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Abstract 
The importance of data analysis in quantitative assessment of natural 

resources remains significant in the sustainable management of complex 

tropical forest resources. Analyses of data from complex tropical forest 

stands have not been easy or clear due to improper data management. It is 

pivotal to practical researches and discovery that promote development in 

forestry and many related disciplines. Many quantitative methods and 

approaches are strongly dependent on the source, nature, and quality of the 

data. However, many issues related to data analysis in the tropical complex 

forests are inimical and may render quantitative methods impossible if not 

resolved. Data collection in many complex tropical forests is very difficult 

and oftentimes results in data violating simple assumptions of statistical 

models. The use of relevant data transformation proffers significant solution 

to this perennial challenge within the complex tropical forests. This paper 

therefore reviews statistical issues related to quantitative data collection and 

analyses in the complex tropical forests and provides pragmatic approaches 
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for solving data analysis challenges in complex tropical forests’ management 

and planning.   
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Introduction  
Statistical methods are used in a wide variety of occupations and help people 
identify, study, and solve many complex problems. In forestry, these methods 
enable decision makers and managers to make informed and better decisions 
about uncertain situations.  

Vast amounts of statistical information are available in today's global and 
economic environment because of continual improvements in computer 
technology. To provide reliable regional guidance, forest managers and 
decision makers must be able to understand the information and use it 
effectively. Statistical data analysis provides hands on experience to promote 
the use of statistical thinking and techniques to apply in order to make 
educated decisions in forest management. 

Akindele (2008) showed that forestry research is based on scientific method 
which is popularly known to be the inductive-deductive approach. 
Consequently, foresters across the globe have become increasingly 
quantitative in their approaches to research and management; and with rising 
forest values; there is concomitant increase in the demand for accuracy and 
precision in management prescriptions and projected outcomes. This 
invariably depends on data factors and issues with the ability to resolve these 
associated problems using statistical principles.  

Tropical rainforests are notably the complex forests of the world, and they 
are characterized by profuse growth and regrowth of plant and tree species 
that gradually occur throughout the year. The tree species are highly diverse 
but usually have smooth, straight trunks and large, simple leaves. Large vines 
are common, but the tangled growth of a jungle occurs only where the 
normal forest area has been abused. 

The tropical environment is rich in terms of bio-diversity. The tropical 
African forest is 18 per cent of the world total and covers over 3.6 million 
square kilometers of land in West, East and Central Africa. This total area 
can be subdivided to 2.69 million square kilometers (74%) in Central Africa, 
680,000 square kilometers (19%) in West Africa, and 250,000 square 
kilometers (7%) in East Africa. In West Africa, a chain of rain forests up to 
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350 km long extends from the eastern border of Sierra Leone all the way to 
Ghana. The rain forest of West Africa continues from east of Benin through 
southern Nigeria and officially ends at the border of Cameroon along the 
Sanaga River (Figure 1). 

 The rain forests as the richest, oldest, most prolific, and most complex 
systems on earth, are dying, and in turn are upsetting the delicate ecological 
balance. A vivid representation of tropical rain forests of the world is given 
in the figure 1 below 

 

Figure 1: Tropical Rain Forest Distribution 

Tropical rain forests are located between the tropics of Cancer and Capricorn 
i.e. 23°27' north to 23°27' south of the Equator, with the mean annual 
temperature of about 27° C (equivalent 80° F). Although they cover less than 
10 percent of the Earth’s surface, tropical rain forests provide habitat for 50 
to 90 percent of the world’s plant and animal species. Although tropical rain 
forests now cover just 2 percent of the globe, they are home to more than half 
the world’s living plant and animal species. Rain forests are the predominant 
natural vegetation throughout the wet tropics. The defining characteristics of 
tropical rain forest are temperature and rainfall. Wherever temperature is high 
enough and rainfall heavy and regular enough, there is rain forest.  

Data analysis of the complex forest ecosystem therefore involves the process 
of gathering, modeling and transforming the data with the goal of 
highlighting useful information, suggesting conclusions and supporting 
decision making. Data analysis in complex tropical forests has multiple facets 
and approaches, encompassing diverse techniques under a variety of names, 
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and with different methods and application domains for quantitative 
management of data collected from such ecosystems. Generally, data analysis 
of the complex forest ecosystem can be statistically divided into descriptive 
statistics, exploratory data analysis (EDA) and confirmatory data analysis 
(CDA).  The EDA of complex tropical forests data analysis focuses on 
discovering new features in the data while the CDA centers on confirming or 
falsifying existing hypotheses about the data collected from complex forest 
environments.    

This paper discusses possible issues associated with quantitative data of 
complex forest and simple statistical techniques of resolving them before 
being managed for logical uses and reasonable application. 

Data collection, analysis and reporting on complex stand 
Data collection design is an important process in complex forest statistical 
data analysis. Adoptions of the established statistical approaches for data 
collection in complex populations appear to be the only meaningful data 
collection methods for complex tropical forest ecosystems. Statistical 
inference from random samples of the ecosystem should give reliable 
information about the forest with limited errors. 

Fundamental Assumptions of Parametric Models and data 

Lack of Normality 
One of the basic assumptions for the Analysis of Variance is that data is 
normally distributed, with mean equal to zero and variance equal to one. 
Unfortunately, ecological data from tropical forests rarely follow a normal 
distribution and non-normality appears to be the norm as in biological 
sciences (Potvin and Roff 1993, White and Bennetts 1996, Hayek and Buzas 
1997, Zar 1999). Besides, the normal distribution primarily describes 
continuous variables whereas in the tropical forests count data are discrete 
(Krebs 1989). Although parametric statistics are fairly robust to violations of 
normality, highly skewed distributions can significantly affect the results. 
Ideally, the sample size should be equal among groups and sufficiently large 
(e.g., n > 20). The significance of non-normality can be tested with several 
techniques that ensure precision. Graphical examinations of the data are also 
relevant and appropriate in detecting the extent as well as the type of the 
problem. Data that are reasonably symmetric about the mean and that do not 
have a large number of observations in the distribution tails are generally 
well enough approximated by a normal distribution for most standard 
analyses for which this is an assumption. 
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This affects the test of significance of the parameters, as well as the 
estimation of confidence intervals for the parameter estimates. Under these 
circumstances, it is recommended to use data transformations based on the 
analysis of the residuals. 

Independence of Observations 
An indispensable condition of a good number of statistical tests is the 
independence of observations in space and time (usually obtained using 
random selection). Observations can be counts of individuals or replicates of 
treatment units in manipulative studies. Krebs (1989) argues that if the 
assumption of independence is violated, the chosen probability for Type I 
error (α) cannot be achieved. Analysis of variance (ANOVA) and linear 
regression techniques are sensitive and relevant to this violation (Sabin and 
Stafford 1990, Sokal and Rohlf 1995). Mixed-model analysis procedures, 
which are now obtainable in a number of statistical software packages permit 
for some relaxation of the assumption of independence. This is pertinent in 
that the tropical forest ecosystems may not provide data that may not violate 
the independence assumption even in a single. 

Homogeneity of Variances 
Another assumption in the Analysis of Variance is that all observations have 
a common variance. Parametric models frequently assume that sampled 
populations have similar variances even if their means are different. This 
assumption becomes critical in studies comparing different groups of species, 
treatments, or sampling intervals. If the sample sizes are equal, then 
parametric tests are fairly robust to the departure from homoscedasticity (i.e., 
equal variance of errors across the data) (Day and Quinn 1989, Sokal and 
Rohlf 1995). Indeed, equal sample sizes across treatments should be obtained 
whenever possible since most tests are overly sensitive to violations of 
assumptions in situations with unequal sample sizes (Day and Quinn 1989). 
Plotting the residuals of the analysis against predicted values can reveal the 
nature and severity of the potential problem. Visual inspection of the data can 
help determine if transformation of the data is needed and can also indicate 
the type of distribution. Although several formal tests exist to determine the 
heterogeneity of variances (e.g., Bartlett’s test, Levine’s test), these 
techniques assume normal data distribution, which reduces their utility in 
most ecological and complex forest studies (Sokal and Rohlf 1995). This is 
consequently of limited application in the analysis of complex tropical forest 
ecosystem. 
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Correlated Errors  
Correlated error problem is mostly encountered in dynamic surveys where 
data are repeatedly collected in the same survey units. Under these 
circumstances, variables tend to present correlation between their residual 
values, which in turn diminish the precision of estimates, and could even 
invalidate any test of significance of the estimated parameters. This problem 
could be overcome by using Time Series Analysis and Generalised Least 
Squares (GLS) procedures. 

Possible Remedies for violated Parametric Assumptions  
Indeed, parametric statistical models are based on a set of assumptions that 
are essential for models to appropriately fit and describe the data. It is 
observed that if assumptions are violated, statistical analyses may produce 
erroneous and extraneous results (Krebs 1989, Sabin and Stafford 1990, 
Sokal and Rohlf 1995). Thus, it is pertinent for complex forest data analyst to 
consider whether data will likely fit the assumptions of a selected model. 
When data contravene the laid down assumptions or when the assumptions 
are violated, data transformation is suggested for dealing with the problems 
of such violations. 

Data Transformation 
If significant violations of parametric assumptions occur, quantitative 
foresters are advised to implement an appropriate data transformation to 
resolve the violations. During a transformation, data will be converted and 
analyzed at a different scale than the original data. Transformations 
effectively reweigh the data and can result in detecting statistical differences 
when none could be detected otherwise, so it is important to consider the 
effects of transforming dependent variables on the eventual output. For 
tropical forests data analysis, there is the need to back-transform the results 
after analysis to present parameter values on the original data scale. Table 1 
gives examples of common types of transformations that may be 
recommended for tropical forest analyses. A wisely chosen transformation 
can often improve homogeneity of variances as well as produce an 
approximation of a normal distribution. Sabin and Stafford (1990) and Zar 
(1999) give good overviews of data transformations in ANOVA and 
regression models that may be applicable to tropical forests. 

A primary reason to avoid transformations is that interpreting transformed 
variables is very difficult (e.g., what is the arcsine square root of a 
proportion?). As a result, it is recommended that the data be back-
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transformed after analysis but back-transformations are not always 
necessarily at the same scale as the original data. Therefore it is important to 
know the assumptions of the particular statistical model and how 
transforming will affect their data set. Removing outliers or perhaps using a 
nonparametric technique may be a better approach than trying to normalize 
the distribution of data and homogenize variances to meet the assumptions of 
a parametric model. 

Nonparametric Alternatives 
When the data collected from the complex forest study violates basic 
parametric assumptions and transformations fail to remedy the problem, a 
nonparametric method might be appropriate (Sokal and Rohlf 1995, Conover 
1999). Nonparametric techniques have less strict assumptions about the data, 
are less sensitive to the presence of outliers, and are often more intuitive and 
easier to compute (Sokal and Rohlf 1995, Hollander and Wolfe 1999). Since 
nonparametric models are less powerful than their parametric counterparts 
Day and Quinn (1989); Johnson (1995) and Smith (1995) advocate the use of 
nonparametric tests if the data meet or appreciate parametric assumptions. 

Randomization Tests 
These tests are not alternatives to parametric tests, but rather are a means of 
estimating the statistical significance that relies only on the independence of 
observations. They are extremely versatile and can be used to estimate 
significance of test statistics for a wide range of models. Edgington (1995) 
showed that although randomization tests are computationally difficult even 
with small sample sizes, there are numerous software packages that have 
been developed for randomization tests. 

Generalised Least Squares (GLS) Apporach 
Other parametric techniques such as generalized linear models employ a 
distribution appropriate for the data instead of trying to normalize them. The 
works of White and Bennetts (1996) give an example of fitting the negative 
binomial distribution to point count data for orange-crowned warblers 
(Vermivora celata) when comparing their relative abundance among forest 
sites. Zero-inflated Poisson (ZIP) models and negative binomial regression 
models are recommended for analysis of count data with frequent 0 values 
(e.g., rare species studies) in which data transformations are not feasible ( 
Heilbron 1994, Welsh et al. 1996, Ridout et al. 1998, Agarwal et al. 2002, 
Hall and Berenhaut 2002). 
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Conclusion  
In tropical forest analysis traditional knowledge should be extended to meet 
the current and future challenges in data management for complex tropical 
forest data. Although, many forestry data collected in this ecosystem is 
peculiarly borne with attributes that negates the statistical assumptions, it is 
however statistically possible also to condition these data to normality using 
some of the methods articulated in the paper. This will without doubt 
improve the rigor inherent in tropical forest data analysis as well as 
ascertaining elements of precision and correctness in data analysis and 
management of the complex tropical forest data. 

 
Table 1: Some common data transformations relevant to complex forest studies  

Transformation 
type 

When appropriate to 
consider using 

Transformation Back 
transformation 

Square root 
 
 
 
 
 
 
 
Logarithmic 
 
 
 
 
 
 
 
Inverse 
 
 
 
 
 
 
 
 
 
 

Use with count data 
following a Poisson 
distribution; more gener-
ally, when variances are 
proportional to means. In 
some instances, addition of 
3/8 will improve normality. 
 
 
Use with count data when 
means are proportional to 
standard deviations. A rule 
of thumb suggests its use 
when the largest value of 
the dependent variable is at 
least 10 times the smallest 
value. 
 
Use when data residuals 
exhibit a severe funnel 
shaped pattern of 
distribution curve, which is 
often the case in data sets 
with many near-zero 
values. 
 
 

 

 
y′ = loge(y+c) 
where c = 0 if all y 
> 1 
and c = 1 otherwise 

 
 
y′ = 1/y 
Note: Inverse 
transformations will 
cause very large 
values to be very 
small and very 
small values to be 
very large. Thus, 
one must reverse the 
distribution before 
transforming by 
multiplying a 
variable by -1, and 
then adding a 
constant to the 

y = y′2 
 
 
 
y = exp(y′)-c 
 
 
 
 
 
y = 1/y′ 
 
 
 
 
 
 
 
 
 
 

y = (sin y′)
2
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Arcsine square 
root 
 
 
 
 
 
Box-Cox 
objective 
approach 

 
 
 
 
 
 
Appropriate for 
proportional or binomial 
data. This transformation is 
beneficial if it improves 
normality for nonbinomial 
proportions. Most efficient 
when most proportions 
occur at ends of the scale 
(0.0–0.25 and/or 0.75–1.0), 
and least effective when 
proportions are distributed 
in the middle (0.25–0.75). 
 
 
 
If it is difficult to decide on 
what transformation to use, 
this procedure finds an 
optimal model for the data. 
Box-Cox approaches may 
address skewed residual 
distributions and 
heterogeneous variance. 
 

distribution to bring 
the minimum value 
above 1.0. Once the 
inverse 
transformation is 
complete, the 
ordering of values 
will be identical to 
the original data. 
y′ = arcsin(square 
root[y]), where y is 
a proportion. 
 

 
where, λ is an 
estimated parameter 

Source: adapted from Sabin and Stafford (1990). 
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