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Abstract 
This paper focuses on the methodical approach for the solution of field 

problems whose function can be expressed as derivatives and integrated 

functional or on solution of quasi-harmonic functions whose physical 

behaviors are governed by a general quasi-harmonic differential equation 

that can be treated as a quadratic functional that can be minimized over a 

region. The functional of a stress field function was established using mixed 

methods analogous to variational principle, minimum total potential 

principle and finite element method. The functional of function, Ф(x,y) was 

formed using Euler equivalent integral and finite element shape function for 

a function expressed in derivative form. The minimization of the functional 

gave the stationary values of the function which minimize the functional. The 

solution of the functional gave the minimum value of the function. Possible 

solutions of states that minimize the functional was achieved by finite element 
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solution procedure while the minimum values of the stationary states were 

solved by solving the functional. The functional obtained for each finite 

element is minimized with respect to associated degrees of freedom of the 

element and assembly method applied to all elements minimization equation 

to obtain system of equations equal to unconstrained nodes in the region .The 

element equations are assembled and solved by substitution to obtain the 

values of the function at discrete points. The values of the function at the 

discrete points did not vary significantly with boundary points values. The 

minimum value of the function representing the critical or the functional of 

the function is evaluated as 24MPa. 

 

Introduction 

Engineering phenomena for field problems can broadly be put into three 
kinds, wave phenomenon, diffusion phenomenon and potential phenomenon. 
While some of the complex phenomena of engineering are combination of 
these leading to mixed phenomenon, the three basic phenomena are modeled 
as, hyperbolic, parabolic and elliptic equations respectively (Sundaram etal 
2003). These equations are expressed as partial differential equations that 
could be solved analytically for simple geometries. But partial differential 
equations admit infinite number of solutions when solved analytically. This is 
proved by the analytical solution of Laplace equation by method of 
separation of variables (Ihueze 2008).For complex geometries with irregular 
boundaries, solution by analytical methods becomes impossible or tedious 
(Canale and Chapara 1998). There are many problems encountered in 
engineering and physics where the minimization of the integrated quantity 
usually referred as functional and subject to some boundary conditions 
results in the exact solution .This functional may represent a physical 
recognizable variable in some instances, for many purposes it is simply a 
mathematically defined entity. 
  
Field problems and geometries are never simple so that Finite Element 
Method(FEM) is usually more suited for field problems solution .The FEM 
divides the solution domain into simply shaped regions, or elements .An 
approximate solution for the PDE can be developed for each of these 
elements .The total solution is then generated by linking together or 
assembling the individual solutions taking to ensure continuity at the 
interelement boundaries ,thus the PDE is satisfied in a piecewise fashion and 
unique solution is obtained for a field problem. 
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The objective of this study is therefore to present a methodical approach to 
solve multiple dimensional field problems .Ihueze (2008) solved a 2-D 
problem, Laplace function in form by finite difference method. This same 
function is solved employing FEM.The functional of function; Ф(x, y) was 
formed using Euler equivalent integral and finite element shape function for a 
function expressed in derivative form. The minimization of the functional 
gave the stationary values of the function which minimize the functional. The 
solution of the functional gave the minimum value of the function. Possible 
solutions of states that minimize the functional was achieved by finite 
element solution procedure while the minimum values of the stationary states 
were solved by solving the functional.  
 

Theoretical Analysis 

Extension of Variational Approach to Solution of Field Problems 
Quite generally, in the finite element process an approximate solution is 
sought to the problem of minimizing a functional. The concept of the finite 
element approach to elasticity as a process in which the total potential energy 
is minimized with respect to nodal displacements can obviously be extended 
to a variety of physical problems in which an extremum principle exists. In 
such problems the exact solution is defined as that which minimizes some 
integral of an unknown function or of its derivatives (Zienkiewicz 1967) 
.This integral is known as the functional of the problem. If the unknown 
function is defined throughout the region, element by element in terms of the 
nodal values of the function, the minimization of the functional will result in 
a series of ordinary equations equal in number to that of the unknown values 
of the function at the nodes. 
 

General Field Equations and Formation of Functional of Functions 
The general quasi- harmonic equation governing the behaviour of some 
unknown physical quantity, had been expressed by Zienkiewicz and Cheung 
(1967) as  

∂
∂x (kx

∂Ф
∂x  ) + 

∂
∂y  (ky

∂Ф
∂y  )+ 

∂
∂z   ( kz 

∂Ф
∂z  ) + Q = 0                (1) 

                                
in  which Ф is the unknown  function assumed to be single  valued within the 
region and kx, ky, kz and Q are known specified functions of x,y,z. The well 
known Laplace and Poisson equations are represented respectively as 
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∂2Ф
∂x2  + ∂

2Ф
∂y2  = 0                                (2) 

 
∂2Ф
∂x2  + ∂

2Ф
∂y2  = f(x,y)                   (3) 

 
and are also examples of quasi – harmonic equations.  The physical 
conditions of the particular problem and region considered will impose 
certain boundary conditions, where in most cases th Ф is specified at the 
boundary. (1) together with the boundary conditions, specifies the extremum 
problem in a unique manner. However, an alternative formulation is possible 
with the aid of the calculus of variations. The well known Euler theorem then 
states that if the integral 

I (u) = ∫∫∫ f( x,y,z,u, 
∂u
 ∂x , 

∂u
 ∂y , 

∂u
 ∂z ) dxdydz   (4) 

 
is to be minimized, then the necessary and sufficient condition for this 
minimum to be reached is that the unknown function  u(x,y,z) should satisfy 
the following differential equation 

 
∂

 ∂x  [
∂f

 ∂(∂u/∂x) ] + 
∂

 ∂y  [
∂f

 ∂(∂u/∂y) ] + 
∂

 ∂z  [
∂f

 ∂(∂u/∂z) ] - 
∂f
 ∂u = 0           (5) 

 
within the same region. The equivalent formulation(functional) for 
minimization of (1) hence becomes  
 

x    =∫∫∫ {
1
2  [kx (

∂Ф
∂x  )2 + ky(

∂Ф
∂y  )2 + kz(

∂Ф
∂z  )2] - Q Ф}dxdydz subject to Ф 

obeying the same boundary conditions. 
 

Two Dimensional FEM formulation using Triangular elements 
Physical situations in which the behaviour is essentially two- dimensional 
frequently arise, such as the case of Laplace   or   Poisson   equation    so   
that the equivalent formulation to be minimized for 2-D problem employing 
the condition, 

∂
 ∂x  [

∂f
 ∂(∂u/∂x) ] + 

∂
 ∂y  [

∂f
 ∂(∂u/∂y) ]- 

∂f
 ∂u = 0                         (6) 
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becomes 
 

x    =∫∫ {
1
2  [kx (

∂Ф
∂x  )2 + ky(

∂Ф
∂y  )2] - Q Ф}dxdy                   (7) 

 
For the case of our interest, the equivalent functional to be minimized for 2-D 
Laplace model reduces to (8) by (7) 
 

x    =∫∫ {
1
2  [kx (

∂Ф
∂x  )2 + ky(

∂Ф
∂y  )2] }dxdy                              (8) 

 
Methodology and Finite Element Approaches 
The basic steps of FEM are well developed in Astley (1992) ,Finlayson 
(1972), Zienkiewicz and Taylor(1990), Ugural and Fenster(1987),Cook etal 
(1989),Bathe and Wilson(1976),Hughes(1987), Zienkiewicz(1977) and 
Canale and Chapara (1998) and involve, discretizing ,choice of 
approximating polynomial.Curve fitting methods and variational calculus are 
used with Euler approximation to obtain integrated functional to establish an 
equivalent functional that is minimized to obtain FE equations that will 
capture the response of interested function. It involves the minimization of 
integrated functional obtained for the region with respect to variables that 
minimize the response. The problem then becomes one of the constrained 
optimization and lends itself to approximate solution.  
 
 

Formation of finite element shape functions and interpolation functions 

o Discretization and Topology Definition  

 
This involves division of the physical system into finite sub regions to obtain 
a discrete model 
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Fig.1 Finite Element discrete model of compressive field function of 

known boundary  conditions.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1  Element Topology Description 

Element 
number  

Active degrees of 
freedom for assembly 

Element coordinates Element 
nodes 

1 Ф1, Ф2, Ф8, v1,v2,v8 (0,0),(17,0),(17,15) 1,2,8 
2 Ф1, Ф8, Ф7,v1v8,v7 (0,0),(17,15),(0,15) 1,8,7 

3 Ф2, Ф 3, Ф 9,v2,v3,v9 (17,0),(34,0),(17,15) 2,3,9 

4 Ф2, Ф 9, Ф 8,v2,v9,v8 (17,0),(34,15),(17,15) 2,9,8 

5 Ф3, Ф4, Ф10,v3,v4,v10 (34,0),(5,10),(51,15) 3,4,10 

6 Ф3, Ф10, Ф9,v3,v10,v9 (34,0),(51,15),(34,15) 3,10,9 

7 Ф4, Ф5, Ф11,v4,v5,v11 (51,0),(68,0),(68,15) 4,5,11 

8 Ф4, Ф11, Ф10,v4,v11,v10 (51,0),(68,15),(51,15) 4,11,10 

9 Ф5, Ф6, Ф12,v5,v6,v12 (68,0),(85,0),(85,15) 5,6,12 

10 Ф5, Ф12, Ф11,v5,v12,v11 (68,0),(85,15),(68,15) 5,12,11 

 

 

1 

2 

3 

4 

5 

6 
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0 

1                  2                   3                   4                   5                   6                                                                                    
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• Choice of approximation function. 
 Usually polynomials are chosen and for this case linear polynomial 
of the form is  chosen 
   
  Ф(x,y) = βo +β1x +β2y                                             (9) 
  

where βo, β1, β2 are called polynomial coefficients or shape constants. 
 

• Computation of shape constants 
 
This is achieved by curve fitting, by passing the approximating function 
through an  element. By considering element one with degrees of 
freedom Ф1, Ф2,Ф8 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Element1 designations for node numbers and degrees of freedom 

 
            Ф1 = βo +β1x1 +β2y1                                                         (10) 

 
           Ф2 = βo +β1x2 +β2y2                                                          (11) 

 
         Ф8) = βo +β1x8 +β2y8                                                           (12) 
 
 
By putting (10) - (12) in matrix form, 

 
  1   x1   y1          βo     =        Ф1                                                (13)       

  1   x2   y2            β1      =         Ф2               

  1   x8   y8           β2      =      Ф8 

 
 

8 

1 
2 

1 
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The polynomial coefficients are solved by Cramers rule as: 
 

βo = 
1

Ae
 [ Ф1(x2y8-x8y2)+ Ф2(x8y1-x1y8)+ Ф8(x1y2-x2y1)]                (14) 

 

β1 = 
1

Ae
 [ Ф1(y2-y8)+ Ф2(y8-y1)+ Ф8(y1-y2)]                                    (15) 

 

β2 = 
1

Ae
 [ Ф1(x8-x2)+ Ф2(x1-x8)+ Ф8(x2-x1)]                             (16) 

 
• Derivation of shape function and interpolation functions 

 

Ae  =  
1
2 [ (x2y8-x8y2)+ (x8y1-x1y8)+ (x1y2-x2y1)]                               (17) 

 By substituting (14) -(16) in  (9) ,   
 

 Ф(x,y) = 
1

2Ae
 [ Ф1(x2y8-x8y2)+ Ф2(x8y1-x1y8)+ Ф8(x1y2-x2y1)]           

 

+ 
1

2Ae
  [ Ф1(y2-y8)x+ Ф2(y8-y1)x+ Ф8(y1-y2)x]                                      

 

+ 
1

2Ae
  [ Ф1(x8-x2)y+ Ф2(x1-x8)y+ Ф8(x2-x1)y]   

                                    

= 
Ф1

2Ae
 [(x2y8-x8y2)+ (y2-y8)x+ (x8-x2)y] 

 

 + 
Ф2

2Ae
 [(x8y1-x8y2)+ (y8-y1)x + (x1-x8)y]  

+ 
Ф8

2Ae
 [(x1y2-x2y1)+ (y1-y2)x+ (x2-x1)y]                       (18)        

(18) can be  expressed as 
 
Ф =N1Ф1+ N2 Ф2+ N8 Ф8                                                                                (19)        
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Where NI, N2, N8, are shape functions at nodes 1, 2 and 8and Ф the 
interpolation function 
 

NI    =   
1

2Ae
 [(x2y8-x8y2)+ (y2-y8)x+ (x8-x2)y]   (20)        

N2 =   
1

2Ae
  [(x8y1-x8y2)+ (y8-y1)x + (x1-x8)y]                              (21)       

N8   =   
1

2Ae
 [(x1y2-x2y1)+ (y1-y2)x+ (x2-x1)y]                              (22)  

 
 
Formation of Functional, X

e
 for Functions within Elements 

 
Putting numerical values in (17),(20), (21),(22)               

Ae  = 255mm2 , NI    =  
1

510  (510-30x), N2  =  
1

510  (30x-17y),  

N8    =  
1

510  (17y)      (19)  

then becomes  

Ф  = 
Ф1

510
 (510-30x)+ 

Ф2

510
 (30x-17y)+ 

Ф8

510
 (17y)   (23) 

 
∂Ф
 ∂x = 

1
 17 (- Ф1+ Ф2)                                                                   (24) 

= 
1

 30 (- Ф2+ Ф8)                                                                          (25) 

 
Element Equations by Minimization Algorithm 
This involves the formation of functional within elements and  minimization 
of functional X expressed in (7) for all elements.  
 
 

• Element 1      
By putting (24) and (25) in (8) with Ae = 255mm2 where kx = ky =1 
 
X

1 
 =  0.441 Ф1

2
 -0.882 Ф1 Ф2 + 0.583 Ф2

2
– 0.283 Ф2Ф8 +0.142 Ф8 

2 
               

          (26) 
 By differentiating (26) partially, 
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∂X1

 ∂ Ф1
  = 0.882 Ф1 -0.882 Ф2 

              

              
∂X1

 ∂ Ф2
  = -0.882 Ф2 +1.166 Ф2 -0.283 Ф8                                                                              

                                                                                                              (27) 

                
∂X1

 ∂ Ф8
   =- 0.283 Ф2 +0.284 Ф8 

 

• Element 2     
By similar procedures the shape function for element 2 is derived as 
 

Ф = 
Ф1

510
 (510-17y)+ 

Ф8

510
 (30x)+ 

1

510
 (-30x+17y) Ф7                                   (28) 

and 
 

   
∂Ф
 ∂x = 

1
 17 ( Ф8- Ф7)                                                                             (29)   

 
∂Ф
 ∂y  = 

1
 30 (- Ф1+ Ф7)                                                                             (30) 

           
Similarly using (29) and (30) in (8) with Ae  = 255mm2 
          
 

X
2 
 =  0.142Ф1

2
 -0.283 Ф1 Ф7 + 0.441Ф8

2
 -0.882 Ф7 Ф8  +0.583Ф7

2
    (31) 

 
 
By differentiating (31) partially, 
 

  
∂X2

 ∂ Ф1
  = 0.284 Ф1 -0.283 Ф7 

              

               
∂X2

 ∂ Ф8
  = 0.882 Ф8 -0.882 Ф7                                                                    

                                                                                                                     (32) 

               
∂X2

 ∂ Ф7
   = - 0.882 Ф8 +1.166 Ф7-0. 283 Ф1 
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By symmetry, element topology and element coordinates as specified in 
Fig1and Table1 other elements equations are written as follows: 
 

• Element 3     

 
All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element1and 
element 3 

 

   
∂X3

 ∂ Ф2
  = 0.882 Ф2 -0.882 Ф3 

              

              
∂X3

 ∂ Ф3
  = -0.882 Ф2 +1.166 Ф3 -0.283 Ф9                                                                             

                                                                                                               (33) 

                
∂X3

 ∂ Ф9
   =- 0.283 Ф3 +0.284 Ф9 

 

• Element 5     
 

All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element1and 
element5 

   
∂X5

 ∂ Ф3
  = 0.882 Ф3 -0.882 Ф4 

              

              
∂X5

 ∂ Ф4
  = -0.882 Ф3 +1.166 Ф4 -0.283 Ф10                                                                             

                                                                                                   (34) 

                
∂X5

 ∂ Ф10
   =- 0.283 Ф4+0.284 Ф10 

 
• Element 7    

 
All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element 1and 
element 
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∂X7

 ∂ Ф4
  = 0.882 Ф4 -0.882 Ф5 

              

              
∂X7

 ∂ Ф5
  = -0.882 Ф4+1.166 Ф5 -0.283 Ф11                                                                             

                                                                                                           (35) 

                
∂X7

 ∂ Ф11
   =- 0.283 Ф5+0.284 Ф11 

 

• Element 9    
All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element 1and 
element 9     

   
∂X9

 ∂ Ф5
  = 0.882 Ф5 -0.882 Ф6 

              

              
∂X9

 ∂ Ф6
  = -0.882 Ф5+1.166 Ф6-0.283 Ф12                                                                             

                                                                                               (36) 

                
∂X9

 ∂ Ф12
   =- 0.283 Ф6+0.284 Ф12 

• Element 4    

 
All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element 2and 
element 4 

     
∂X4

 ∂ Ф2
  = 0.284 Ф2 -0.283 Ф8 

            

                       
∂X4

 ∂ Ф9
  = 0.882 Ф9 -0.882 Ф8                           (37) 

                
∂X4

 ∂ Ф8
   = - 0.882 Ф9 +1.166 Ф8-0. 283 Ф2 

 
• Element 6    

All odd numbered elements have the same symmetry and all even numbered 
elements have the same symmetry so that by considering element 2and 
element 6 

African Research Review Vol. 3 (5), October, 2009. Pp.437-457 

 



 

Copyright (c) IAARR, 2009: www.afrrevjo.com  449 

Indexed African Journals Online: www.ajol.info 

     
∂X6

 ∂ Ф3
  = 0.284 Ф3 -0.283 Ф9 

                     

                 
∂X6

 ∂ Ф10
  = 0.882 Ф10 -0.882 Ф9                                                                           

 

                     
∂X9

 ∂ Ф9
   = - 0.882 Ф10+1.166 Ф9-0. 283 Ф3             (38) 

     
•    Element 8    

 
All odd numbered elements have the same symmetry and all even numbered 
elements  have the same symmetry so that by considering element 

2and element 8 

 

          
∂X8

 ∂ Ф4
  = 0.284 Ф4 -0.283 Ф10 

                     

                       
∂X8

 ∂ Ф11
  = 0.882 Ф11-0.882 Ф10                                                                            

 

                      
∂X8

 ∂ Ф10
   = - 0.882 Ф11+1.166 Ф10-0.283 Ф4             (39) 

 

Element 10    

 
All odd numbered elements have the same symmetry and all even numbered 
elements  have the same symmetry so that by considering element 

2and element 10 

           
∂X10

 ∂ Ф5
  = 0.284 Ф5 -0.283 Ф11 

                     

                       
∂X10

 ∂ Ф12
  = 0.882 Ф12 -0.882 Ф11                                                                            

 

                      
∂X10

 ∂ Ф11
   = - 0.882 Ф12+1.166 Ф11-0. 283 Ф5         (40) 
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Algorithms for Elements Assembly 
This involves grouping and addition of all elements contributions to 
minimization,  

  
∂X

 ∂ Фf
 .  

This will lead to system of equations equal to the degrees of freedoms 
in the  continua or region. There are twelve (12) effective degrees 
of freedoms for elements  assembling for ten elements 
 

∑
∂Xe

 ∂ Фf
   = 0, for f = 1, 2, 3,….12                                         (41)                                                                   

    For f =1                                                                                                                    

 ∑
∂Xe

 ∂ Ф1
   = 0                                                                           (42)                                                                                                                         

 
For f =2   

                                                                                                          

∑
∂Xe

 ∂ Ф2
   = 0                                  (43)                                                                                                                         

For f =3                                                                                                                                 

∑
∂Xe

 ∂ Ф3
   = 0                                 (44)                                                                                                            

For f =4                                                                                                                                 

   ∑
∂Xe

 ∂ Ф4
   = 0                                  (45)                                                                                                                                           

For f =5                                                                                                                                 

   ∑
∂Xe

 ∂ Ф5
   = 0                                  (46)                                                                                                                         

For f =6                                                                                                                                

   ∑
∂Xe

 ∂ Ф6
   = 0                                  (47)                                                                                                      

For f =7                                                                                                                                

   ∑
∂Xe

 ∂ Ф7
   = 0                                  (48)                                                                                                                                           

For f =8                                                                                                                                

   ∑
∂Xe

 ∂ Ф8
   = 0                                   (49)                                                                                                                         

 For f = 9                                                                                                                                
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   ∑
∂Xe

 ∂ Ф9
   = 0                                        (50)                                                                                            

 For f =10                                                                                                                                 

   ∑
∂Xe

 ∂ Ф10
   = 0                                       (51)                                                                                                                         

 For f =11                                                                                                                                 

   ∑
∂Xe

 ∂ Ф11
   = 0                                       (52)                                                                                                                         

 For f =12                                                                                                                                 

   ∑
∂Xe

 ∂ Ф12
   = 0                                       (53)                                                                                       

 
Assembling and formation of system of Equations 
 
This leads to a 12x12 system of linear algebraic equations formed from (42) - 
(53)   
                                                                                                                                                                                                 
For f =1 to12 respectively  
                                                                                                    

 
∂X

 ∂ Ф1
 =∑

∂Xe

 ∂ Ф1
   = 0 =    

∂X1

 ∂ Ф1
 + 
∂X2

 ∂ Ф1
   

      
 = 1.165Ф1 -0.882 Ф2 -0.283 Ф7                            (54)                                                                                                                                         
              

 
∂X

 ∂ Ф2
 =∑

∂Xe

 ∂ Ф2
   = 0 =    

∂X1

 ∂ Ф2
 + 
∂X3

 ∂ Ф2
  + 

∂X4

 ∂ Ф2
  

      
 = -0.882Ф1 +2.331 Ф2 -0.882Ф3 -0.566 Ф8                           (55)   
 

 
∂X

 ∂ Ф3
 =∑

∂Xe

 ∂ Ф3
   = 0 =    

∂X3

 ∂ Ф3
 + 
∂X5

 ∂ Ф3
  + 

∂X6

 ∂ Ф3
  

      
 = -0.882Ф2 +2.331 Ф3 -0.882Ф4-0.566 Ф9                  (56)    
 

 
∂X

 ∂ Ф4
 =∑

∂Xe

 ∂ Ф4
   = 0 =    

∂X5

 ∂ Ф4
 + 
∂X8

 ∂ Ф4
  + 

∂X7

 ∂ Ф4
  

      
 = -0.882Ф3 +2.331 Ф4 -0.882Ф5-0.566 Ф10               (57)    
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∂X

 ∂ Ф5
  =∑

∂Xe

 ∂ Ф5
   = 0 =    

∂X7

 ∂ Ф5
 + 
∂X9

 ∂ Ф5
  + 
∂X10

 ∂ Ф5
  

      
 = -0.882Ф4 +2.331 Ф5 -0.882Ф6-0.566 Ф11                          (58)    
 

 
∂X

 ∂ Ф6
  =∑

∂Xe

 ∂ Ф6
   = 0 =    

∂X9

 ∂ Ф6
  

      
 = -0.882Ф5 +1.166 Ф6 -0.283Ф12                       (59)    
 

 
∂X

 ∂ Ф7
  =∑

∂Xe

 ∂ Ф7
   = 0 =    

∂X2

 ∂ Ф7
  

      
 = -0.283Ф1+1.166 Ф7 -0.882Ф8          (60)    
 

             
∂X

 ∂ Ф8
  =∑

∂Xe

 ∂ Ф8
   = 0 =   

∂X1

 ∂ Ф8
 + 
∂X4

 ∂ Ф8
  + 

∂X2

 ∂ Ф8
  

      
 = -0.566Ф2-0.882 Ф7 +2.331Ф8 -0.882 Ф9         (61)   
 

 
∂X

 ∂ Ф9
  =∑

∂Xe

 ∂ Ф9
   = 0 =   

∂X3

 ∂ Ф9
 + 
∂X4

 ∂ Ф9
  + 

∂X6

 ∂ Ф9
  

 = -0.566Ф6-0.882 Ф8 +2.331Ф9 -0.882 Ф10         (62)   
 

 
∂X

 ∂ Ф10
  =∑

∂Xe

 ∂ Ф10
   = 0 =   

∂X5

 ∂ Ф10
 + 
∂X6

 ∂ Ф10
  + 

∂X8

 ∂ Ф10
  

  
              = -0.566Ф4-0.882 Ф9 +2.331Ф10-0.882 Ф11              (63)   
 

     
∂X

 ∂ Ф11
  =∑

∂Xe

 ∂ Ф11
   = 0 =   

∂X7

 ∂ Ф11
 + 
∂X8

 ∂ Ф11
  + 

∂X10

 ∂ Ф11
  

      
  = -0.566Ф5-0.882 Ф10 +2.331Ф11-0.882 Ф12           (64)          
 

 
∂X

 ∂ Ф12
  =∑

∂Xe

 ∂ Ф12
   = 0 =   

∂X9

 ∂ Ф12
 + 
∂X10

 ∂ Ф12
   

      
  = -0.283Ф6-0.882 Ф11 +1.166Ф12                      (65)  

African Research Review Vol. 3 (5), October, 2009. Pp.437-457 

 



 

Copyright (c) IAARR, 2009: www.afrrevjo.com  453 

Indexed African Journals Online: www.ajol.info 

Assembly Equations  
These are derived from (54)-(65) as  
  
1.165Ф1 -0.882 Ф2 -0.283 Ф7 =   0       (66) 
-0.882Ф1 +2.331 Ф2 -0.882Ф3 -0.566 Ф8       =   0                   (67) 
-0.882Ф2 +2.331 Ф3 -0.882Ф4-0.566 Ф9        =   0                       (68) 
-0.882Ф3 +2.331 Ф4 -0.882Ф5-0.566 Ф10        =   0                   (69) 
-0.882Ф4 +2.331 Ф5 -0.882Ф6-0.566 Ф11         =   0                        (70) 
-0.882Ф5 +1.166 Ф6 -0.283Ф12          =  0                 (71) 
-0.283Ф1+1.166 Ф7 -0.882Ф8           =  0          (72) 
-0.566Ф2-0.882 Ф7 +2.331Ф8 -0.882 Ф9         =  0         (73) 
-0.566Ф3-0.882 Ф8 +2.331Ф9 -0.882 Ф10          =  0         (62) 
-0.566Ф4-0.882 Ф9 +2.331Ф10-0.882 Ф11          = 0                  (63) 
-0.566Ф5-0.882 Ф10 +2.331Ф11-0.882 Ф12          = 0                         (74) 
-0.283Ф6-0.882 Ф11 +1.166Ф12            =  0                (75) 
 

Application of Boundary Conditions 
By applying the following boundary conditions to the system formed by   

(66)- (75) 
Ф(0,0) = 154, Ф(85,0) = 154, Ф(0,30) = 154, Ф(85,30) = 154 ,the final 
assembly equations becomes 
-0.882 Ф2         =   -135.982     (76) 
2.331 Ф2 -0.566 Ф8        =   135.828      (77) 
-0.882Ф2 +2.331 Ф3 -0.882Ф4-0.566 Ф9        =   0             (78) 
-0.882Ф3 +2.331 Ф4 -0.882Ф5-0.566 Ф10 =   0                  (79) 
-0.882Ф4 +2.331 Ф5 -0.882Ф6-0.566 Ф11  =   135.828                      (80) 
-0.882Ф5          =  -135.982            (81) 
-0.882Ф8                                     =  -135.982          (82) 
-0.566Ф2 +2.331Ф8 -0.882 Ф9         =  135.828        (83) 
-0.566Ф3-0.882 Ф8 +2.331Ф9 -0.882 Ф10  =  0                                           (84) 
-0.566Ф4-0.882 Ф9 +2.331Ф10-0.882 Ф11  =    0                                   (85) 
-0.566Ф5-0.882 Ф10 +2.331               = 135.828                    (86) 
-0.882 Ф11                                                                  =  -135.982                        (87) 
 

Solution and Postprocessing 
The solution of the system formed by (76) - (87) is achieved by repeated 
substitution to obtain 

Ф2 =154.17, Ф3=154.68, Ф4=154.68, Ф5 =154.17, Ф8=154.17, Ф9 

=154.68, Ф10=154.68, Ф11 =154.17. 
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These values are the stationary values that minimize the functional, X of the 
function,Ф. 
 
Computations of Elements Confirmatory Parameters 
The element parameters considered are the interelement slopes, the element 
integrated functionals and the derivatives of functionals considering the 
values of the function at their nodes. Elements symmetry are considered so 
that odd numbered elements have similar slopes and and integrated 
functional equations and even numbered equations have similar slopes and 
integrated functional equations so that equations for element 1and 2 are 
employed for all computations of other elements but taking the element 
topology definition of Table1 for nodes numbering into consideration. The 
computations of this section using equations (24), (25) and (26) for odd 
numbered elements and (29),(30) and (31) for even numbered elements are 
presented in Table 2 
 
Discussion and Validation of Method and Results 
The specification of boundary conditions was based on a study of Ihueze 
(2005) working on compressive failure of GRP composites and on the 
literature that the compressive strength of GRP composites is about 50 to 
60% tensile strength of GRP composites, as 154MPa. The critical or buckling 
strength of GRP composite evaluated by Ihueze (2005) is 24MPa, so that the 
functional evaluated at approximately 24MPa as presented in column 5 of 
Table 2 is a recognizable physical quantity, called the buckling, Strength 

(Ihueze  2005). Since the minimization of function,
∂Xe

 ∂ФF
 , at every node is 

greater than 0 or is positive, the optimum value of the function, Ф is a 
minimum and the values of the function Ф at the nodes are fairly constant as 
summarized in column3 of Table2. The values of Ф are defined so that no 
discontinuity arises between adjacent elements. The slopes ∂Ф/∂x and ∂Ф/ ∂y 
presented in column 4 of Tables 2 on the connecting interfaces between 
elements are therefore finite and no contribution arises. 
 
The polynomial model, P2 (x)   =   23.94208 - 161.452 x + 3678.429 x2 
representing the compressive failure response of GRP composites obtained 
by Ihueze(2005) was solved by gradient search method to obtain the minima-
the buckling strength of GRP as 24MPa (Ihueze 2006) . 
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This result is the same as the result obtained by solving the functional of 
function, X expressed in (26) and (31) and results presented in column5of 
Table2. The compressive strength of GRP is also about 154MPa ( Ihueze and 
Enetanya 2009)and this is the same as the value obtained for the function 
through the finite element method of this work for the region as  in column3 
of Table 2 . 
 
Conclusion 
The buckling strength is evaluated as the minimum value of a function within 
its domain and it represents the value of a functional of the function.The 
procedures of this work successfully solved compressive function 
represented as 2-D Laplace equation and equally can be employed when 
solutions of the following field function problems are needed: 
 

o Pure torsion of a non-homogeneous shaft expressed as 

(
1
G 
∂Ф
∂x  ) + 

∂
∂y  (

1
G 
∂Ф
∂y  )+ 

∂
∂z   + 2 θ = 0                   (88) 

where     Ф = stress function 

                     G = shear modulus 
        θ = angle of twist per unit length of shaft 

 

o Flow through an anisotropic porous foundation 

 
∂
∂x (kx

∂H
∂x  ) + 

∂
∂y  (ky

∂H
∂y ) = 0     (89)

  
where        kx , ky =    permeability coefficients in direction of 
the(inclined)principal axis                    

                            H =   flow function 
o Axi-symetric heat flow 
 

 
∂
∂r (rk

∂T
∂r  ) + 

∂
∂z  (rk

∂T
∂z ) = 0    (90)

  
     where    T =    temperature                    

                   k =   conductivity 
       r,z =radial and axial distances replacing x and z coordinates 
 

Finite Element Approach to Solution of Multidimensional Quasi-Harmonic Field Functions 

 



 

Copyright (c) IAARR, 2009: www.afrrevjo.com  456 

Indexed African Journals Online: www.ajol.info 

o Hydrodynamic pressures on moving surfaces 
Del2P =        (91) 

      Where            P = fluid pressure 
 

o Time dependent field problems 
This covers problems on diffusion, vibration, creep functions etc. The 
governing equation is  expressed as (Zienkiewicz and Cheung, 1967). 

(kx
∂Ф
∂x  ) + 

∂
∂y  (ky

∂Ф
∂y  )+ 

∂
∂z   ( kz 

∂Ф
∂z  ) + Q-C

∂Ф
∂t   = 0        (92)

                 
By applying the usual variation procedure as before the general functional 
which has to be for  (92) minimized becomes 

x    =∫∫∫{ 
1
2  [kx (

∂Ф
∂x  )2 + ky(

∂Ф
∂y  )2 + kz(

∂Ф
∂z  )2] – (Q-C

∂Ф
∂t  ) Ф }dxdydz        

 (93) 
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 Table2 Post Processing of FEM results 
Eleme
nt 

        Nodes Function, Ф     Slope Xe 
      

∂Xe

 ∂ Фf
  

∂Ф
 ∂ x  

∂Ф
 ∂ y  

1 1 2 8 154.00 154.17 154.17 0.01 0.00 23.78 -0.15 0.30 0.15 

2 1 8 7 154.00 154.17 154.00 0.01 0.00 23.73 0.15 0.15 0.004 
3 2 3 9 154.17 154.68 154.00 0.03 0.00 24.04 -0.45 0.60 0.15 
4 2 7 8 154.17 154.00 154.17 0.03 0.00 23.88 0.15 0.45 -0.30 
5 3 4 10 154.68 154.68 154.68 0.00 0.00 23.93 0.00 0.15 0.15 
6 3 10 9 154.68 154.68 154.68 0.00 0.00 23.93 0.15 0.00 0.15 
7 4 5 11 154.68 154.17 154.17 -0.03 0.00 23.88 0.45 -0.30 0.15 
8 4 10 9 154.68 154.68 154.68 -0.03 0.00 24.04 0.15 -0.45 0.60 
9 5 6 12 154.17 154.00 154.00 -0.01 0.00 23.73 0.15 0.004 0.15 
10 5 12 11 154.17 154.00 154.17 -0.01 0.00 23.78 0.15 -0.15 0.30 

 
 


