

An International Multi-Disciplinary Journal, Ethiopia Vol. 4 (2) April, 2010

ISSN 1994-9057 (Print)

ISSN 2070-0083 (Online)

Inter-Trip Characteristics Model for Ado-Ekiti Township, Southwest Nigeria (Pp. 1-14)

Oyedepo, Olugbenga J. - Civil Engineering Department,Federal University of Technology, Akure, Nigeria. E mail:<u>oyedepoo@yahoo.co.uk</u>

Makinde, Oluyemisi O. - Civil Engineering Department, Rufus Giwa Polytechnic, Owo, Nigeria. E mail:<u>yemikanye@yahoo.com</u>

Abstract

Travel characteristics survey and the useful time spent on road by commuters were collected from the terminals and members of National Union of Road Transport Workers. The survey also gave the travel behaviour of commuters and socio-economic characteristics over a period of time across the population. The analysis shows that a total of 7,338 Trips/per were made in Ado-Ekiti to various urban and rural area in which trip to Iworoko-Ekiti has the largest with 3,000 Trips per day. The regression analysis of travel time as dependent variable with other variables (travel cost and travel distance) gives average value of R and R^2 as 93.1% and 86.6% respectively.

Keywords: Travel Behaviour, Terminals, Trips, and Socio-economic Characteristics

Introduction

Transport is an important element in the process of modernization, sometimes allowing and perhaps accelerating development and at other times acting as a brake in progress. Transport generally plays an important role for other factors of development i.e there is no escape from transport and this has helped in generating trips from one place to another. History makes it clear that demand for travel has been evident from primordial times when early man trekked from place to place for food gathering.

The heart of traffic and transportation planning is concerned with the design of circulation systems which maximize availability for essential movement between inter-related interacting activities giving due consideration to safety, amenity and cost. It is worthy to note that the need for transport is a derived need.

Owens (1989) stated that history makes it clear that transportation as a means to other ends has a pervasive impact on economic and social development and since it is acceptable that to attain and sustain economic and social development, contact must be made and there must be movement to conquer distance. In conquering distance and making contact, trip is been generated by the trip-makers i.e. the road-users. Trip is defined as a one-way person movement by one or more modes of travel and each have an origin and a destination.

Ogunlowo (2000) stated that the construction of transportation systems has a profound and far-reaching impact on land use and the socio-economic characteristics of citizens. In the transportation planning, an attempt is made to model in an abstract manner the transportation system and its domain. The three most prominent types of models are (a) those describing affected factors and their relation to transport, (b) those describing travel behaviour or the demand for transportation facilities and (c) those describing the characteristics of various forms of transportation technologies.

In describing the travel behaviour or the demand for transportation facilities, travel estimation building helps in determining both present and future travel patterns with respect to trip generation, trip distribution, modal split and traffic assignment. Trip generation according to O'Flaherty (1983) is concerned with the estimation of the number of trips into and out of various traffic zones, while Dickey (1983) described trip as the basic unit of movement.

Salter (1990) stated that land use is a major consideration in the generation of trips with other factors such as family size, income, motor vehicle ownership and the social economic status of the head of the household, while O'Flaherty opinioned that trips are based on the principle that land use generates trips and that the number and types of trips are influenced by location variables

such as residential or population density, socio-economic variables such as car availability or ownership, household income and size, household composition, occupational status and public transport accessibility variables. Trip generation describes reasons why trips are made and the relation between trip making and the urban environment.

In analyzing trip-end generation, the number of variables considered could be very great and the purpose of the trip-end modeling process is to identify those variables which are meaningful determinants of trip-making behaviour. Three methods of developing the trip-end models are Expansion Factor method, Regression Analysis method and Category Analysis method. Thus, this research will focus on the trip generation from the study location to other urban or rural area and develop a linear regression model expressing travel time (dependent factor) as a function of other independent factors such as travel distance, travel cost among others.

The Study Area

Ado-Ekiti, the nucleus of the ancient Ewi kingdom is located on latitude 70^{0} 40^{1} North of the equator and longitude 50^{0} 16^{1} East of the Greenwich Meridian. It covers an approximate area of 265square kilometer. Its longest north-south extent is about 16km, and its longest east-west stretch is 20km. The town serves dual purposes as the Ekiti State capital and the Local Government headquarters. It has conurbation such as Ikere Ekiti in the south, Afao and Iworoko-Ekiti in the north, Iluomoba and Aisegba in the east and Ilawe – Ekiti in the west. The town presently enjoys good road network; however, poor town planning makes it difficult to differentiate the residential area from the business area. A number of retail shops, shopping complex and churches among others are located within the residential areas. Figure 1.0 below shows the geographical location of Ado-

Research Objective

The main objective of this research is to determine the trip pattern of the commuters from Ado-Ekiti Township with a view to developing a simple mathematical models having obtained accurate and detailed information on their travel characteristics.

Research Methodology

Travel survey were collected at six approved motor park in Ado-Ekiti township; these are: Ado-Akure park, New Motor park at Orilewu, Ado-Aramoko/Efon park at Basiri, Ado-Ilawe park at Falegan, Elemi park which comprises of Ado-Ifaki/Ido-Otun route and Ado-Ikare at Olokemeji.

Information was also collected from the member of National Union of Road Transport Workers (NURTW), Road Transport Employee Association of Nigeria (RTEAN) and other relevant transportation unions.

Result and Discussion

Table 1 shows the travel pattern of the commuters from the six selected motor terminals to different urban and rural areas. Travel distance and travel cost are major factors affecting travel time which in turn affect the number of trips to a particular route and the influences the mode of travel chosen by a traveler. The travel time was regressed against travel distance and travel cost while varying graphs as shown in figure 2.0 to 16.0 were plotted to obtained the relationships between the variables. The regression model shown in appendix 1.0 gives average value of R and R² as 93.1% and 86.6% respectively.

Trip Model

The model equation is given thus:

 $T_{t} = 0.200 + 1.786 \times 10^{-2} T_{d} - 6.48 \times 10^{-4} Tc$ -----(1)

Where: $T_t =$ the travel time

 T_d = the travel distance

 $T_c = travel cost$

Also, varying equations were obtained from the graphs of the number of trips against travel time, travel distance and travel cost. Equations 2 & 3 were power series plot of the number of trips against the travel time and travel distance respectively.

From Equation 2, it can be stated that the number of trips generated from the origin to a destination is inversely proportional to the square of travel time; while equation 3 shows that the trip generated from a zone and attracted to destination is inversely proportional to their spatial separation (travel

Inter-Trip Characteristics Model for Ado-Ekiti Township...

distance). Thus, the above relationship i.e equation 2 & 3 verify the trip distribution gravity model.

References

- Dickey, J.W. (1983): *Metropolitan Transportation Planning*. New York: McGraw-Hill.
- Ogunlowo O. I. (2000): A Study of Travel Characteristics in Akure Metropolis; B.Eng Thesis (unpublished), Civil Engineering Department, Federal University of Technology Akure, Nigeria.
- O'Flaherty, C. A (1983): Highways-Highways and Traffic, Volume 1, 2nd Edition. London: Edward Arnold.
- Pederson, E.O. (1980): Transportation in Cities; London: Peramon Press Inc.
- Papacostas C.S. and Prevedouros P.D. (2005): *Transportation Engineering* and Planning. SI Edition. Singapore: Prentice-Hall Inc
- Salter R.J. (1990): *Highway Traffic Analysis and Design*; 2nd Edition, Hampshire: Macmillan Education Ltd,

Figure 1.0 Location Map of Study Area

Inter-Trip Characteristics Model for Ado-Ekiti Township...

Copyright © IAARR 2010: www.afrrevjo.com Indexed African Journals Online: www.ajol.info

Origin/Destination	No of	TripRate/	No. of	Travel	Travel	Travel	
	Vehicle	Veh/Day	Trips/Day	Time	distance	cost (N)	
				(hr)	(km)		
Ado Ekiti –	10	2	20	0.6	36	100	
Aramoko							
Ado Ekiti –	10	2	20	0.8	48	150	
EfonAlaye							
Ado Ekiti – Emure	30	4	120	0,7	43	120	
Ado Ekiti – Ilawe	10	2	20	0.35	21	60	
Ado Ekiti – Ise	30	2	60	0.62	37	100	
Ado Ekiti – Ido	5	2	10	0.7	42	120	
Ado Ekiti – Ijero	10	2	20	0.97	58	120	
Ado Ekiti – Ikere	50	4	200	0.25	15	50	
Ado Ekiti – Ikole	5	2	10	1.08	65	200	
Ado Ekiti – Igede	10	2	20	0.3	18	60	
Ado Ekiti – Iye	5	1	5	1.18	71	250	
Ado Ekiti – Otun	5	1	5	1.08	65	300	
Ado Ekiti – Ove	5	1	5	0.75	45	150	
Ado Ekiti – Omuo	5	2	10	1.6	96	350	
Ado Ekiti – Ode	5	2	105	0.93	56	200	
Ado Ekiti – Ipole	5	2	10	0.98	59	200	
Ado Ekiti –	5	2	10	0.83	50	150	
Ikogosi	5	-	10	0.05	50	150	
Ado Ekiti – Iiu	30	2	60	0.45	27	150	
Ado Ekiti – Ita	30	2	60	0.52	31	150	
Ogbolu	20	-	00	0.02	01	100	
Ado Ekiti – Igbara	5	2	10	1.05	63	100	
Odo	-						
Ado Ekiti – Igbara	5	1	5	1.22	73	150	
Oke	-	-	-				
Ado Ekiti –	5	2	10	1.15	69	150	
Ogotun	5	-	10		0,	100	
Ado Ekiti –	200	15	3000	0.25	15	50	
Iworoko	200	10	2000	0.20	10	20	
Ado Ekiti – Ifaki	10	2	20	0.37	22	200	
Ado Ekiti – Usi	5	2	10	0.62	37	150	
Ado Ekiti –	5	1	5	0.87	52	250	
Avetoro	5	1	5	0.07	52	230	
Ado Ekiti –	3	1	3	1 13	68	300	
Erinmone	5	1	5	1.10	00	500	
Ado Ekiti –	5	2	10	0.58	35	140	
Ilupeiu		-	10	0.00	20	1.0	
Ado Ekiti – Itana	5	2	10	0.67	40	150	
Ado Ekiti – Ilasa	3	1	3	1.08	65	250	

Table 1 Travel Inventory of Commuters to Different Available Route Outside Ado-Ekiti

Copyright © IAARR 2010: www.afrrevjo.com Indexed African Journals Online: www.ajol.info

Ado Ekiti – Aso Avegunle	85	15	1275	0.83	50	50
Ado Ekiti – Ilu	60	5	300	0.4	24	120
Omoba						
Ado Ekiti – Ijesa	3	2	6	0.6	36	120
Isu						
Ado Ekiti –	3	2	6	0.53	32	120
Aisegba						
Ado Ekiti –	3	2	6	0.62	37	150
Agbado						
Ado Ekiti –	5	1	5	1.03	62	250
Ogbagi						
Ado Ekiti – Irun	5	1	5	0.95	57	300
Ado Ekiti – Akure	50	2	100	0.8	48	200
Ado Ekiti – Ikare	5	1	5	1.25	75	400
Ado Ekiti – Ilesa	10	1	10	1.2	72	350
Ado Ekiti – Ife	5	2	10	1.73	104	400
Ado Ekiti – Ilorin	10	1	10	2.51	151	500
Ado Ekiti –	10	1	10	1.7	102	350
Osogbo						
Ado Ekiti – Ibadan	10	2	20	3.33	200	500
Ado Ekiti – Abuja	5	1	5	6.33	380	900
Ado Ekiti –	5	1	5	2.45	147	900
Okenne						
Ado Ekiti – Lagos	30	1	30	5.5	330	700
Ado Ekiti –	5	1	5	8.83	530	1200
Kaduna						
Ado Ekiti – Kano	2	1	2	12.4	744	2000
Ado Ekiti – Benin	10	1	10	3.2	192	650
Ado Ekiti – Ore	20	1	20	2.47	148	400
Ado Ekiti – Ondo	20	1	20	1.63	98	300
Ado Ekiti –	5	1	5	3.3	198	700
Okitipupa						
Ado Ekiti –	10	1	10	5.42	325	900
Onitsha						

Inter-Trip Characteristics Model for Ado-Ekiti Township...

Appendix 1.0 Regression Analysis of Travel Time against Travel Distance and Travel Cost

Descriptive Statistics Mean Std. Deviation Ν ΤT 1.8331 2.3271 54 TD 103.0370 133.1214 54 TC 320.9259 343.2380 54 Correlations TT TD TC Pearson TT 1.000 .930 .884 Correlation TD .930 1.000 .958 TC .884 .958 1.000 Sig. (1-tailed) TΤ .000 .000 .000 TD .000 TC .000 .000 Ν 54 54 TΤ 54 TD 54 54 54 54 54 54 TC Variables Entered/Removed Model Variables Entered Variables Removed Method 1 TC. TD Enter a All requested variables entered. b Dependent Variable: TT Model Summary R R Square Adjusted R Std. Error of Change Square the Estimate Statistics Model R Square F Change df1 df2 Sig. F Change Change 1 .931 .866 165.150 .861 .8676 .866 2 51 a Predictors: (Constant), TC, TD ANOVA Model Sum of Squares df Mean Square F Sig. 1 Regression 248.622 2 124.311 165.150 .000 Residual 51 38.389 .753 Total 287.011 53

a Predictors: (Constant), TC, TD

b Dependent Variable: TT

Copyright © IAARR 2010: www.afrrevjo.com Indexed African Journals Online: www.ajol.info .000

African Research Review Vol. 4(2) April, 2010. Pp. 1-14

Coefficients

Unstandardi zed Coefficients		Standardized Coefficients		Sig. 95% Confidence Interval for B		Correlations			
Model	В	Std. Error	Beta	L	ower Bound	Upper Bound	Zero-order	Partial	Part
1 (Constant)	.200	.170	1.178	.244	141	.542			
TD	1.786E-02	.003	1.022 5.699	.000	.012	.024	.930	.624	.292
TC	-6.483E-04	.001	096533	.596	003	.002	.884	074	027

a Dependent Variable: TT

Copyright © IAARR 2010: www.afrrevjo.com Indexed African Journals Online: www.ajol.info