highlands of
south-western, Mt Elgon region, Lake Albert and
Lake Victoria (Fig. 1).
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           (a) March – May (MAM)            (b) June – August (JJA)    ( c) September – November (SON)

Figure 3.   Seasonal model bias from mean rainfall climatology (1961-1990) over Uganda (mm day-1).

         (a) March – May (MAM)               (b) June – August (JJA)             ( c) September – November (SON)

Figure 2.   Seasonal RCM rainfall climatology (1961-1990) over Uganda (mm day-1).

Figure 5 shows the observed and simulated
mean annual cycle for a number of stations across
Uganda. The bimodal regime common in most
rainfall stations in Uganda is reasonably simulated
for several zones. The model simulated the
seasonality of rainfall climatology fairly well
compared with station data.  However, the model
over-estimated rainfall in northern and central
Uganda. It under-estimated rainfall for the first

season in south-western Uganda and over-
estimated it for the dry and second season in
western Uganda.

Figures 7a and b show the performance of
the model for the maximum and minimum
temperature respectively. As for rainfall, simulated
and observed temperature followed the same
trend. The difference between observed and
simulated was relatively smaller for the minimum
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         (a) March – May (MAM)            (b) June – August (JJA)       (c) September – November (SON)

Figure 4.   Temperature climatology (1961-1990) over Uganda (oC).

         (a) March – May (MAM)              (b) June – August (JJA)     ( c) September – November (SON)

Figure 5.   Seasonal model bias from mean temperature (oC) climatology (1961-1990) over Uganda.

temperature compared to the maximum
temperature.

Projected rainfall over Uganda (2071-2100).
Seasonal model projections of future rainfall for
the 2071-2100 periods for Uganda from different

ensemble mean datasets are presented in Figure
8.  During MAM and SON seasons, several parts
of the country are projected to be wet, with rainfall
ranging between 4-8 mm day-1, with small patches
of relatively dry areas (0-4 mm day-1). The Lake
Victoria and the area near D.R. Congo (Rwenzori)
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Figure 6.   Simulated mean annual cycle of both observed and model rainfall in some parts of Uganda.

(Fig. 1) are likely to receive high rainfall ranging
from 10-16 mm day-1. During JJA, a big portion of
the cattle corridor, the Lake Albert area and south-
western part of the Lake Victoria are likely to
receive 0-4 mm day-1. The north-western part of
the country and other areas bordering Kenya and
DRC are likely to receive rainfall of 4-8 mm day-1.

The model projected an increase in mean
rainfall in the future 2071-2100, during the MAM
season compared to the climatological period
(1961-1990) for almost the entire country. The
mean rainfall amount for MAM is projected to
increase by 0.2 mm day-1. It projected a reduction
in rainfall of about 0.4 mm day-1 in JJA and 0.7 mm
day-1 in SON (Table 1). For all the seasons, both
maximum and minimum rainfall amount show a
decreasing trend with biggest drop during rainy
seasons- MAM (32.8 to 21.3 mm day-1) and SON
(31.3 to 19.3 mm day-1). The lowest drop was
registered under JJA (22.7 to 17.1 mm day-1).

Projected temperature over Uganda (2071-
2100).  The model projections for surface mean,
maximum and minimum temperatures are
presented in Figure 9. The mean surface
temperature is projected to increase for all seasons
with both rainy seasons MAM and SON
registering higher increases of 0.9oC; while 0.3 oC
recorded for JJA. During MAM and SON, a big
portion of the northern parts of the country is
likely to remain hot; while the Mt Elgon and
South-western region (Fig.  1) are likely to be
cool throughout the year.

Generally, the maximum and minimum surface
temperatures are projected to increase for both
rainy seasons MAM and SON. The maximum for
MAM is projected to increase by 1oC and by 0.7
oC for SON, while the minimum for MAM is
projected to increase by 1.6 oC and by 1.4 oC for
SON.  For the dry season-JJA, the maximum is
projected to decrease slightly by 0.1oC while the
minimum will increase by 0.6 oC.
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Figure 7.   Observed and simulated annual cycle of RCM mean (a) maximum and (b) minimum projected rainfall over Uganda
(2071-2100).
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DISCUSSION

Performance of the model.   Although the
ensemble model was robust in simulating the two
parameters (Figs.1- 6), and more especially
temperature, relatively high bias were observed
on the highlands and water bodies. This can be

attributed to the model physics (physical
processes captured by the model and boundary
conditions), topography and land-surface
processes, and lack of quantitative data over
these features. Climatological parameters of
highland areas are principally not governed by
synoptic-scale circulation but by local scale
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        (a) March – May (MAM)              (b) June – August (JJA)    (c) September – November (SON)

Figure 8.   Projected rainfall (mm/day) (2071-2100) over Uganda.

TABLE 1.   Comparative seasonal rainfall statistics 1961-1990 and 2071-2100 over Uganda

Season                            1961-1990                                                                 2071-2100

   Mean           Maximum         Minimum       Mean                Maximum              Minimum

MAM 6.2 32.8 2.0 6.4 21.3 1.4
JJA 4.6 22.7 0.3 4.2 17.1 0.4
SON 6.9 31.3 2.1 6.2 19.3 1.7

MAM = March-May,  JJA  = June to August; SON = September to October

conditions, such as topography, distance from
the sea, elevation, convergence and the uplift of
air masses (Seth et al., 2006; Thorton et al., 2010).
Aktar et al. (2009) and McGregor (1997) observed
that regional models tend to over-estimate rainfall
over the mountain areas and underestimation of
temperature with respect to Climate Research Unit
(CRU) data the observed global data used usually
used for comparisons. Similar observations were
made by several other scholars (Indeje et al., 2000;
Giorgi et al., 2004; Solman et al., 2008; van de
Steeg, 2009) over simulation of warm bias over
Lake Victoria and other inland large water bodies
of East Africa.

The models tend to under-estimate the total
rainfall during the long-rain season (Fig.  6). Thus,

biases in climate model reproduction of the
season cycles of the atmospheric predictors used
in downscaling tend to have significant impacts
on simulated rainfall (Charles et al., 2007).
Shongwe et al. (2010) pointed out the difficulty
in predicting long rains with the existing
uncertainties in patterns, which were higher than
the short rain season. Perhaps, this depends on
the methods used (Barsugli et al., 2009).  Charles
et al. (2007) pointed out that ECHAM4
significantly over-estimates observed rainfall
compared with HadAM3P, yet it should be
observed that the present study used these two
models. Furthermore, the simulated climate over
several decades may be quite different given
slightly different initial climate conditions in the
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        (a) March – May (MAM)           (b) June – August (JJA)         (c) September – November (SON)

Figure 9.   Projected seasonal temperature (oC) over 2071-2100 in Uganda.

TABLE  2.   Comparative seasonal temperature (oC) statistics 1961-1990 and 2071-2100 over Uganda

Season                            1961-1990                                                                 2071-2100

   Mean           Maximum         Minimum       Mean                Maximum              Minimum

MAM 23.0 29.7 16.0 23.9 30.7 17.6
JJA 22.6 28.6 16.6 22.9 28.5 17.2
SON 22.0 27.7 15.7 22.9 28.4 17.1

model (Barsugli et al., 2009), and the influence of
the El Niño Southern Oscillation (ENSO)
phenomenon. The latter is known to be among
the major causes of uncertainties in climate
projections for east Africa’s rainfall since the
seasonal weather in the region is highly
influenced by this phenomenon (Dore, 2005)
which masks the important role of other oceans;
particularly the Indian Ocean. Hemming et al.
(2010) suggests that computer resources
limitations in understanding of small-scale climate
processes induced uncertainties in future
projections, may be the major challenge in the
next 50 years.

Projection of future climate in Uganda. In
comparison with the 1961-1990 period, the

projected mean daily rainfall of 2071-2100 is likely
to increase during MAM, and decrease for all
other seasons; while the mean daily temperature
will likely increase by a range of 0.5 to 0.9oC. Very
little variations are expected for the minimum daily
rainfall compared with the maximum daily rainfall.
MAM season will have the highest variation
(hotter) in terms of maximum (1oC) and minimum
temperature (1.6oC); followed by SON for the
minimum temperature (1.4oC) and lastly JJA
season for the minimum temperature (0.6oC),
which also recorded lesser maximum temperature
in the future period in comparison to 1961-1990
period.  This insinuates that Uganda may not
reach the expected global temperature increase
of up to 5.8oC reported for instance by Houghton
et al. (2001).
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Model simulations agree with the earlier
studies (Byrnes, 1990; Taylor and Howard, 1999;
Indeje et al., 2000), which pointed out that the
MAM season will receive rainfall increment, with
a relatively high amount near Lake Victoria and
the highlands. These projections are also in
agreement with McSweeny et al. (2008) who
projected rainfall increases of 7 to 11 % not only
during MAM, but also for other seasons of up to
15% by 2090s, though the study was at global
scale. However, a similar study carried out in areas
close to Uganda-Kenya and Eritrea by Ward and
Lasage (2009), downscaling ECHAM5 at regional
level, projected an increase in rainfall in the
March-May season, with less rainfall towards the
end of the season in May. SON the second rain
season received, for the period 1961-1990, the
highest mean rainfall of up to 6.9 mm day-1, but
with maximum 31.3 mm day-1 and minimum 2.1 mm
day-1. This season accounts for about the quarter
of the total annual rainfall over Uganda (Indeje et
al., 2000) and is uniformly well distributed. The
dominance of large-scale weather systems may
be responsible for the spatial homogeneity of
rainfall during this season (Indeje et al., 2000).
The model projected a change in rainfall patterns
over the country. McSweeney et al. (2008) also
projected the highest rainfall to be in the SON
season. On the other hand, Hepworth and
Goulden (2008) projected the shift of MAM long
rains to SON season extending this short rain
season with increased rainfall projected for
December, January and February (DJF) a normally
short season. In addition, the simulated declines
of mean and maximum rainfall during JJA with an
increase in the minimum rainfall, compared with
the past trend is in agreement with Ward and
Lasage (2009) study whose projections showed
decline over the May month which eventually
extending up towards the end of the year.
Shongwe et al. (2010) projected increased
wetness trend over much of east Africa for both
seasons with higher rainfall over the Great Lakes
Region and much of Uganda. Model outputs
variance is mainly due to difference in methods
used in the different studies and the fact that
rainfall structures change greatly over space and
time (Wilby et al., 1998; Wood et al., 2004; Louw,

2007; Ruane and Roads, 2007; Rockel and Geyer,
2008), and the influence of El Niño Southern
Oscillation (ENSO) phenomenon.

In terms of temperature, the study projected
increased temperatures over all seasons, in
agreement with other studies such as
McSweeney (2008). The JJA season, which is the
dry season, is likely to have the highest daily
temperatures compared with the other two
seasons, with minimum temperatures simulated
up to 16.5 oC, and maximum 26.6 oC. Projected
rates of warming are greatest in the coolest
season, JJA season, increasing by 1.5 to 5.4 °C
by the 2090s (McSweeney et al., 2008;
McSweeney et al., 2010). This is followed by the
MAM season, which is surprisingly highly
simulated compared with its normal range with
minimum temperature up to 16 oC and maximum
of 29.7 oC.  These are, however, most
concentrated in the northern region. These
results contradict Indeje et al.’s  (2000)
observations that of drier conditions than normal
in the northern parts of Uganda during the JJA
season.  Surprisingly, higher simulations of
temperatures during the MAM season can still
be attributed to the extension to the month of
March of the high temperatures of the December,
January and February (DJF) period. Such
changes, coupled with the erratic onset and
cessation of rainfall seasons, have been noticed
over the recent past along with increasing
frequency of droughts which has made Uganda
more vulnerable to climate change (NAPA, 2007).
Oxfam (2008) reported that all seasons were likely
to become warm to extremely warm because
temperatures will increase, though it would be
noticed more over the next decade. Other studies
predicted mean annual temperature increase by
1.0 to 3.1°C by the 2060s, and 1.4 to 4.9 °C by the
2090s (McSweeney et al., 2008; McSweeney et
al., 2010). This corroborates well with Ward and
Lasage (2009) who projected temperature
increment over the east African region. However,
the projected increment is relatively lower than
Hepworth and Goulden (2008) projected
temperature rise of 1.5 oC over the next 20 years
and a 4.3 oC by 2080s.
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CONCLUSION

In light of the above results, it is concluded that
the ensemble mean of ECHAM4 and HadAM3P
reproduce well the surface temperature of
Uganda. This study demonstrates that
temperatures are going to be considerably warmer
over most parts of Uganda for 2071-2100 period.
The MAM season is projected to receive
enhanced mean rainfall and temperature. Model
simulations for SON point to a likely increase in
temperature and a decrease in rainfall amount.
For the dry season, JJA, both temperature and
rainfall are projected to decrease.  There is need
to assess the effect of projected climate change
and variability on the distribution of major crops
of Uganda.
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