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Abstract 

Cholera is one of the infectious diseases that remains a major health burden in West-

Africa and especially in Nigeria. Several studies have raised concern that climate 

change may exacerbate the risk of the disease in the future. Projecting the future risk 

of this disease is essential, especially for regions where the projected climate change 

impacts, and infectious disease risk, are both large. Projections were made by forcing 

an empirical model of cholera with monthly simulations of four meteorological 

variables from an ensemble of ten statistically downscaled global climate model 

projections for Representative Concentration Pathways 2.6, 6.0 and 8.5 scenarios. 

Result indicates statistically significant increases in cases during April-September for 

RCPs 6.0 and 8.5 in both near (2020-2035) and far (2060-2075) future. The months 

with the largest increases coincide with the months (May and June) in which maximum 

temperature increases are also large. Cases only showed potential increases in the 

wettest months of July and August in the far future projections for RCPs 6.5 (8.3 and 

7.9%) and 8.0 (17 and 21%) respectively.  
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Introduction  

Assessing the potential impact of climate change on infectious diseases that are 

established to be climate sensitive is crucial (Grasso et al., 2012), specifically for 

regions where changes to disease distribution and seasonality are deemed to pose 

greater health challenges (WHO, 2013), especially in developing countries with low 

coping capacity (Shuman, 2011). Northern Nigeria is one of the regions identified as 

are areas identified as hotspot of climate change (Diffenbaugh and Giorgi, 2012), and 

are highly likely to be most affected due to the vulnerability of the populations (Suk & 

Sumenza, 2011).   

Determining the future risk of infectious disease involves a number of uncertainties, 

this is because many factors that influence are these diseases (both climatic and non-

climatic) might change in the future. For example, the administration of an effective 

cholera vaccines for all the serogroups that are responsible for epidemic at appropriate 

time may greatly reduce the disease burden in the future. Also, improved sanitary 

condition, education, and poverty reduction may reduce the risk of contracting cholera 

in the future. Despite these uncertainties, this study is imperative because it indicate 

the potential impact of climate change on future diseases risk in the absence of 

interventions such as widespread vaccination campaigns, improved healthcare 

delivery.  In turn, estimates of the potential future of infectious diseases burden will 

inform authorities as they develop mitigation and adaption strategies, particularly to 

protect the vulnerable populations expected to be disproportionately impacted 

(Mendelsohn et al., 2006).  

In this study, an improved empirical statistical model for cholera that were developed 

and validated in (Leckebusch & Abdussalam, 2015) were applied to assess the potential 

impact of future climate change on cholera incidence in northern Nigeria. Four 

statistically downscaled variables from Atmosphere-ocean Global Climate Models 

(AOGCMs) projections that participated in Coupled Model Intercomparison 

Experiment Phase (CMIP5) (Tylor et al., 2015) were used as explanatory variables.  

Despite the large burden of infectious disease in Africa, only very few studies have 

been carried out in terms of future estimation of these diseases (e.g., Abdussalam et al., 

2014; Alexander et al., 2013). Most of these studies have reported future increases in 

cases due to climate change on diseases, specifically, Alexander et al. (2013) reported 

an increase in diarrheal diseases primarily due to temperature in Botswana. This paper 

is the first to assess the future impact of climate change on cholera in northern Nigeria. 
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Table 1: List of climate models and their modelling centres 

SN Model Name Modelling Centre/Institution 

1 BCC-CSM1.1 BCC Beijing Climate Center, China 

Meteorological Administration 

2 CESM1-CAM5 NSF-DOE-NCAR National Center for Atmospheric 

Research 

3 CSIROMk3.6.0 

 

CSIRO-QCCCE Commonwealth Scientific and Industrial 

Research Organization in collaboration 

with the Queensland Climate Change 

Centre of Excellence. 

4 GISS-E2-R NASA GISS NASA Goddard Institute for Space 

Studies 

5 HadGEM2-ES MOHC Met Office Hadley Centre 

6 IPSL-CM5ALR IPSL Institute Pierre-Simon Laplace 

7 MIROC5 

 

MIROC Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for Marine-

Earth Science and Technology 

8 MIROC-ESM 

 

MIROC Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

9 MRI-CGCM3 MRI Meteorological Research Institute 

10 NorESM1-M NCC Norwegian Climate Centre 

 

Materials and Methods 

1. Cholera Disease Models 

Empirical model for cholera was used for projecting the future potential cases of the 

disease in northern Nigeria. This statistical model was developed and validated in 

(Leckebusch & Abdussalam, 2015) using Generalized Additive Models (GAMs) 

approach which can better account for the seasonally-varying influence of additional 

climatic and non-climatic influences that may influence the disease (the model has been 

improved with updated disease data for the purpose of this study). GAM has been used 

for projection studies (e.g., Astrom et al., 2012). These models were developed based 

on monthly aggregate of clinically-diagnosed cases of cholera from three selected 

hospitals (Kano, Sokoto and Gusau), and monthly weather variables from nearby 

meteorological stations. Validation results suggests the ability of the models to predict 

independent observations not used in model fitting (Leckebusch & Abdussalam, 2015). 
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 In this study, model specifically designed for climate change studies in which previous 

cases were not included during model fitting were applied. Predicted cases have a 

cross-validation correlation 0.69 (p<0.05) and a skill score of 0.61 with 1990-2015 

observed cases for cholera, meaning the root-mean square error of the predicted cases 

yielded a 61% improvement over assuming the long term mean of cases is the value in 

each year (i.e., "persistence") for all models.  This model was used to project potential 

cases risk for two 21st century time slices, 2020-2035 and 2060-2075, by forcing them 

with an ensemble of downscaled future climate simulations.  

2. Climate Projections and Statistical Downscaling Technique 

In this study, a wide range of climate models output were employed, monthly output 

from ten coupled AOGCM that participated in the CMIP5 are employed (see Table 1). 

These new sets of models have undergone a few changes and improvement, if 

compared with the former CMIP3. This is in addition to the new climate change 

scenarios introduced – the family of Representative Concentration Pathways (RCPs) 

that reflected the important of potential Green House Gases (GHGs) emission 

mitigation (Taylor et al., 2012).  

Model fields were obtained from the Earth System Grid - Program for Climate Model 

Diagnosis and Intercomparison (ESG-PCMDI) gateway at Lawrence Livermore 

National Laboratory, http://pcmdi3.llnl.gov/esgcet/home.htm. Model scenarios used in 

this study include the historical simulation and three future projections.  The historical 

simulation was forced by observed natural and anthropogenic atmospheric composition 

changes spanning 1861-2005 in all of the models; it is used to provide a baseline against 

which to assess climate change in the three future projections.  The future projections 

are determined by the values of their RCPs.  This study uses three scenarios namely; 

RCP2.6, RCP6.0 and RCP8.5 scenarios for 2006-2100 (Moss et al., 2010).  Compared 

to the Special Report on Emissions scenarios (SRES) that informed the climate 

projections for the previous CMIP experiment (CMIP3), The CO2 concentration in 

RCP2.6 is below B1, in RCP6.0 is slightly above A1B, and in RCP8.5 exceeds A2.  

Therefore, a broad range of potential GHG trajectories for the 21st century is 

represented by the three chosen scenarios.  Generally, multiple ensemble members are 

available for each CMIP5 scenario for the given model. This study uses only one 

ensemble member (the first) from each CMIP5 model and scenario.  The variables used 

include near surface maximum and minimum temperature, precipitation, and relative 

humidity. A comparison of the annual cycle of the historical AOGCM simulations 

versus observations of the climatic variables used in this study were evaluated.   

The climate projection outputs were statistically downscaled to each of the three cities 

used in developing the disease models (Kano, Sokoto and Gusau). A variety of 

statistical downscaling techniques of varying complexity are available (e.g., Gutiérrez 
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et al., 2012; Wilby and Dawson, 2012).  In this study, a relatively simple but robust 

perturbation downscaling techniques was employed through the following stages: 

Firstly the climate projection outputs were bilinearly interpolated to the coordinates of 

each of the three cities; next is computing the AOGCM climate change signal for each 

of the four variables for a specified future RCP period (e.g., 2020-2035) relative to  the 

AOGCM historical period that overlaps with the observational record (1990-2005); and 

lastly adding the computed change signal (which includes changes in the mean and the 

variance) to the 1990-2005 observational record to compute the downscaled future 

climate in 2020-2035 or 2060-2075 for a given variable and city.  

The perturbation method is expressed as follows: 

𝑋𝑓𝑚,𝑦
=[𝑋̅𝑝,𝑜𝑏𝑠𝑚

] + [𝑋̅𝑓,𝑔𝑐𝑚𝑚
− 𝑋̅𝑝,𝑔𝑐𝑚𝑚

] + [𝑋𝑝,𝑜𝑏𝑠𝑚,𝑦
− 𝑋̅𝑝,𝑜𝑏𝑠𝑚

] × [1 +
 𝜎̅𝑓,𝑔𝑐𝑚𝑚− 𝜎̅𝑝,𝑔𝑐𝑚𝑚 

 𝜎̅𝑝,𝑔𝑐𝑚𝑚 
]  

Where 𝑋𝑓𝑚,𝑦
 is the downscaled future value of variable X for a given month, m, and 

year, y.  Downscaled variables include maximum temperature, minimum temperature, 

rainfall, and relative humidity.  𝑋̅𝑝,𝑜𝑏𝑠𝑚
 is the mean present-day observed climate for a 

given month averaged across all years of the historical period (1990-2005), as 

calculated from the airport weather station in each city.  𝑋̅𝑓,𝑔𝑐𝑚𝑚
 and 𝑋̅𝑝,𝑔𝑐𝑚𝑚

are the 

mean future (e.g., 2020-2035 or 2060-2075) and present-day (1990-2005) averages, 

respectively, for a given month in the AOGCM.   𝑋𝑝,𝑜𝑏𝑠𝑚,𝑦
 is the observed climate for 

a given year and month.  𝜎̅𝑓,𝑔𝑐𝑚𝑚  and  𝜎̅𝑝,𝑔𝑐𝑚𝑚 are the mean future and present-day 

standard deviations from the monthly mean over the period, respectively, for a given 

month in the AOGCM. Therefore, the above equation is in essence a Reynolds 

averaging approach:  the monthly mean AOGCM change signal (bracketed term 2) is 

added to the present-day observed monthly mean (bracketed term 1), then the observed 

perturbation for each year and month is added back to the mean change signal 

(bracketed term 3).  First, however, the perturbation term is multiplied by the fractional 

change in the standard deviation (bracketed term 4) prior to adding it back to the mean, 

in order to account for changes in the variability of a given variable in the future.  This 

is done so on a fractional basis to account for the fact that variability in a AOGCM may 

be dampened or enhanced compared to the observed variability due to the coarse spatial 

resolution and physical assumptions of the AOGCM.  Adjusting the observed 

perturbation on a fractional (rather than absolute) basis accounts for such differences.  

Likewise, the change in the mean of variable X, expressed in bracketed term 2, is 

modified slightly when downscaling rainfall to be expressed as a fractional change.  

This is done because AOGCMs often underestimate the magnitude of rainfall  

In order to test the significance difference between the observed present-day climatic 

variables and cholera cases versus their respective future projections, student’s t-tests 
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statistical technique was employed. Changes are expressed as percentages in the text, 

the uncertainty is given as the 95% confidence interval bounding the projected mean 

change. 

Results 

1. Downscaled Climate Projections  

The annual cycle of the historical AOGCM simulations versus observations for the four 

selected climatic variables relevant to the present study were evaluated.  Although the 

range of historical simulations about the observed annual cycle is large, the ensemble 

mean captures the observed seasonal cycle and magnitude of maximum and minimum 

temperature, rainfall, and humidity with remarkable accuracy.  This lends confidence 

that the statistically downscaled climate projections are based on models that, on 

average, reasonably simulate the climate of northern Nigeria on this time scale.   

From the results obtained, the models captured the seasonal cycle of all the variables, 

as measured by the ensemble mean values.  For maximum temperature during the 

hottest months (February – April), the ensemble mean of the models is nearly perfect, 

and there is a 1.5-2-degree cold bias during April and May.  The models exhibit 

a larger standard deviation and range than the observations because there are more data 

points used for the statistics: for the observations, there are 16 data points for each 

month (because there are 16 years of data for 1990-2005).  For the models, there are 

10 times as many data points, since there are 10 models. In summary, the models are 

able to capture the seasonal cycle and magnitude of the key meteorological variables 

that impact cholera, albeit with some small biases.  This indicates the models are 

resolving key atmospheric processes, which in turn suggests that the models' climate 

change projections for 2020-2035 and 2060-2075 may have reasonable fidelity. Also, 

testing the diseases models with the ensemble simulations reveals the same annual 

cycle for the recent control period of cholera (1990-2005). 

An aggregate annual cycle for the three targeted cities of the observed present day 

maximum temperature and rainfall in comparison with the RCP6.0 simulations for 

2020-2035 and 2060-2075 is shown in Figure 1. In both the two-time slices used in 

this study, maximum temperature has shown a statistically significant increase 

almost across all months, with the months of March – July showing the highest 

warming. Maximum temperature increases of about 0.5-1oC in the near future 

projections, while in the far future the increase ranges from 1-3oC. Similar trends were 

observed with minimum temperature. In the case of rainfall, a statistically non-

significant increase in the months June-July-August (JJA) in both time slices was  

http://www.afrrevjo.net/


 
AFRREV VOL. 11 (1), S/NO 45, JANUARY, 2017 

211 

 

 

Copyright © IAARR, 2006-2017: www.afrrevjo.net. 
Indexed African Journals Online: www.ajol.info 

 

Figure 1:  An aggregate annual cycle for the three targeted cities of the observed 

present day maximum temperature and rainfall in comparison with the RCP6.0 

simulations for 2020-2035 and 2060-2075. The thick and thin red lines represent the 

mean and range of observed monthly values, respectively.  The thick black line and 

gray shaded areas represent the mean and range of the AOGCM simulations, 

respectively. The vertical lines represent +/- 1 standard deviation from the means for 

the observations and AOGCM projections, respectively. The dots on top represent the 

significance level (p<0.01, p<0.05, p<0.10, or N/A for no significance) of the future 

changes versus the observations, as indicated in the legend. 
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observed, this is in agreement with the findings of (Vizy et al., 2013).  The projections 

reveal only little but significant changes in humidity in both the near and far future 

most especially in the dry months (December – February).  

2. Cholera Projections  

Result from cholera projections indicate statistically significant increases in cases 

during most months (approximately April through September), most especially in the 

far future, for RCPs 6.0 and 8.5 (Figure 2). Changes are largest and have the strongest 

statistical significance (p<0.05) towards the end of the dry season and the beginning of 

the rainy season, with increases over the present-day case rate (25 cases per 100,000 of 

population in the month of June) to rates ranging from 27 to 29 and 30 to 35 in the near 

(2020-2025) and far future (2060-2075) respectively, depending on the RCP.  The 

months with the largest increases coincide with the months (May and June) in which 

maximum temperature increases are also large. Cases only showed potential increases 

in the wettest months of July and August in the far future projections for RCPs 6.5 (8.3 

and 7.9%) and 8.0 (17 and 21%) respectively. This finding corroborates that of a related 

study of diarrheal diseases in Botswana by Alexander et al. (2013) where diarrheal 

disease incidences was suggested to increase with hot conditions and decline likely in 

the wet season. There is little difference among projected cholera case rates among the 

three scenarios for 2020-2035, for example in May and June increases ranges from 13-

16% and 10- 16% respectively, but larger differences among the scenarios occur for 

2060-2075 after the RCP emissions scenarios diverge (Moss et al., 2010), with May 

increases of about 20%, 27%, and 40% for RCP 2.6, 6.0, and 8.5 respectively.  

Discussion 

The potential impact that climate change might cause in the dynamics of some 

infectious diseases begs for the need to assess these changes in the future, particularly 

for vulnerable regions that are projected to be affected most.  This is in order to keep 

authorities in charge informed so as to prepare for the potential challenges ahead. Even 

though many promising developments may reduce the future risk for infectious 

diseases transmission despite enhanced risk due to climate change, there may also be 

increased challenges for preventing and controlling disease outbreaks (Ebi et al., 2013).  

Cholera is a disease that remain a health burden in the region under investigation, and 

its sensitivity to climate is raising concern about their future dynamics. In this study 

the potential impact of future climate change on the risk of cholera cases was assessed 

by forcing validated empirical model of the disease developed specifically for the 

region. In order to assess uncertainties in the projections, multi model ensemble from 

ten monthly AOGCMs simulations from CMIP5 were used (e.g., Giorgi, 2005).  
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Figure 2: The annual cycle of present-day (1990-2005) cholera cases compared with 

projections for the ensemble of thirteen downscaled AOGCM in 2020-2035 (left) and 

2060-2075 (right) for the three different future scenarios: RCP2.6 (top), RCP6.0 

(middle), and RCP8.5 (bottom). The red and black lines are as described in Figure 1. 
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The results indicate statistically significant increases in meningitis and cholera cases in 

the future, across all time periods, and RCPs used in the projections. Results suggest 

that both diseases’ cases in northern Nigeria may increase in the future, primarily as a 

result of warmer temperatures.  During the peak of cholera season cases could 

potentially increase due to climate change by 13-16% for 2020-2035, and by 20-40% 

for 2060-2075 during the beginning of the rainy season (month of May). Surprisingly, 

in the nearest future, cholera cases have not shown a potential increase in the wettest 

months, this finding corroborate that of Alexander et al. (2013) in Botswana. However, 

in the far future, cases have shown potential increases in the wettest months of July and 

August for RCPs 6.0 and 8.5 by about 8(9) % and 18(21) % respectively. Although 

increases are less if compared with those in the hot months of May and June.  

Given that projected climate changes in northern Nigeria are similar for other regions 

of the Sahel (Chou et al., 2013), as are the climate-driven dynamics of cholera 

transmission (e.g., Alexander et al., 2013), these results may be broadly applicable 

throughout Sahelian Africa. It is noteworthy that the WAM which brings about 

precipitation in the Sahel is not well simulated in climate models (Bock et al., 2011; 

Marsham et al., 2013); however, the AOGCMs have vigorously improved if compared 

with the previous GCMs; they now include the representation of the ocean, atmospheric 

chemistry, vegetation, carbon cycle, land surface, aerosols, and sea ice at a finer spatial 

resolution (McMichael et al., 2006). This reduces uncertainties that may affect the 

results of this study. 

However, it should be noted that the potential future risk of cholera and other infectious 

diseases is not only depending on climatic factors, but rather upon population 

vulnerability, vaccination and other social and health risk factors that were already 

associated with the diseases. With regards to this, the results presented here are not 

projection of the reality in the future, but rather they demonstrate trajectories of 

possible changes in the risk of these diseases primarily due to climate if current 

prevention and treatment strategies, land use patterns, and lifestyles remain similar in 

the future. This is because with planning and development of mitigation and adaptation 

capacity, increases in these diseases incidences associated to climate change might be 

largely prevented. Clearly, some or all of these factors will change, and therefore these 

results may encourage governments and public health workers to enhance efforts 

cholera incidence, for example, by intensifying the administration approved vaccines 

that can protects population against all serogroup that could potentially cause 

epidemics. Also, improvement in the quality of life, sanitation, vaccination, drinking 

water, education and health care delivery in the case of cholera. 

Without an insight of what is likely to happen in the future, it’s difficult to develop 

assumption about future adaptation to changes in the risk of these diseases associated 
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to climate change (Martens et al., 1999). For this reason, public health workers and 

decision makers in national and regional governments needs to be furnished with 

information regarding the potential risk on these diseases attributed to climate change, 

and possibly how these risks could be avoided. 

Conclusion 

Projecting the potential impact of climate change on climate-sensitive infectious 

diseases is essential, especially for regions such as northern Nigeria, where the 

projected climate change impacts, and infectious disease risk, are both large. Findings 

from this study showed a significant potential future increase in cholera cases, 

primarily due to warming climate. Results indicates that changes are largest and most 

statistically significant during hot months of May and June (beginning of rain season).  

Cholera cases were projected to be less or equal in the wettest month for nearest future, 

and less increases in the far future for RCPs 6.0 and 8.5.  The study only provides 

estimation based on the future modelled climate simulation, which may not be exactly 

reflecting reality. In that case, the estimation was done assuming all other non-climatic 

factors that may affect the future dynamics of these diseases remains constant. 

Finally, changes in climate extremes may have more adverse impact on the dynamics 

of these diseases than that of the mean climate (which was investigated here). For 

example, increase in the intensity and occurrences of heat events may increase the risk 

of transmission and contraction of the disease. Likewise, occurrence of extreme rainfall 

may increase the risk of flooding which in turn might facilitate the risk of cholera. As 

such in pertinent to further investigate the potential future impact of these events, this 

will help to further identify the climatic effects that otherwise may be obscured by the 

mean values. 
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