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Abstract 
This paper proposes the use of adaptive kernel in a meshsize boosting 
algorithm in kernel density estimation. The algorithm is a bias reduction 
scheme like other existing schemes but uses adaptive kernel instead of the 
regular fixed kernels. An empirical study for this scheme is conducted and 
the findings are comparatively attractive. 
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Introduction  

Boosting in kernel density estimation was first proposed by Schapire (1990). 
Other authors like Freund (1995), Schapire and Singer (1999) but to mention 
a few have also made contributions. Boosting is a means of improving the 
performance of a ‘weak learner’. It is applied in this context using the 
adaptive kernel. Boosting does not only guarantee an error rate  that is better 
than random guessing but also deals with the correction of ‘noises’ at the tails 
of the distribution or where we have sparse cluster of data within a given 
region. 
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In 2004, Mazio and Taylor proposed an algorithm in which a kernel density 
classifier is boosted by suitably re-weighting the data. This weight placed on 
the kernel estimator, is a ratio of a log function in which the denominator is a 
leave-one-out estimate of the density function. A theoretical explanation is 
also given to show how boosting is a bias reduction technique i.e a reduction 
of the bias term in the expression for the asymptotic mean integrated squared 
error (AMISE). 

Methods 

Algorithm on Boosting Kernel Density Estimates and Bias Reduction 

Throughout this paper, we shall assume our data to be univariate. The 
algorithm of Mazio and Taylor (2004) is briefly summarized in algorithm 1. 

Algorithm 1 

Step 1: Given{ }nixi ,...,2,1, = , initialize ( )
n

iW 1
1 =  

Step 2: Select h (the smoothing parameter). 
Step 3: For m =1, 2, … M, obtain a weighted kernel estimate 
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where x can be any value within the range of the x i ‘s, k is the 

kernel function and w is a weight function and then update the 
weights according to  
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Step 4: Provide output as 

              ( )∏
=

M
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m xf
1

ˆ  renormalized to integrate to unity 

For the full implementation of this algorithm see Marzio and Taylor (2004). 

Boosting as a Bias Reduction in Kernel Density Estimation 
Suppose we want to estimate f(x) by a multiplicative estimate. We also 
suppose that we use only "weak" estimates which are such that h does not 
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tend to zero as n→ ∞. Let us use a population version instead of sample in 
which our weak learner, for h >0 is given by 
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Where ( )yW1  is taken to be 1. We shall take our kernel function to be 

Gaussian (since all distributions tend to be normal as n, the sample size, 
becomes large through central limit theory (Towers, 2002). The first 
approximation in the Taylor's series, valid for h < 1 provided that the 
derivatives of f(x) are properly behaved, is 
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( )20 h  of Wand and Jones (1995). If we now let  ( ) ( )( ) 1
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boosted estimator at the second step is 
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This gives an overall estimator at the second step as 
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This is clearly of order four and so we can see a bias reduction from order 
two to order four. 

Meshsize Algorithm in Boosting 
We shall see how the leave-one-out estimator of the (2.2) in the weight 
function can be replaced by a meshsize estimator due to the time complexity 
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involved in the leave-one-out estimator. In the leave-one-out estimator, we 
require (n+(n-1)).n function evaluations of the density for each boosting step. 
Thus, we are using a meshsize in its place. The only limitation on this 

meshsize algorithm is that we must first determine the quantity 
nh

1  so as to 

know what the meshsize that would be placed on the weight function of (2.2) 
would be (Ishiekwene et.al, 2008). The need to use a meshsize in place of the 
leave-one-out lies on the fact that boosting is like the steepest-descent 
algorithm in unconstrained optimization and thus a good substitute that 
approximates the leave-one-out estimate of the function (Duffy and 
Helmbold, 2000; Taha, 1971; Ratsch et al., 2000; Mannor et al., 2001: 
Hazelton & Turlach,2007). 

The new meshsize algorithm is stated as: 

Algorithm 2 

Step 1: Given { }nixi ,...,2,1, = , initialize ( )
n

iW 1
1 =  

Step 2: Select h (the smoothing parameter). 

Step 3: For m =1, 2 … M,  
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where x can be any value within the range of the x i ‘s, kA is the 

adaptive kernel function and w is a weight function 

(ii) Update  

( ) ( ) meshiWiW mm +=+1  

Step 4: Provide output  
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ˆ   and normalize to integrate to unity 
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We can see that the weight function uses a meshsize instead of the leave-one-
out log ratio function of  Mazio and Taylor (2004). The kernel function used 
is the adaptive kernel unlike the fixed used in Ishiekwene et.al 2008. The 
numerical verification of this algorithm would be seen in the next section 
(numerical results and discussion). 

Results & Discussion 
In this section, we shall use three sets of data to illustrate our algorithm and 
BASIC programming language is used. Data 1 is a sample of size forty and is 
the lifespan of car batteries in years. Data 2 is a sample of size sixty-four and 
is the number of written words without mistakes in every 100 words by a set 
of students in a written essay. Data 3 is the scar length of patients randomly 
selected in millimeters (Ishiekwene and Afere, 2001; Ishiekwene and 
Osemwenkhae, 2006).  

The results are shown in figures 1 – 3. Figure 1 is the graph for Data 1, 
Figure 2 for Data 2 while Figure 3 is for Data 3. In all three charts shown in 
figures 1 – 3, the three kernel methods are plotted on the same sheet for easy 
comparison at a glance ( ie  the classical fixed kernel method ,the adaptive 
kernel method and the boosted kernel method). The boosted version is 
obtained using the Meshsize Boosting algorithm of Ishiekwene et.al (2008). 
That is Algorithm 2. 

The results as shown in figures 1 - 3 reveal that the classical fixed kernel 
density estimation method oversmooths the curves by obscuring some 
important features in the data. The adaptive kernel method showed a clearer 
picture of the nature of the data around the tails. The boosted kernel method 
was close to the adaptive kernel method in all three data used thus showing 
that this method is clearer than the classical fixed kernel method in terms of 
revealing data features. It does not only reveal features at the tails but is a 
bias reduction scheme as shown theoretically above and in Table 
1(Birke,2009 and See Appendix). 

Conclusion 
We have shown that the adaptive kernel can be used in place of the classical 
fixed kernel in boosting in kernel density estimation. The charts- figs. 3.1 – 
3.3 and table 3.1 clearly reveals that the adaptive kernel method does better 
than the classical fixed kernel method in kernel density estimation. It is 
therefore recommended for use in place of the classical fixed kernel method 
in boosting in KDE having exhibited the qualities of bias reduction and 
revealing the data features at the tails.  
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Fig 1: Chart showing the three techniques Using Data 1         
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Fixed, Adaptive & Boosted Compared
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Fig 2: Chart showing the three techniques Using Data 2 
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Fig 3:  Chart showing the three techniques Using Data 3 
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Table 1 SHOWING BIAS REDUCTION 

                      FIXED KDE Method    VARIABLE KDE Method                  BOOSTED  Method 

 Bias2 Var AMISE Bias2 Var AMISE Bias2 Var AMISE 

Data 1 0.005276637 0.019811685 0.250883225 0.002071803 0.014789245 0.016861048 0.002078009 0.015168456 0.017246655 

Data 2 0.000293946 0.001130402 0.001424348 0.000108591 0.000809307 0.000917898 0.000108715 0.000822153 0.000930868 

Data 3 0.004697604 0.016623515 0.021321119 0.001767617 0.011342162 0.013109779 0.001768218 0.011446219 0.013214437 

 

 

Adaptive Kernel in Meshsize Boosting Algorithm in KDE 

 


