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Abstract 
A bootstrap simulation approach was used to generate values for 
endogenous variables of a simultaneous equation model popularly 
known as Keynesian Model of Income Determination. Three sample 
sizes 20, 30 and 40 each replicated 10, 20 and 30 times were 
considered. Four different estimation techniques: Ordinary Least 
Square (OLS); Indirect Least Square (ILS); Two-Stage Least Square 
(2SLS) and Full Information Maximum Likelihood (FIML) methods 
were employed to estimate the parameters of the model.  The 
estimators were then evaluated using the average parameter estimates; 
absolute bias of the estimates and the root mean square error of the 
estimates. The result shows that generally, ILS provided the best 
estimates.  

Keywords: Bootstrap, endogenous, exogenous, least squares, 
maximum likelihood. 

Introduction 

A fundamental task of quantitative social science research is to make 

probability-based inferences about a population characteristic, say θ, 

based on an estimator, θ̂ , using a sample drawn from that population. 
Bootstrapping is a computationally intensive, non-parametric 
technique for making such inferences. Bootstrapping differs from the 
traditionally parametric approach to inference in that it employs large 
numbers of repetitive computations to estimate the shape of a 
statistic’s sampling distribution, rather than strong distributional 
assumptions and analytical formulas (Mooney et al, 1993). 
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Unlike single equation model, simultaneous equation model was a 
true representation of two-way directional cause-and –effect 
relationship that existed between economic variables. Since 
simultaneous equation model has a wide application in real life 
situation most especially in various economic phenomena, hence, in 
this study we investigated the relative performance of four estimators 
of a simultaneous equation model with the objectives of examining 
the relative performance of selected estimation techniques, examining 
the sensitivity of the estimates to increasing sample sizes (i.e. 
asymptotic effect) and examining the sensitivity of the result to 
increasing levels of replication, which explains the stability of results. 

Model Presentation and Its Basic Assumptions        
The paper considered a two-equation model often referred to as 
Keynesian Model of Income Determination. The model consisted of 
one structural equation and one identity equation. The specification 
was given as follows: 

          t t t
C y Uα β= + +                               

0 1β< <  

      
t t t

y C I= +          

where C was the consumption expenditure; Y was the income; I was 
the investment (assumed exogenous); t was the time; U was the 

stochastic disturbance term and α & β  are the parameters of the 

model. 

In the linear simultaneous equation economic model containing G 
endogenous (jointly dependent) variables y1, …..yG and K  
predetermined variables  X1, X2,…., Xk the G structural equations at 
time t may in general be written as: 
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 In matrix form, (1.3.1) can be written as 

  
t t tB y X U+ =Γ   (1.3.2)  

where B was a G x G matrix of coefficients of current endogenous 

variables, Γ  is a G x K matrix of coefficients of predetermined 
variables, Yt, Xt and Ut were column vectors of G, K and G elements 
respectively. 

  

 β 11 β 12… β 1G  γ 11 γ 12…γ 1K  

B = β 21 β 22….  β 2G       Γ=  γ 21 γ 22…γ 2K 

         β G1 β G2… β GG     γ G1 γ G2…γ GK   

 

  

Yt = Y1t     Xt = X1t Ut  = U1t  

               Y2t   X2t  U2t 

   

 YGt   XKt  UGt 

The system of equations was complete since the number of 
endogenous variables is equal to the number of structural equations in 
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the model. Each equation in Equation (1.3.2) has G + K parameters, 

β i1,  β i2….. β iG, γ i1, γ i2, ….., γ iK.. In practice, some of the 

parameters were usually specified to be zero. Otherwise, all the 
equations in the model will look alike statistically, and no equation 
would be identified. Constant terms were assumed to be included in 
the model by specifying one of the predetermined variables to be 
identically unity. The basic assumptions included the following: 

a. The vector of sample observations on Y may be expressed as 
a linear combination of the sample observations on the 
explanatory X variables plus a disturbance vector. The central 
problem is to obtain estimates of the unknown B and 

Γ matrices. 
b. The explanatory variables did not form a linearly dependent 

set. Alternatively, X matrix is of full column rank i.e  

             ( )Xρ  = k where k was the number of explanatory variables. 

c. X was a non-stochastic matrix. 
d. For an arbitrary period t, 

  E (Ut) = 0    

 Variance-covariance matrix of U was defined as 

               
U U I nt t

 
 
 

′Ε = Σ = Ω ⊗        

e. The vector U has a multivariate normal distribution. 
      

Methodology 
A typical bootstrap experiment takes the following form: 

Assume the econometric model, say 

 Y = F (I, θ) + U ………. (3.1) 
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Where U ~ N (0, 2σ ) and also satisfies other classical assumptions 
for least squares estimation. Numerical values were assigned to all the 

parameters embodied in the vector θ. In this study, the vector θ 

consisted of parameters α  and β   which assumed values 1.0 and 0.5 

respectively. The variance 2σ  was also assigned a numerical value, 

and on the basis of the assumed 2σ , the disturbance term, U is 

generated. Throughout the experiment we assume 2σ  = 1. 

A random sample of size T of I was selected from a pool of uniformly 
distributed random numbers with interval (0,1) and the numerical 

values of F (I, θ) are computed. The vector Y was then obtained by 

computing F (I, θ) + U. This was most conveniently done by using 
reduced form of the model. Then the regression of Y on I is performed 

to produce estimate θ̂    of θ. We set sample size T = 20, 30 and 40 

for the purpose of the study. 

Using the bootstrap software package, the sample of U generated was 
bootstrapped many times, say 1000 times and this was replicated in r 
times.  Each replication produces a bootstrapped sample which gave 

distinct values of Y. This leads to having different estimates  θ̂    of θ 
for each bootstrapped sample from several regression of Y on fixed I. 

Thus, it was possible for the sampling distribution of ˆθ  to be 
constructed. The empirical distribution so obtained was then utilized 

in evaluating the precision of ˆθ and in making other comparisons 

especially of the relative performance of different estimators of ˆθ . 
The procedure described above is then repeated for different sample 
sizes T over various levels of replication r to investigate asymptotic 
effects and the stability of the results. 
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Results and Discussion 
The outcomes of the bootstrap experiment were subjected to analysis 
using Time Series Processor (TSP 5.0) software package. Considering 
three sample sizes T = 20, 30 and 40 each at four levels of replication 
r = 10, 20, 30 and 40, we provide results on the performance of four 
estimators using these three criterion. 

(i). Average or Mean of Estimates in comparison with the true 
parameter value. 

Let ˆ
i

θ  be the estimates of the parameter  θ obtained in the ith 

bootstrap replication. We compute 

  

1

1 ˆB

i
iB

θ θ
=

= ∑ , where B = number of bootstrap 

replication 

(ii). Bias of Estimates 

Bias( )θ̂ θ θ= −  

(iii).    Root Mean Square Error (RMSE) 

 RMSE ( ) ( )ˆ ˆM S Eθ θ=  

   =  ( ) ( )
2

ˆ ˆV ar B iasθ θ +
 
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where                

                        MSE ( ) ( )
2

1

1

ˆ ˆB

i

Bθ θ θ−

=

= −∑
 

and 

             Variance ( ) ( )
2

1

1

ˆ ˆB

i
i

Bθ θ θ−

=

= −∑  

The paper used the following estimation techniques in estimating the 
parameters of the model: Ordinary Least Square Method (OLS), 
Indirect Least Square Method (ILS), Two-Stage Least Square Method 
(2SLS) and Full Information Maximum Likelihood Method (FIML) 

The results obtained were summarized in the following tables 1 to 3. 
The Tables consist of the results of the analysis based on the three 
criterion used to examine the performance of the estimators. 12 cases 
were considered for each of the criteria using 3 sample sizes and 4 
levels of replication. 

Table 1 presented the average of estimates at various sample sizes 
over 4 levels of replication. These average values are presented for 
each of the estimators. Best estimators are those whose average 
estimates are close to the true parameters. In this table under 
parameter α , the best estimator was ILS because it produces best 

estimates in 5 cases out of 12 cases considered. 2SLS was best in 4 

cases while FIML was best in 3 cases. Also, under parameter  β  , 

ILS was best in 9 of the 12 cases. 2SLS followed with a distant 
margin, being best in only 3 cases. 

Table 2 presented the absolute bias of the parameter estimates. The 
best estimators were those with the least absolute biases. Forα , ILS 

generated lower biases than other estimators in 5 cases. Hence it was 
the best estimator. It was followed by 2SLS and then FIML which 
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generated lower biases than other estimators in 3 cases. For β , ILS 

also performed best by producing least biases in 9 cases out of the 12 
cases considered. It is followed by 2SLS with a distant margin. 
                                                                                                                                                                              
Table 3 presented the root mean square error of parameter estimates. 
The smaller the root mean square error, the better the performance of 
the estimator, for parameterα , FIML performed best in 5 cases while 

2SLS closely followed in 4 cases. ILS was best in 3 cases. For 

parameter β , however, ILS clearly takes the lead by performing best 

in 7 cases. FIML followed with a distant margin of 4 cases while 
2SLS is best in only 1 case. 
 

Conclusion 
This study has shown that ILS was superior to other estimators in 
estimating the parameters of just identified equations of a 
simultaneous equation model. However, this superiority was displaced 
in some cases by 2SLS and FIML (especially for parameter  α  ). ILS 

is noticeably overwhelmingly superior in estimating both parameters. 
Furthermore, it was observed that the results were relatively stable at 
various levels of replication when sample sizes are kept constant. 
Finally, there was no remarkable asymptotic effect on the performance 
of the estimators.        
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Table 1: Performance Evaluation of Estimators Using Average 
Parameter Estimates 

 
 

 

Estimator Replica-
tion 

T  =  20  T  =  30   T  =  40 

α (1.0) β (0.5) α (1.0) β (0.5) α (1.0) β (0.5) 

OLS 10 1.8329 1.6052 2.1045 0.7736 1.7504 1.1310 

20 1.7215 1.6603 1.8382 1.2280 1.8247 1.2556 

30 1.8444 1.4633 1.8995 1.0995 1.7861 1.2934 

40 1.9940 1.4123 1.8621 1.2133 1.8401 1.2819 

ILS 10 0.8754 0.5623 1.2887 0.4121 0.9211 0.4991 

20 0.9103 0.5317 1.0039 0.4909 0.9520 0.5115 

30 1.0370 0.4922 1.0133 0.4881 0.9397 0.5127 

40 1.0619 0.4881 0.9763 0.5049 0.9685 0.5080 

2SLS 10 0.7728 0.5880 1.3500 0.3775 0.9369 0.4895 

20 0.7990 0.5673 1.0876 0.4705 0.9592 0.5005 

30 0.9276 0.5192 1.0974 0.4546 0.9740 0.4990 

40 1.0229 0.5021 1.1436 0.4444 0.9107 0.5264 

FIML 10 0.6346 0.6115 1.2478 0.3854 0.8955 0.5090 

20 0.6744 0.5978 1.0066 0.4772 0.9496 0.5050 

30 0.8496 0.5596 1.0027 0.4620 0.8702 0.4931 

40 0.9068 0.5371 0.9848 0.4690 0.8235 0.5182 
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Table 2: Performance Evaluation of Estimators Using Absolute Bias 
of Parameter Estimates 

Estimator Replication  T  =  20   T  =  30  T  = 40 

α (1.0) β (0.5) α (1.0) β (0.5) α (1.0) β (0.5) 

OLS 10 0.8329 1.1052 1.1045 0.6865 0.7504 0.6310 

20 0.7215 1.1602 0.8382 0.3250 0.8247 0.7556 

30 0.8444 0.9633 0.8995 0.4047 0.7861 0.7934 

40 0.9940 0.9123 0.8621 0.4313 0.8401 0.7819 

ILS 10 0.1246 0.0623 0.2887 0.0879 0.0789 0.0009 

20 0.0897 0.0317 0.0039 0.0091 0.0480 0.0115 

30 0.0370 0.0078 0.0133 0.0119 0.0603 0.0127 

40 0.0619 0.0119 0.0237 0.0049 0.0315 0.0080 

2SLS 10 0.2272 0.0880 0.3500 0.1225 0.0631 0.0105 

20 0.2010 0.0673 0.0876 0.0295 0.0408 0.0005 

30 0.0724 0.0192 0.0974 0.0454 0.0260 0.0010 

40 0.0229 0.0021 0.1436 0.0556 0.0893 0.0264 

FIML 10 0.3654 0.1115 0.2478 0.1146 0.1045 0.0090 

20 0.3256 0.0978 0.0066 0.0228 0.0504 0.0050 

30 0.1504 0.0596 0.0027 0.0380 0.1298 0.0069 

40 0.0932 0.0371 0.0152 0.0302 0.0908 0.0132 

 

Table 3: Performance Evaluation of Estimators Using Root Mean Square 
Error of Parameter Estimates  
Estimator Replication      T  =  20   T  =  30   T  =  40 

α (1.0) β (0.5) α (1.0) β (0.5) α (1.0) β (0.5) 

OLS 10 1.0716 1.4008 1.3488 0.9091 0.9022 0.8177 

20 1.0079 1.6657 1.1181 1.0362 1.0012 1.0582 

30 1.0793 1.5004 1.1243 0.9543 0.9892 1.0995 

40 1.1918 1.4628 1.1011 0.9582 1.0239 1.0956 

ILS 10 0.5267 0.1865 0.6066 0.1750 0.4604 0.1338 

20 0.6578 0.2298 0.5683 0.1870 0.5019 0.1498 

30 0.6833 0.2277 0.5127 0.1657 0.5432 0.1605 

40 0.6389 0.2257 0.5382 0.1686 0.5405 0.1522 

2SLS 10 0.5800 0.2033 0.6404 0.2417 0.4016 0.1400 

20 0.5621 0.2098 0.6653 0.2238 0.4949 0.1536 

30 0.6849 0.2408 0.6548 0.2167 0.4894 0.1546 

40 0.6522 0.2236 0.6675 0.2245 0.5148 0.1543 

FIML 10 0.4842 0.1733 0.5875 0.2342 0.5214 0.1907 

20 0.5294 0.1848 0.6164 0.2108 0.5538 0.1834 

30 0.5179 0.1864 0.5474 0.2026 0.5873 0.1901 

40 0.5240 0.1964 0.5657 0.2064 0.5730 0.1857 
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Table 5: Tabular presentation of Optimization Model for Solid Waste 
Management in Ilorin 

 

Zones based on land use 

Quantity 

of waste 

/capita/day 

(kg) 

No of 

vehicles 

No of 

Ro-

Ro 

Manually 

loaded 

containers 

or drums 

Residential 0.13 3 4 54 4 

Administrative 0.06 - 8 - 

Commercial Store 
&Services 

0.08 2 4 21 - 

Market 0.1 15 8 

Institution Health 0.01  
1 

 
2 

1 - 

Education 0.03 3 2 

Transport 0.02 2 - 

Industrial 0.05 4 - 

                                       

Total 

0.48 6 10 108 14 

Source: Authors’ fieldwork. 

 

 

 

 

 

 

 

 

 


