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Abstract. The quintile share ratio (QSR) is a recently introduced measure of income in-
equality, also forming part of the European Laeken indicators which cover four important
dimensions of social inclusion (financial poverty, employment, health and education). In 2001,
the European Council decided that income inequality in the European Union member states
should be described using a number of indicators including the QSR. From the definition
of the QSR, a (traditional) nonparametric estimator for it follows easily as a plug-in-type
estimator. However, not much is known about the theoretical properties of this estimator.
In this paper the estimator is defined and its asymptotic distribution theory derived. Using
a simulation study, some finite sample properties of the limiting normal distribution are
explored and reported on.

Résumé. Le rapport des quintiles (QSR) est une mesure d’inégalité introduite récemment et
fait partie des indicateurs européens couvrant quatre dimensions importantes de l’inclusion
sociale, à savoir, la pauvreté, l’emploi, la santé et l’éducation. En 2001, le Conseil Européen
a décidé que l’inégalité du revenu dans les pays membres de l’Union Européenne devrait
être décrite par un certain nombre d’indicateurs y compris le QSR. De part sa définition, on
obtient facilement un estimateur de substitution pour cette mesure d’inégalité. Cependant,
très peu est connu sur les propriétés théoriques dudit estimateur. Dans cet article nous
définissons l’estimateur nonparamétrique du QSR et nous donnons sa distribution limite. A
travers des simulations, nous explorons la loi limite ainsi obtenue, à savoir la loi normale.
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1. Introduction

Measures of inequality, best known in economics, have applications in many other branches
of science, e.g. in ecology (see e.g. Magurran, 1991), sociology (see e.g. Allison, 1978), de-
mography (see e.g. White, 1986) and information science (see e.g. Rousseau, 1993). Over
the years a large number of such measures has been proposed, with the Gini index perhaps
the most well-known one. The Gini index has been studied extensively and its properties
documented in a number of papers (see e.g. the survey papers Xu, 2004 and Langel and
Tillé; 2013). Indices, most notably the Zenga index, have recently been explored from var-
ious points of view; for example finite and asymptotic variance cases have been considered
in Greselin et al. (2009), (2010), (2013) and (2014). Another trend, somewhat different from
Zengaâ’s but equally interesting, which is based on the Palma index, is considered in e.g.
Cobham and Sumner (2013a) and (2013a).

A measure of inequality traditionally less well-known is the quintile share ratio (QSR).
In recent years, however, it has become more well-known and popular especially since the
decision by the European Union in 2001 to include it in its laeken indicators as one of two
indicators of inequality, the other being the Gini index. As the ratio of two L-functions, the
QSR can be viewed as a function of two parameters, and thus its estimator can be viewed as
the function of two L-estimators, or L-statistics. Hence, via a standard technique, known as
the (multivariate) delta-method, asymptotic results from those are obtained for the bivariate
L-estimator. Such results in finite and infinite variance cases have recently been explored
in actuarial and econometric contexts (see e.g. Brazauskas et al. 2007, 2009, and Necir and
Zitikis, 2011).

Compared to e.g. the Gini index, relatively little research is available on the statistical
properties of estimators of the QSR. In a recent paper Lange and Tillé (2011) discussed the
estimation and the variance estimation for the QSR in a complex sampling design framework.
The authors build and improve on earlier work by Osier (2006) and Osier (2009). As is to be
expected from its definition, the influence function of the QSR is unbounded. The form of
its influence function has recently been derived by Kpanzou (2013). In Hulliger and Schoch
(2009) robust estimators for the QSR are developed in order to decrease the sensitivity to
outlying observations. In this paper we derive the asymptotic distribution of a nonparametric
plug-in estimator for the QSR.

Let X denote the random variable of interest, defined on the positive real line, having an
absolutely continuous distribution function F with corresponding density function f . The
quantile function of F is denoted by Q, i.e. Q = F−1. For given numbers 0 < α < β < 1

2 ,
define the ratio

η ≡ η(α, β) =

∫∞
Q(β)

xdF (x)∫ Q(α)

0
xdF (x)

=

∫ 1

β
Q(u)du∫ α

0
Q(u)du

.

The QSR is then given by η(0.2, 0.8). In what follows we will consider the more general
quantity η(α, β). Results for the QSR will follow directly from that. Let X1, X2, . . . , Xn be
a sample of size n on X with the corresponding order statistics denoted by X1,n ≤ X2,n ≤
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. . . ≤ Xn,n. A nonparametric plug-in estimator for η(α, β) is given by

ηn ≡ η̂(α, β) =

 1

n

n∑
i=[nβ]+1

Xi,n

 /

 1

n

[nα]∑
i=1

Xi,n

 .

Our interest is in the asymptotic distribution of σ−1n (ηn − η), for some suitable sequence of
constants σn, in the case of heavy-tailed underlying distributions. Depending on the size of
the extreme value index (EVI) of the underlying distribution, the limiting distribution is
either normal or in the stable class of distributions.

The layout of the paper is as follows. We give the main results in the next section and the
proofs in Section 3. A numerical study is reported on in Section 4 and some concluding
remarks are given in Section 5.

2. Main results

Note that ηn is a ratio of two sums of extremes. In the literature a number of results are
available on sums of extremes; see e.g. Csőrgo and Mason (1986), Csőrgo et al. (1988a) and
(1988b). One should note that statistical inference in finite and infinite variance situations
for individual truncated integrals of the quantile function has been developed in a number
of papers that deal with a variety of applications. See e.g. Brazauskas et al. (2008), Necir
et al. (2010), Necir and Meraghni (2010) for more details. The authors developed strong
approximation results for the truncated integrals, which can be automatically coupled to
produce bivariate asymptotic results for the pairs of such integrals and thus, in turn, via the
delta-method, to obtain desired statistical inference results for ratios and other functions of
the two integrals. These results do not however meet the specific requirements of the sums in
ηn in a straightforward fashion. Note also that since F is defined on (0,∞), the potentially
troublesome term in ηn is the numerator, i.e. the upper sum

1

n

n∑
i=[nβ]+1

Xi,n.

We give a result for the upper sum separately since it may be of independent interest. This
result is then applied to obtain the asymptotic distribution of ηn. For 0 ≤ s < t ≤ 1 write

σ2(s, t) =

∫ t

s

∫ t

s

(u ∧ v − uv)dQ(u)dQ(v),

where as usual u ∧ v = min(u, v). In what follows, we will write for notational convenience

U(β) =

∫ 1

β

Q(u)du and L(α) =

∫ α

0

Q(u)du,

and

Un(β) =
1

n

n∑
i=[nβ]+1

Xi,n and Ln(α) =
1

n

[nα]∑
i=1

Xi,n.
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Thus

η(α, β) =
U(β)

L(α)
and ηn(α, β) =

Un(β)

Ln(α)
.

Throughout we make the following assumptions on F :

(A1) The underlying distribution F is defined on (0,∞) and is absolutely continuous with
density function f .

(A2) F is a heavy-tailed Pareto-type distribution, i.e.

1− F (x) = x−1/γ lF (x), 0 < γ < 1, (1)

with lF slowly varying at infinity.

Remark 1. Note that (1) holds if and only if Q(1−u) = u−1/γ lQ(u), with lQ slowly varying
at zero (see e.g. Seneta, 1976 and Beirlant et al., 2004).

Remark 2. Note that σ2(s, 1) < ∞ for γ < 1
2 and σ2(s, 1) = ∞ for γ > 1

2 . For γ = 1
2 it

could happen that σ2(s, 1) =∞. Since σ(β, 1) is involved in the normalising constant in the
limiting result, it has to be replaced by σ(β, 1−1/n) in the case where we have σ2(β, 1) =∞.

Theorem 1. Assume (A1) and (A2) hold. Then, as n→∞, if γ ≤ 1
2 ,

√
n

σ(β, 1− 1/n)
(Un(β)− U(β))

D−→ N(0, 1), (2)

and if 1
2 < γ < 1, √

n

σ(β, 1− 1/n)
(Un(β)− U(β))

D−→ Yγ , (3)

where Yγ is an asymmetric stable law of index 1
γ .

Remark 3.

1. Note that if σ2(β, 1) <∞, then σ2(β, 1− 1/n) can be replaced by σ2(β, 1) in (2).
2. If Yγ is an asymmetric stable law of index 1

γ , it has a skewness parameter 1 and shift
parameter 0.

The result of Theorem 1 forms the basis of the next theorem. For U a Uniform (0, 1) random
variable, define a sequence of constants {σ2

n} by σ2
n = V ar (Tn), where

Tn = U(β)

∫ α

0

(s− I(U ≤ s))dQ(s)− L(α)

∫ 1−1/n

β

(s− I(U ≤ s))dQ(s),

with I(.) the indicator function. The following result then holds.

Theorem 2. Under the assumptions of Theorem 1, if γ ≤ 1
2

√
nL2(α)

σn
(ηn − η)

D−→ N(0, 1), (4)

and if 1
2 < γ < 1 √

nL2(α)

σn
(ηn − η)

D−→ Yγ , (5)

where Yγ is an asymmetric stable law of index 1
γ .
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Remark 4.

1. Note again that if σ2(β, 1) <∞, then 1− 1/n in σ2
n can be replaced by 1.

2. It follows by straightforward calculations that

σ2
n = L2(α)σ2(β, 1− 1/n) + U2(β)σ2(0, α)

− 2L(α)U(β)

∫ α

0

sdQ(s)

∫ 1−1/n

β

(1− t)dQ(t).

3. Proofs

The method of proof for the case γ ≤ 1
2 is to use the decomposition below in terms of the

uniform empirical process and approximating the latter on a special probability space by a
Brownian motion. In the case γ > 1

2 , a central limit result from Samorodnitsky and Taqqu
(1994) is used. Let U1, U2, . . . , Un be independent Uniform (0, 1) random variables. For each
n > 1, the uniform empirical distribution function is defined as

Gn(t) = n−1
n∑
i=1

I(Ui ≤ t).

Denote the order statistics corresponding to U1, U2, . . . , Un by 0 =: U0,n ≤ U1,n ≤ . . . ≤
Un,n ≤ Un+1,n := 1. Writing Xi,n = Q(Ui,n), i = 1, . . . , n, we get for integers 0 ≤ m <
n− k ≤ n that

n−k∑
i=m+1

Xi,n − µn = n

∫ 1−k/n

m/n

(s−Gn(s))dQ(s) + n

∫ Um,n

m/n

(s−Gn(s))dQ(s)

+ n

∫ 1−k/n

Un−k,n

(s−Gn(s))dQ(s), (6)

where

µn = n

∫ 1−k/n

m/n

Q(s)ds.

Proof. Theorem 1. Applying (6) gives

n∑
i=[nβ]+1

Xi,n − n
∫ 1

[nβ]/n

Q(s)ds = n

∫ 1

[nβ]/n

(s−Gn(s))dQ(s)

+ n

∫ U[nβ],n

[nβ]/n

(s−Gn(s))dQ(s)

= n

∫ 1

β

(s−Gn(s))dQ(s) +Rn(β).
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Here

Rn(β) =

[
n

∫ 1

[nβ]/n

(s−Gn(s))dQ(s)− n
∫ 1

β

(s−Gn(s))dQ(s)

]

+ n

∫ U[nβ],n

[nβ]/n

(s−Gn(s))dQ(s)

= R1n(β) +R2n(β),

with

R1n(β) = n

∫ 1

[nβ]/n

(s−Gn(s))dQ(s)− n
∫ 1

β

(s−Gn(s))dQ(s)

and

R2n(β) = n

∫ U[nβ],n

[nβ]/n

(s−Gn(s))dQ(s).

Clearly,
|R1n(β)| ≤ sup

0≤s≤1
|s−Gn(s)|n(Q(β)−Q([nβ]/n)) = OP (n−1/2).

Similarly,

|R2n(β)| ≤ sup
0≤s≤1

|s−Gn(s)|n(Q(U[nβ],n)−Q([nβ]/n)) = OP (1),

giving
Rn(β) = OP (1).

Also,

n

∫ 1

[nβ]/n

Q(s)ds = n

∫ 1

β

Q(s)ds+ o(n1/2).

Thus

Un(β)− U(β) =
1

n

n∑
i=[nβ]+1

Xi,n −
∫ 1

β

Q(s)ds =

∫ 1

β

(s−Gn(s))dQ(s) +OP (n−1).

Now, on the special probability space of Csőrgo, M., Csőrgo et al. (1986) there exists a
sequence of Brownian bridges {Bn}n≥1 such that when γ ≤ 1

2 ,

√
n

σ(β, 1− 1/n)
(Un(β)− U(β)) =

1

σ(β, 1− 1/n)

∫ 1−1/n

β

Bn(s)dQ(s) + oP (1), (7)

from which (2) in the theorem follows immediately. For the case 1
2 < γ < 1, note that since

√
nσ(β, 1− 1/n) ∼ cnγ lQ(1/n) for some c > 0, as n→∞,

classical theory gives

√
n

(
1

n

n∑
i=1

Xi −
∫ 1

0

Q(s)ds

)
/σ(β, 1− 1/n)

D−→ Yγ ,
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using e.g. a special case of Theorem 1.8.1 of Samorodnitsky and Taqqu (1994).
Also,

√
n

σ(0, β)

 1

n

[nβ]∑
i=1

Xi,n −
∫ β

0

Q(s)ds

 D−→ N(0, 1),

and
√
nσ(0, β)/(nγ lQ(1/n))→ 0 as n→∞, giving (3) in Theorem 1.

Proof. Theorem 2. Note that for 0 < γ ≤ 1
2 , using the decomposition (6), handling the

remainder terms as in the proof of Theorem 1, we obtain on the special probability space of
Csőrgo, M., Csőrgo et al. (1986) that

Ln(α)− L(α) =
1

n

[nα]∑
i=1

Xi,n −
∫ α

0

Q(s)ds =

∫ α

0

(s−Gn(s))dQ(s) +OP (n−1).

Thus √
n

σ(0, α)
(Ln(α)− L(α)) =

1

σ(0, α)

∫ α

0

Bn(s)dQ(s) + oP (1). (8)

We now combine this result with (2) in Theorem 1. Note that always

Ln(α)
P−→ L(α), as n→∞,

and therefore by Slutsky and elementary algebra for 0 < γ ≤ 1
2 , we have

√
nL(α)2

σn
(ηn − η) =

√
n

σn
[L(α)(Un(β)− U(β))] (1 + oP (1))

−
√
n

σn
[U(β)(Ln(α)− L(α))] (1 + oP (1))

=
1

σn
L(α)

∫ 1−1/n

β

Bn(s)dQ(s)

− 1

σn
U(β)

∫ α

0

Bn(s)dQ(s) + oP (1),

using (7) and (8). Equation (4) follows immediately from this. Consider the case 1
2 < γ < 1.

Since √
n(Ln(α)− L(α)) = oP (1),

√
nL(α)2

σn
(ηn − η) =

√
n

σn
L(α)(Un(β)− U(β)) + oP (1).

Since in this case
σ2(β, 1− 1/n) −→∞,

it follows that
σ2(0, α)

σ2(β, 1− 1/n)
−→ 0

and thus
σ2
n

σ2(β, 1− 1/n)
−→ L2(α).

Equation (5) then follows directly from Theorem 1.
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4. Numerical results

In this section a small simulation is reported that was carried out in order to explore the
behavior of the asymptotic distribution obtained. We consider the cases of two heavy-tailed
distributions, namely the Pareto distribution with γ = 0.5 and the Burr distribution with
γ = 0.25. We also looked at the performance of the standard normal confidence intervals
for the QSR in terms of coverage probabilities (CP ) and average confidence interval lengths
(ACIL). Four sample sizes were used viz. 500, 1000, 5000 and 10000, and the simulation
was run over 1000 repetitions. The sample size is denoted by n.

Figures 1 and 2 compare densities of the asymptotic distribution to the standard normal dis-
tribution N(0, 1). We can see that these graphs confirm the theoretical results proved above
despite the slow convergence to normality. Based on the asymptotic variance, 95% confi-
dence intervals have been constructed from the simulated samples and the CP and ACIL
results are given in Table 1, where SNI, BPI and BTI respectively denote the standard
normal, the bootstrap percentile and bootstrap t intervals. The values in brackets are the
standard errors associated with the corresponding estimates. The fact that such standard
errors are small shows the accuracy of the method used. We can see that the characteristics
of the confidence intervals are improved with the sample size, with the bootstrap intervals
outperforming the standard normal intervals.

Recall that the idea of this paper is to obtain the limiting distribution of the nonparametric
estimator for the QSR and not specifically to carry out inferences on QSR. The simula-
tion was simply used to illustrate how the asymptotic variance could be used to obtain an
approximate confidence interval for the QSR. The corresponding results are improved by
semi-parametric methods developed in Kpanzou (2011) and Kpanzou et al. (2013).

5. Concluding remarks

In this paper we derived the limiting asymptotic distribution function of the nonparamet-
ric estimator of the quintile share ratio and we used the asymptotic variance to construct
confidence intervals. The performance of such intervals is studied in terms of coverage prob-
abilities and average confidence interval lengths. Although the aim is not to compare the
performance of various confidence intervals, a comparison with the bootstrap percentile and
bootstrap t intervals shows a better performance of bootstrap methods over the standard
normal ones.

Note that the nonparametric estimation method can be heavily influenced by the tails of
the underlying distribution, making it sensitive to some data points in such tails. In fact,
for a given functional (e.g. QSR), if its influence function is unbounded then it is likely to
be sensitive to outliers in the data. This is often the case for measures of inequality (see e.g.
Cowell and Flachaire, 2007). Semi-parametric estimators have been developed and shown to
be less sensitive to contaminations (see Kpanzou, 2011, Kpanzou et al.; 2013).

Acknowledgements: I would like to thank Prof. T. de Wet and Prof. D. M. Mason for
their great contribution to this research.
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Fig. 1. Comparison of densities of the asymptotic distribution to N(0, 1) for samples from
the Pareto distribution.
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