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Abstract 
In this study, we conduct several Monte-Carlo experiments to examine the 

sensitivity of the efficiency of FGLS estimators relative to OLS using the 

Variance and RMSE criteria, in the presence of first order autocorrelated 

error terms which are also correlated with geometric regressor. We examine 

the sensitivity of the efficiency to �, α, as well as, its asymptotic behaviour, 

N, when the above two assumptions are violated. We observe that CORC and 

HILU give similar result, same for ML and MLGRID.  OLS is more efficient 

than CORC and HILU while ML and MLGRID dominate OLS. In the 

scenarios, efficiency does not increase with increase in autocorrelation level, 

only ML and MLGRID at α = 0.05 show that efficiency increases with 

increase in autocorrelation level.  All estimators show that efficiency reduces 

as significant level increases only when the autocorrelation value and sample 

size are small (ρ = 0.4, N = 20). There is more efficiency gain when N and ρ 

are large at all significant correlation levels. Asymptotically, the efficiency of 

FGLS estimators increase with increasing autocorrelation but it is indifferent 

to the correlation levels. The asymptotic ranking is CORC and HILU 

followed by MLGRID and ML. 
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Introduction 
To assess the quality and appropriateness of econometric estimators, we are 
always interested in their statistical properties.  For most estimators, these 
can only be derived in a "large sample" context, (asymptotic properties).  
One estimation procedure may, for example, be selected over another 
because it is known to provide consistent and asymptotically efficient 
parameter estimates under certain stochastic environments. Such a heavy 
reliance on asymptotic theory can and does lead to serious problems of bias 
and low levels of inferential accuracy when sample sizes are small and 
asymptotic formulae poorly represent sampling behaviour. This has been 
acknowledged in mathematical statistics since the seminar work of R. A. 
Fisher, who recognised very early the limitations of asymptotic machinery, 
when he wrote; “Little experience is sufficient to show that the traditional 

machinery of statistical processes is wholly unsuited to the needs of practical 

research. Not only does it take a cannon to shoot a sparrow, but it misses the 

sparrow!  The elaborate mechanism built on the theory of infinitely large 

samples is not accurate enough for simple laboratory data.  Only by 

systematically tackling small sample problems on their merits does it seem 

possible to apply accurate tests to practical data”. [1] 

  
Statisticians are often interested in the relative efficiency of different 
estimators when the underlying assumptions of least squares breakdown. [2]. 
Assumptions in the classical normal linear regression model include that of 
lack of autocorrelation of the error terms and the zero covariance between the 
independent variable and the error terms.   
 
In this follow up study to the estimation of the parameters of a linear model 
when the above two least squares assumptions are violated ( [3], [4], [5]), we 
are interested in the relative efficiency of FGLS to OLS in the presence of 
autocorrelated errors and significant correlation between the independent 
variable and the error terms. Specifically, we investigate, in a Monte Carlo 
experiment, the sensitivity of the efficiency of OLS and FGLS estimators in 
linear model to autocorrelation levels (), significant correlation levels (α) 
between the autocorrelated error terms and the regressor, as well as, the 
asymptotic behaviour of efficiency using the Variance and RMSE criteria. It 
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is known that in linear model with autocorrelated error terms which is 
independent from the regressor, the feasible generalized least squares (FGLS) 
estimators usually outshine its ordinary least squares (OLS) counterpart in 
terms of efficiency. ( [6], [7], [8]).    
 
Ordinary regression analysis is based on several statistical assumptions. One 
key assumption is that the errors are independent of each other. However, 
with time series data, the ordinary regression residuals usually are correlated 
over time. (This is known as autocorrelation). It is not desirable to use 
ordinary regression analysis for time series data since the assumptions on 
which the classical linear regression model is based will usually be violated. 
 
These violations, seen in widespread applications in operations research, like 
in queuing theory and econometrics, where the usual assumption of 
independent error terms may not be plausible in most cases.  Also, when 
using time-series data on a number of micro-economic units, such as 
households and service oriented channels, where the stochastic disturbance 
terms in part reflect variables which are not included explicitly in the model 
and which may change slowly over time. [7]. 
 
Violation of the independent errors assumption has three important 
consequences for ordinary regression. First, statistical tests of the 
significance of the parameters and the confidence limits for the predicted 
values are not correct. Second, the estimates of the regression coefficients are 
not as efficient as they would be if the autocorrelation were taken into 
account. Third, since the ordinary regression residuals are not independent, 
they contain information that can be used to improve the prediction of future 
values. [9] Examples of situations generating dependency between errors and 
regressors include: Errors in Variables (Stochastic regressors), Lagged 
dependent variables and autocorrelation, and Simultaneous equation bias. It 
is known that in economics, measurement errors may be correlated both with 
themselves and with the regressors.  [10] have shown that the error terms in 
most current formulations of economic relations are highly positively 
autocorrelated. [6] have shown that there is much to gain and little to lose by 
considering alternatives to the independent error assumption of the classical 
linear regression model.  
 
Many models with autocorrelated error terms and dependency between 
regressors and error terms have been discussed in the literature.  These 
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include [10], [11], [6], [12], [13,14], [15], [16], [7], [17], [18], [19], [8], [5], 
[4], and [2].  Tests for detecting the presence of autocorrelation and 
alternative consistent methods of estimating linear models with 
autocorrelated disturbance terms and significant correlation between 
regressors and autocorrelated errors have been proposed.  For instance, [12] 
derived a “full” maximum likelihood method approach to estimation of 
relationships with autocorrelated disturbances.  They had a Monte Carlo 
study of their maximum likelihood estimator and the Cochrane-Orcutt 
procedure.  The model used is:  

ttt UXY ++= 21 ββ
 

  ttt eUU += −1ρ
 

  
( )0036.0,0~ NIDet  

and the independent variables were chosen to contain a large trend 
component, as realization of 

 
( ) ( )   000900~      ;04.0exp   .,NIDwwtX ttt +=

. They 
varied their sample sizes from 20 to 50 in 200 replications each and three 

different values of ρ , which are 0.6, 0.8 and 0.99.  On each replication, both 
the conventional and full maximum likelihood estimates were computed for a 
given realization of the e’s, using the Cochrane-Orcutt procedure and the full 
maximum likelihood estimates procedure.  Their findings using Root Mean 
Square Error (RMSE) is that the full maximum likelihood estimator is very 

much better than the Cochrane-Orcutt in estimating 2β  and they are often 

dramatic in estimating 1β  when the X’s are trended as well as for the ρ , 
the gains are quite small.  It was also found out that the full maximum 

likelihood estimates of 1β  and 2β  always does better than the conventional 
ones. 
 
However, in spite of these tests and estimation methods, a number of 
questions in connection with the estimation of the classical linear model with 
autocorrelation error terms and non-zero covariance between the independent 
variable and the error terms remained unanswered.  These include the most 
appropriate estimation method and their efficiencies in the above named 
specification of the independent variable, the effect of the degree of 
correlation of the disturbance term, the effect of the degree of correlation of 
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independent variable and the error terms, the asymptotic effect and the 
sampling properties of the various estimation methods.  [3] has shown that 
the replication only gives stability to the parameter estimates.  The answers to 
most of these questions would allow for correct inferences to be made in 
linear models plagued by the scenario depicted above. It would also relieve 
the empirical worker from the reliance placed on asymptotic theory in 
estimation and inference. 
 
The rest of this paper discusses the model and the experimental framework in 
section 2, Section 3 presents the simulation results, and section 4 presents the 
discussions, while we conclude in section 5. 

 
The Model 

We assume a simple linear regression model: 

 ttt UXY ++= 10 ββ
  - - - -  - -   (1)

       

 
,1 ttt UU ερ += −   

, 1,ρ λ <
       

1 0,  =0.8, 515
t t

X X Xλ λ−= =
       










−
→

2

2

1
,0

ρ
σ

NU t

,  










−
→

2

2

1
,0

λ
σ

NX t

,  t = 1, 2, … N.,     = (1,1) 
where Yt is the dependent variable and the first order autoregressive Xt is the 
independent variable with Ut also autoregressive of order one.  t  is 
normally distributed with zero mean and variance σ2.  and  are 
stationarity parameters while the model parameters are assumed to be unity. 
This independent variable specification had been used by [7], [5], and [20].  
It is chosen to allow for comparison of results. 
 
Experimental Framework 
We used the Monte-Carlo approach for the investigation due to the fact that 
when the covariance between the independent variable and the autocorrelated 
error terms is non-zero, the problem is near intractable by analytical 
procedure. Small sample investigations are also usually made using the 
Monte Carlo method. Also the properties of FGLS estimators vary depending 
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on the form of the variance – covariance matrix, and often the quality of this 
variance – covariance matrix can not be neatly summarized. Many estimation 
methods of our model have been developed over the years.  Because of the 
least squares violations in the model, the FGLS estimators are considered 
relative to the OLS estimator. Some of the FGLS estimators in literatures 
include the Beach and MacKinnon Maximum Likelihood, Maximum 
Likelihood Grid, Cochran Orcutt, Durbin, Prais Winstein and Hildreth Lu.   
The various methods of parameter estimation in linear models with 
autocorrelated disturbances have known asymptotic properties. [16] while 
their sampling properties are yet to be well investigated and understood. This 
corroborates [21] when he asserts that “The elaborate mechanism built on the 

theory of infinitely large samples is not accurate enough for simple 

laboratory data.  Only by systematically tackling small sample problems on 

their merits does it seem possible to apply accurate tests to practical data”.  
 
Most of the existing estimation methods possess desirable properties; 
however, the autocorrelation and the significant dependency of independent 
variable and the error terms, in addition to the specification of the 
independent variable might affect these properties.  Since Monte-Carlo 
experiments provide a means of modelling small sample properties of 
estimators, it is used here to study these properties. 
 
The following four FGLS estimators:  Cochrane and Orcutt (CORC), 
Hildreth and Lu (HILU), Maximum Likelihood (ML) and Maximum 
Likelihood Grid (MLGRID) and Ordinary Least Squares (OLS) estimation 
methods, choosing in the light of the previous works, are used. These 
estimators are equivalent with identical asymptotic properties.      ([17], [18], 
[19]). But in small samples, such as in this study, [22] have argued that those 
that use the T transformation matrix (ML, MLGRID) are generally more 
efficient than those that use T* transformation matrix (CORC, HILU). (See 
[5]) 
 
The degree of autocorrelation affects the efficiency of the estimators [7].  
Consequently, we investigated the sensitivity of the estimators to the degree 

of autocorrelation by varying rho ρ̂  from 0.4, to 0.8 and 0.9.  We also found 
out the effect of the correlation of the independent variable and the error 
terms at significant level 1%, 2% and 5% on the estimators.  The effects of 
sample size was also investigated by varying the sample size (N) from 20, 40 
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to 60 each replicated 50 times.  Evaluation of the estimators was done using 
the Relative Efficiency based on Variance and the RMSE criteria.  
 
A total of 27 data sets spread over three sample sizes were used in generating 
the data for this study.  Using model (1), a value Uo (for specified sample 
size) was generated by drawing a random value o from N(0,1) and dividing 

by 
).1( 2ρ−

  
 
Successive values of t  drawn from N(0,1) were used to calculate Ut. Xt  was 
similarly generated. The correlation coefficient between Ut and Xt was then 
computed and its absolute value tested for significance at, say 1%.  If this 
value is significant, it is chosen; otherwise it is discarded. This procedure is 
repeated as many times as are necessary (for all , α and N) to obtain fifty 
replications for a desired sample size. Yt. is thus computed for the chosen Ut 
and fixed geometric trended Xt using the model.  The data generations are 
made using the Excel package while estimations are done via the AR 
procedure of [23]. Estimation result for this scenario of the independent 
variable is presented in [5].   
 
The finite sampling properties of estimators used include the Variance 
(VAR) and the Root Mean Squared Error (RMSE).  Additionally, we 
calculated the Sum of Variances (SVAR) and the Sum of Root Mean Squared 
Error (SRMSE).  These are further used to compute the Relative efficiency. 
The relative efficiency of the FGLS estimators relative to OLS is: 

   (GLS)

(OLS)

)(

(OLS)

β̂ MSE

ˆ MSE
or       

ˆ

ˆVar β

β

β

GLSVar
  

    
Then to get the Total Gain or Loss (G/L), we subtract 1 (original estimate) 
from the efficiency of each coefficient and add our results. That is, efficiency 

gain or loss is 
( ) ( )$ $β β β βo o− + −1 1 , where 

ˆ (.)β
 represents the efficiency 

of β̂
. If the relative efficiency is negative, then OLS is more efficient. The 

results for each scenario, using both Variance and RMSE criteria, are 
summarised in Tables 1 and 2 for RMSE and VAR criteria respectively.  
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Simulation Results 
Perusing Tables 1 and 2, it is observed that in all the scenarios considered in 
the experiment, CORC and HILU efficiencies are similar and same for ML 
and MLGRID.  OLS is more efficient than CORC and HILU in many of the 
scenarios while ML and MLGRID are more efficient than OLS. In majority 
of the scenarios, efficiency does not increase with increase in autocorrelation 
level, only ML and MLGRID at α = 0.05 show that efficiency increases with 
increase in autocorrelation level.  All estimators show that efficiency reduces 
as significant level increases only when the autocorrelation value and sample 
size are very small (that is ρ = 0.4, N = 20). There is more efficiency gain 
when N and ρ are large at all significant correlation levels. Table 3 
summarises Tables 1 and 2, where we found the best estimator (estimator 
with the largest efficiency under each of the variance and RMSE criteria). 
Holding N, α and ρ constant, the ML estimator has the largest efficiency in 
44.5% of the scenarios, followed by MLGRID (29.6%), CORC (11.1%), 
HILU (7.4%) and OLS (7.4%).  
 
In order to bring out the most information from this research, we charted the 
efficiency levels recorded in Tables 1 and 2 in Table 4 showing the 
asymptotic, autocorrelation and significant level effects.  Table 4 gives the 
frequency distribution of N – chart over  and  for both variance and 
RMSE-based efficiency measures for all estimators (measuring the 
asymptotic effect).  The chart symbols include (\) indicating, minimum 
efficiency when N = 60, intermediate when N = 40 and maximum when N = 
20.  (V) Efficiency is a minimum when N = 40, and maximum when N = 20 
or 60. (�) Efficiency is a maximum when N = 40, and minimum when N = 
20 or 60, and (/), means Efficiency is a maximum when N = 60, intermediate 
when N = 40 and minimum when N = 20.   
 
Table 4.1 shows that the trend ‘/’ is the most frequent. This implies that the 
efficiency is highest when N = 60 followed by those at N = 40 and is smallest 
at N = 20.  This most frequent trend occurs with highest frequency when   = 
0.9 (19).  Table 4.2 also gives additional interesting information that the 
significant level does not matter for asymptotic efficiency as the most 
frequent trend ‘/’ appear equally among the significant levels. The last 
column of Table 4.3 contains a summary of the two ranks of each of the four 
estimators.  These estimators rank as follows in decreasing order of 
conformity with the observed asymptotic behaviour of efficiencies of 
variance and RMSE:  CORC (3), HILU (3), MLGRID (7), and ML (7).  In 
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conclusion, the above results show that, using our criteria, the efficiency of 
the FGLS estimators increase asymptotically and the optimum combination 
of ,  and N is: all ,  = 0.9, and N = 60. 
 
Discussion of the Results 
We note that the efficiency of ML and MLGRID have very similar 
behavioural pattern, the same for CORC and HILU as observed in the finite 
sampling properties of Variance and the RMSE.  ML and MLGRID are better 
than both CORC and HILU as also observed by [24], [7], and [8]. 
 
Asymptotically, the estimators increase asymptotically and the optimum 
combination of ,  and N is: all ,  = 0.9, and N = 60. This implies that, 
the efficiency of the FGLS estimators, relative to the OLS estimator, 
increases asymptotically and with increasing autocorrelation. This is similar 
to the results obtained by [13] and [17] when the regressor and error terms 
are independent. The estimators rank as follows in decreasing order in 
conformity with the observed asymptotic behaviour of efficiency: CORC, 
HILU, MLGRID, and ML.  This also indicates that truly, the nature of the 
regressor affects the efficiency of FGLS estimators.  As if we compare this 
result with that of [8], there is a disparity as a result of the nature of the 
regressor.  Our results have also shown that there is a definite gain to be 
obtained from using some of the feasible GLS as they are more efficient than 
OLS. This also conform to the earlier result by [6] where they show that 
FGLS are better for given values of || > 0.3 when there is independence 
between the error terms and the regressor. 
 

 
Conclusion 
We have investigated the sensitivity of the significant correlation between the 
error terms and the geometric regressor in a single linear regression model to 
the efficiency of the various FGLS estimators relative to that of the OLS 
estimator.  It could be concluded that empirically, the OLS estimator is more 
efficient than the FGLS estimators CORC and HILU as OLS dominated them 
almost uniformly. Maximum likelihood estimation methods of MLGRID and 
ML still perform better than other FGLS estimators in terms of efficiency. 
All estimators show that efficiency reduces as significant level increases only 
when the autocorrelation value and sample size are very small (that is ρ = 
0.4, N = 20). Asymptotically, the efficiency of FGLS estimators increase 
asymptotically with increasing autocorrelation but it is indifferent to the 
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significant correlation levels between the error terms and the geometric 
regressor.  The asymptotic ranking is CORC and HILU followed by 
MLGRID and ML.  
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Table 1: Efficiency of FGLS to OLS using RMSE 
 

N=20 N=40 N=60 

Signif
icant 
level 

Estim
ator 

ρ = 
0.8 

ρ = 
0.9 

ρ = 
0.4 

ρ = 
0.8 

ρ = 
0.9 

Ρ = 
0.4 

ρ = 
0.8 

ρ = 
0.9 

0.01 OLS 0 0 0 0 0 0 0 0 0 
  COR

C 
-

0.111
24 

-
0.142

1 

-
0.007

48 
0.014

264 

-
0.062

31 

-
0.588

18 
0.016

629 
0.388

47 
0.082

889 
  HIL

U 
-

0.111
79 

16.34
885 

-
0.006

81 
0.013

81 

-
0.057

44 
0.006

466 
0.019

838 
0.380

271 
0.097

558 
  ML 

0.059
012 

0.071
676 

-
0.000

41 
0.013

227 
0.211

346 
0.290

823 
0.055

108 
0.024

961 
0.513

185 
  MLG

RID 
0.045

324 
0.073

073 
0.000

131 
0.013

162 
0.211

593 
0.282

707 
0.049

374 
0.024

905 
0.374

133 
0.02 OLS 0 0 0 0 0 0 0 0 0 

  COR
C 

-
0.067

4 

-
0.965

71 

-
0.044

81 

-
0.003

61 
0.230

127 
0.022

946 

-
0.003

57 

-
1.633

73 

-
0.074

16 
  HIL

U 
-0.08 

-
0.227

47 

-
0.044

59 

-
0.003

11 
0.234

435 

-
0.049

35 

-
0.003

15 

-
1.364

32 
0.066

881 
  ML 

0.032
743 

0.090
743 

-
0.013

34 
0.003

276 
0.405

858 
0.254

624 
0.003

706 

-
1.445

87 
0.301

885 
  MLG

RID 0.031
84 

0.088
679 

-
0.014

16 
0.003

349 
0.411

975 
0.253

686 
0.003

599 

-
1.416

06 
0.294

989 
0.05 OLS 0 0 0 0 0 0 0 0 0 

  COR
C 2.627

277 

-
0.805

58 

-
0.662

91 
0.131

762 

-
0.081

07 

-
0.467

19 

-
0.003

35 
0.903

795 
0.082

348 
  HIL

U 
-

0.003
26 

-
0.947

66 

-
0.788

49 
0.134

575 

-
0.083

13 

-
0.333

54 

-
0.003

35 
0.897

048 

-
0.107

49 
  ML 0.020

736 
0.128

359 
0.183

662 
0.129

727 
0.150

683 
0.258

348 
0.009

321 
0.052

556 
0.572

738 
  MLG

RID 
0.019

87 
0.093

119 
0.161

984 
0.128

458 
0.155

675 
0.257

41 
0.010

177 
0.049

336 
0.578

2 
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Table 2:  Efficiency of FGLS to OLS using Variance 
 
  
  

N = 20 
 

N = 40 N = 60 
 

Signifi
cant 
level 

Estim
ator 

ρ = 
0.4 

ρ = 
0.8 

ρ = 
0.9 

ρ = 
0.4 

ρ = 
0.8 

ρ = 
0.9 

ρ = 
0.4 

ρ = 
0.8 

ρ = 
0.9 

 
 

 

OLS 
0 0 0 0 0 0 0 0 0 

COR
C 

-
0.227

74 

-
0.305

89 

-
0.021

63 
0.069

42 

-
0.180

1 

-
0.897

43 
0.131

691 

-
0.080

06 
0.194

709 
HILU -

0.228
74 

308.3
316 

-
0.018

58 
0.068

406 

-
0.162

39 

-
0.007

34 
0.139

32 

-
0.274

79 
0.254

439 
ML 

0.113
447 

0.141
86 

0.001
844 

0.060
568 

0.466
597 

0.659
519 

0.255
485 

-
0.054

86 
0.838

65 
MLG
RID 0.081

615 
0.142

836 
0.004

615 
0.060

463 
0.464

71 
0.622

874 
0.230

28 

-
0.030

35 
0.812

434 
 
 
 

OLS 
0 0 0 0 0 0 0 0 0 

COR
C 

-
0.124

4 

-
0.998

74 

-
0.086

29 

-
0.005

53 
0.496

41 
0.043

627 

-
0.001

59 
6.855

209 

-
0.060

34 
HILU -

0.150
02 

-
0.374

9 

-
0.085

86 

-
0.004

57 
0.513

565 
0.025

825 

-
0.000

89 
7.258

733 
0.066

334 
ML 

0.066
228 

0.165
031 

-
0.026

52 
0.014

949 
0.793

466 
0.703

581 
0.019

858 
11.79

51 
0.860

854 
MLG
RID 0.064

277 
0.160

319 

-
0.026

82 
0.015

043 
0.826

917 
0.720

795 
0.019

75 
16.47

161 
0.840

649 
 
 
 

OLS 
0 0 0 0 0 0 0 0 0 

COR
C 12.17

045 

-
1.291

44 

-
1.043

79 
0.094

013 

-
0.229

36 

-
0.802

76 0.007 
0.070

414 

-
0.058

36 
HILU -

0.007
03 

-
1.438

48 

-
1.193

97 
0.105

632 

-
0.233

06 

-
0.566

1 
7.31E

-05 

-
0.103

32 

-
0.160

05 
ML 0.041

434 
0.237

734 
0.335

683 
0.082

023 
0.322

055 
0.613

454 
0.046

454 
0.220

231 
0.980

49 
MLG
RID 

0.039
596 

0.219
958 

0.344
411 

0.076
997 

0.354
306 

0.602
212 

0.048
038 

0.185
336 

1.015
634 
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Table 3:   Best Estimator of our Model for Each Scenario  
  N = 20 N = 40 N = 60 

Criteria (α)↓ ρ=0.4 ρ=0.8 Ρ=0.9 ρ =0.4 ρ=0.8 ρ=0.9 ρ=0.4 ρ=0.8 ρ=0.9 

 0.01 ML HILU MLG CORC ML ML ML OLS ML 
0.02 ML ML OLS MLG MLG MLG ML MLG ML 
0.05 CORC ML MLG HILU MLG ML MLG ML MLG 

 0.01 ML HILU MLG CORC MLG ML ML CORC ML 
0.02 ML ML OLS MLG MLG ML ML OLS ML 
0.05 CORC ML ML HILU MLG ML MLG CORC MLG 

 
Table 4: Asymptotic Behaviour of Rmse and Variance of Estimators When 
Sig. Level () Is Constant 

 
� 0.01 0.02 0.05  

� 0.4 0.8 0.9 0.4 0.8 0.9 0.4 0.8 0.9 

ESTIMATOR RMSE \ V � / 

CORC / / V / � � \ / / 1 1 2 5 

HILU / V / � � V � / / 0 2 3 4 

ML V � / V � / � � / 0 2 4 3 

MLGRID V � / V � / � � / 0 2 4 3 

     (15) 

ESTIMATOR VAR     

CORC / / V / / � \ / / 1 1 1 6 

HILU / \ / / / / � / / 1 0 1 7 

ML V � / V / / � � / 0 2 3 4 

MLGRID V � / V / / � � / 0 2 3 4 

        (21) 

C – Summary 0.4 0.8 0.9 0.4 0.8 0.9 0.4 0.8 0.9     

\ 0  1 0 0 0 0 2 0 0  

V 4 1 2 4 0 1 0  0 0 

� 0 4 0 1 4 2 6 4 0 

/ 4 2 6 3  4 5 0 4 8 

 
 
Table 4.1    And - Estimator Based Summaries of Table 4 
 

 � 
= 

0.4 

� = 
0.8 

� = 0.9 TOTAL  CORC HILU ML MLGRID 

\ 2 1 0 3 2 1 0 0 

V 8 1 3 12 2 2 4 4 

� 7 12 2 21 3 4 7 7 

/ 7  10 19 36  11 11 7 7 
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Table 4.2    � - And - Estimator Based Summaries of Table 4 
 � = 0.01 � =0.02 � = 

0.05 
TOTAL  CORC HILU ML MLGRID 

\ 1 0 2 3 2 1 0 0 

V 7 5 0 12 2 2 4 4 

� 4 7 10 21 3 4 7 7 

/ 12 12 12 36  11 11 7 7 

 
 
Table 4.3: Summary of the Ranking of Estimators 
 
 

Optimum Trend  
 VAR (/) RMSE (/) 

CORC (6) 2 (5) 1 3 
HILU (7) 1 (4) 2 3 
ML (4) 3.5 (3) 3.5 7 
MLGRID (4) 3.5 (3) 3.5 7 

 
LEGEND 
\:   Efficiency is a minimum when N = 60, intermediate when N = 40 

and maximum when N = 20. 
V: Efficiency is a minimum when N = 40, and maximum when N = 20 
or 60  
�: Efficiency is a maximum when N = 40, and minimum when N = 20 
or 60 
/: Efficiency is a maximum when N = 60, intermediate when N = 40 

and minimum when N = 20. 
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