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Abstract. A linear statistic Fy is called linearly sufficient for the estimable parametric
function of X∗β under the linear model M = {y,Xβ,V} if there exists a matrix A such
that AFy is the best linear unbiased estimator, BLUE, for X∗β. The concept of linear
sufficiency with respect to a predictable random vector is defined in the corresponding way
but considering best linear unbiased predictor, BLUP, instead of BLUE. In this paper, we
consider the linear sufficiency of Fy with respect to y∗, X∗β, and ε∗, when the random
vector y∗ comes from y∗ = X∗β + ε∗, and the prediction is based on the linear model M .
Our main results concern the mutual relations of these sufficiencies. In addition, we give an
extensive review of some interesting properties of the covariance matrices of the BLUPs of
ε∗. We also apply our results into the linear mixed model.
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Résumé. Une statistique linéaire Fy est dite linéairement suffisante pour la fonction
paramétrique estimable de X∗β sous le modèle linéaire M = {y,Xβ,V} s’il existe une
matrice A telle que AFy soit le meilleur estimateur linéaire sans biais, BLUE, pourX∗β.
Le concept de suffisance linéaire par rapport à un vecteur aléatoire prévisible est défini de
manière similaire mais en considérant le meilleur prédicteur linéaire sans biais, BLUP, au
lieu du BLUE. Dans cet article, nous considérons la suffisance linéaire de Fy par rapport à
y∗ , X∗β et ε∗, lorsque le vecteur aléatoire y∗ provient de y∗ = X∗β+ε∗, et la prédiction est
basée sur le modèle linéaire M . Nos principaux résultats concernent les relations mutuelles
de ces suffisances. En outre, nous donnons un examen approfondi de certaines propriétés
intéressantes des matrices de covariance des BLUP des ε∗. Nous appliquons également nos
résultats dans le modèle mixte linéaire.

1. Introduction

In this section we introduce some preliminary concepts and results that are needed in our
main considerations. First some words about the notation. The symbol Rm×n denotes the
set of m × n real matrices, while A′, A−, A+, C (A), and C (A)⊥, denote, respectively,
the transpose, a generalized inverse, the Moore–Penrose inverse, the column space, and the
orthogonal complement of the column space of the matrix A. The Moore–Penrose inverse
A+ is defined as a unique matrix satisfying the following four conditions:

AA+A = A, A+AA+ = A+, (AA+)′ = AA+, (A+A)′ = A+A. (1.1)

By (A : B) we denote the partitioned matrix with Aa×b and Bc×d as submatrices, where
a = c. By A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will
write PA = AA+ = A(A′A)−A′ to denote the orthogonal projector (with respect to the
standard inner product) onto C (A). The orthogonal projector onto C (A)⊥ is denoted as
QA = Ia −PA, where Ia refers to the a× a identity matrix and a is the number of rows of
A. In particular, we use notation M = In − PX, where Xn×p refers to the model matrix;
see (1.2) below. One choice for X⊥ is of course M.

Our focus lies in the general linear model

y = Xβ + ε , or shortly M = {y,Xβ,V} , (1.2)

where Xn×p is a known fixed model matrix, the vector y is an observable n-dimensional
random vector, β is a p×1 vector of unknown (but fixed) parameters, and ε is an unobserv-
able vector of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) = V.
The nonnegative definite matrix V is known and can be singular. Premultiplying the model
M by an f × n matrix F yields the transformed model

Fy = FXβ + Fε , or shortly Mt = {Fy,FXβ,FVF′} . (1.3)

The transformed model Mt will play a crucial role in our considerations.

Let y∗ denote a q× 1 unobservable random vector containing new future observations. The
new observations are assumed to be generated from

y∗ = X∗β + ε∗ , (1.4)
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where X∗ is a known q × p matrix, β is the same vector of fixed but unknown parameters
as in M , and ε∗ is a q-dimensional random error vector. We further have

E

(
y
y∗

)
=

(
Xβ
X∗β

)
=

(
X
X∗

)
β , cov

(
y
y∗

)
=

(
V V12

V21 V22

)
= Γ, (1.5)

where the covariance matrix Γ is assumed to be known. We denote this setup shortly as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
. (1.6)

We call M∗ “the linear model with new future observations”. Of course, the phrase “new
future” need not be taken here literally. Our main interest in M∗ lies in predicting y∗ on
the basis of observable y, but we will also be interested in predicting ε∗.

Suppose we transform M into Mt and do the prediction using the resulting transformed
model. Corresponding to M∗, we now have the following transformed setup:

Mt∗ =

{(
Fy
y∗

)
,

(
FX
X∗

)
β,

(
FVF′ FV12

V21F
′ V22

)}
. (1.7)

There is one further model that we will pay attention to, it is the linear mixed model:

y = Xβ + Zu + e , or shortly L = {y,Xβ + Zu,D,R,S} , (1.8)

where Zn×q is a known matrix, y, X, and β are as in M but u is an unobservable q-
dimensional random effect with E(u) = 0, cov(u) = D, and e is a random error vector with
E(e) = 0, cov(e) = R, cov(e,u) = S.

A parametric function X∗β is said to be estimable if it has a linear unbiased estimator
Cy. Such a matrix C ∈ Rq×n exists only when C (X′∗) ⊂ C (X′). The linear unbiased
estimator Cy is the best linear unbiased estimator, BLUE, of estimable X∗β if Cy has the
smallest covariance matrix in the Löwner sense among all linear unbiased estimators of X∗β:

cov(Cy) ≤L cov(C#y) for all C# : C#X = X∗ , (1.9)

i.e.,

cov(C#y)− cov(Cy) is nonnegative definite for all C# : C#X = X∗ . (1.10)

Some clarifying words about the Löwner ordering may be in place. First, a symmetric n×n
matrix A is said to be nonnegative definite (or positive semidefinite), denoted as A ∈ NNDn,
if

x′Ax ≥ 0 for all x ∈ Rn, or equivalently, A = KK′ for some K . (1.11)

Let A,B ∈ NNDn. Then A is said to be below B in the Löwner sense and denoted as

A ≤L B , or B−A ≥L 0 , (1.12)

if B − A ∈ NNDn, i.e., x′(B − A)x ≥ 0 so that x′Ax ≤ x′Bx for all x ∈ Rn. Löwner
ordering is a very powerful and useful ordering in statistics. For example, (1.12) implies the
following inequalities:

det(A) ≤ det(B), tr(A) ≤ tr(B), chi(A) ≤ chi(B), aii ≤ bii , (1.13)
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where i = 1, . . . , n and det(·), tr(·) and chi(·) refer to the determinant, trace and the ith
largest eigenvalue of the matrix argument, respectively.

The linear predictor By is said to be unbiased for y∗ if the expected prediction error is
zero, i.e., E(y∗ −By) = 0 for all β ∈ Rp, which happens if and only if X′∗ = X′B′. When
C (X′∗) ⊂ C (X′) holds, we will say that y∗ is predictable under M∗, that is, y∗ is predictable
whenever X∗β is estimable. Now a linear unbiased predictor By is the best linear unbiased
predictor, BLUP, for y∗, if we have the Löwner ordering

cov(y∗ −By) ≤L cov(y∗ −B#y) for all B# : B#X = X∗ . (1.14)

In other words, the BLUP provides the minimal covariance matrix for the prediction error.
Notice that in (1.9) we minimize the covariance matrix of the linear unbiased estimator
while in (1.14) we minimize the covariance matrix of the linear unbiased prediction error.

Lemma 1 characterizes the BLUE; see, e.g., Rao (1973, p. 282), and Lemma 2 character-
izes the BLUP; see, e.g., Christensen (2011, p. 294), and Isotalo & Puntanen (2006, p. 1015).

Lemma 1. Under the linear model M , the estimator Ay is the BLUE for Xβ if and only
if

A(X : VX⊥) = (X : 0) . (1.15)

Correspondingly, Cy is the BLUE of an estimable parametric function X∗β if and only if

C(X : VX⊥) = (X∗ : 0) . (1.16)

Lemma 2. Consider the linear model M∗, where C (X′∗) ⊂ C (X′), i.e., y∗ is predictable.
The linear predictor By is the BLUP for y∗ if and only if

B(X : VX⊥) = (X∗ : V21X
⊥) = [X∗ : cov(y∗,y)X⊥] . (1.17)

For the reviews of the BLUP-properties, see, e.g., Robinson (1991) and Haslett & Pun-
tanen (2017).

We will frequently utilise Lemma 2.2.4 of Rao & Mitra (1971), which says that for nonnull
matrices A and C the following holds:

AB−C = AB+C ⇐⇒ C (C) ⊂ C (B) & C (A′) ⊂ C (B′) . (1.18)

We will have several matrix expressions involving generalized inverses and of course it is
crucial to know whether they are dependent on the choice of the generalized inverses.

One well-known solution for A in (1.15) (which is always solvable) is

PX;W− := X(X′W−X)−X′W−, (1.19)

where W is a matrix belonging to the set of nonnegative definite matrices defined as

W =
{
W ∈ Rn×n : W = V + XUU′X′, C (W) = C (X : V)

}
. (1.20)

For a review of the properties of W, see, e.g., Puntanen et al. (2011, Sec. 12.3).
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We assume the model M to be consistent in the sense that the observed value of y lies
in C (X : V) with probability 1. Hence we assume that under the model M ,

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X)⊕ C (VM) . (1.21)

For the equality C (X : V) = C (X : VM), we refer to Rao (1974, Lemma 2.1). The
corresponding consistency as in (1.21) is assumed in all models that we will deal with. There
is a related decomposition, see, e.g., Puntanen et al. (2011, Th. 8), that is worth mentioning
in this context: for conformable matrices A and B we have

C (A : B) = C (A : QAB) . (1.22)

Let A and B be m × n matrices. Then, in the consistent linear model M , the estimators
Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) , (1.23)

which will be a crucial property in our considerations. Hence we state the following lemma
collecting together some equivalent expressions for (1.23). For part (d) of Lemma 3, see Groß
& Trenkler (1998, Th. 1).

Lemma 3. Let A and B be m×n matrices. Then under the model M the identity Ay = By
holds with probability 1 if and only if any of the following equivalent conditions holds:

(a) AX = BX and AV = BV,
(b) AX = BX and AVM = BVM ,
(c) AX = BX and cov(Ay −By) = 0 ,
(d) AX = BX, cov(Ay) = cov(By), and 2 cov(Ay) = cov(Ay,By) + cov(By,Ay).

The structure of the paper is as follows. In Section 2 we present some well-known condi-
tions for the linear sufficiency. In Section 3 we provide some useful comments on the BLUPs
for y∗ and in particular for the error term ε∗. According to our experience, the BLUP of
ε∗ has not received much attention in statistical literature. In Section 4 we study the equal-
ity of the BLUPs of ε∗ under the original and the transformed model. Section 5 provides
linear sufficiency charaterizations via certain covariance matrices and shows how the linear
sufficiencies of Fy with respect to y∗, X∗β, and ε∗ are mutually related. In Section 6 we
apply our results into the mixed linear model. In our paper, our attempt has been to call
well-known (or pretty well-known) results Lemmas, while Theorems refer to our own contri-
butions or clarifications. To increase the readability of our paper, the proofs of Theorems 2
and 5 are put into a separate Section 8. Our approach is a theoretical one and we focus on
mathematical properties of the models.

2. Conditions for linear sufficiency

A linear statistic Fy, where F ∈ Rf×n, is called linearly sufficient for Xβ under the model
M = {y,Xβ,V}, if there exists a matrix A ∈ Rn×f such that AFy is the BLUE for Xβ.
Correspondingly, Fy is linearly sufficient for estimable X∗β, where X∗ ∈ Rk×p, if there
exists a matrix A ∈ Rk×f such that AFy is the BLUE for X∗β. Sometimes we will use the
phrase “BLUE-sufficient” and the notation Fy ∈ S(X∗β).

Journal home page: www.jafristat.net, www.projecteuclid.org/as



A. Markiewicz and S. Puntanen, Afrika Statistika, Vol. 13 (1), 2018, 1511 – 1530. Further
properties of linear prediction sufficiency and the BLUPs in the linear model with new
observations. 1516

For the following Lemma 4, see, e.g., Baksalary & Kala (1981, 1986), Drygas (1983),
Tian & Puntanen (2009, Th. 2.8), and Kala, Puntanen & Tian (2017, Th. 2). We will use
the notation

µ∗ = X∗β, µ̃∗ = BLUE(µ∗ |M∗), µ̃t∗ = BLUE(µ∗ |Mt∗) . (2.1)

Lemma 4. The statistic Fy is BLUE-sufficient for Xβ under the model M = {y,Xβ,V}
if and only if any of the following equivalent statements holds:

(a) C

(
X′

0

)
⊂ C

(
X′F′

MVF′

)
, (b) C (X) ⊂ C (WF′), where W ∈ W.

The statistics Fy is BLUE-sufficient for estimable X∗β if and only if

(c) C

(
X′∗
0

)
⊂ C

(
X′F′

MVF′

)
.

Moreover, let µ∗ = X∗β be estimable under M and Mt. Then the following statements are
equivalent:

(d) Fy is BLUE-sufficient for X∗β, i.e., Fy ∈ S(X∗β),
(e) µ̃∗ = µ̃t∗ with probability 1,
(f) cov(µ̃∗) = cov(µ̃t∗).

The concept of linear prediction sufficiency is defined analogically as follows: Let y∗ be
predictable under the model M∗, i.e., C (X′∗) ⊂ C (X′). Then Fy is called linearly prediction
sufficient for y∗ if there exists a matrix A such that AFy is the BLUP for y∗; that is, there
exists a matrix A such that

AF(X : VM) = (X∗ : V21M) . (2.2)

Corresponding to the phrase “BLUE-sufficient”, we may use the term “BLUP-sufficient”
and the notation Fy ∈ S(y∗).

The following lemma collects together some important properties of the linear prediction
sufficiency. For the proof, see Isotalo & Puntanen (2006), and Isotalo et al. (2017).

Lemma 5. Suppose that y∗ is predictable under M∗ and Mt∗. Then the following state-
ments are equivalent:

(b) Fy is BLUP-sufficient for y∗, or shortly Fy ∈ S(y∗).

(c) C

(
X′∗

MV12

)
⊂ C

(
X′F′

MVF′

)
.

(d) BLUP(y∗ |M∗) = BLUP(y∗ |Mt∗), or shortly, ỹ∗ = ỹt∗ with probability 1.

Notice, somewhat interestingly, that we cannot add the condition cov(ỹ∗) = cov(ỹt∗)
into Lemma 5. We return into this feature in Section 5.

According to Isotalo et al. (2017), the statistic Cy is the BLUP for ε∗ if and only if

C(X : VM) = (0 : V21M) , (2.3)
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or, equivalently, C = AM for some matrix A such that AMVM = V21M, which yields the
following representation for BLUP(ε∗):

BLUP(ε∗) = V21M(MVM)−My. (2.4)

Moreover, with probability 1,

BLUP(y∗) = BLUE(X∗β) + BLUP(ε∗) . (2.5)

The following lemma gives some BLUP-sufficiency properties of Fy for ε∗; see Isotalo et al.
(2017).

Lemma 6. The statistic Fy is BLUP-sufficient for ε∗ under M∗ if and only if any of the
following equivalent conditions holds:

(a) C

(
0

MV12

)
⊂ C

(
X′F′

MVF′

)
,

(b) C (MV12) ⊂ C (MVF′QFX) ,
(c) BLUP(ε∗ |M∗) = BLUP(ε∗ |Mt∗), or shortly, ε̃∗ = ε̃∗ with probability 1.

In this case, we can add the condition cov(ε̃∗) = cov(ε̃∗) into Lemma 6; we will deal with
this property in Sections 3 and 4.

3. Some comments on the BLUPs under the original and the transformed
model

Assume that the parametric function X∗β is estimable under M as well as under Mt, which
happens if and only if C (X′∗) ⊂ C (X′) ∩ C (X′F′) = C (X′F′) , so that

X∗ = LFX for some matrix L ∈ Rq×f . (3.1)

Throughout the paper we will assume that (3.1) holds. Recall that this also means that y∗
is predictable under M∗ and Mt∗. Consulting (1.18), we observe that X∗ = X∗X

−X for
any choice of X− and hence we can express X∗, for example, as

X∗ = X∗X
+X = X∗PX′ . (3.2)

We will use notation µ = Xβ and

µ∗ = X∗β = LFXβ = LFµ = X∗X
+Xβ = X∗X

+µ . (3.3)

The parametric function Xβ is of course always estimable under M while under Mt it is
estimable whenever

C (X′) = C (X′F′) , i.e., rank(X) = rank(FX) . (3.4)

There is no need to assume (3.4) throughout all our considerations; we need it only when
dealing with the BLUE of Xβ under Mt.
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Denoting
G = X(X′W−X)−X′W− = PX;W− , (3.5)

where W ∈ W, we have

Gy = BLUE(Xβ |M ) = BLUE(µ |M ) = µ̃ . (3.6)

If Xβ is estimable under Mt, then, in light of Lemma 1, BFy is the BLUE for Xβ under
Mt if and only if B satisfies

B(FX : FVF′QFX) = (X : 0) . (3.7)

Thus, see Kala, Markiewicz & Puntanen (2017, Sec. 6) and Markiewicz & Puntanen (2017,
Sec. 3), the BLUE of Xβ under Mt has, for example, the representation

Gty = BLUE(Xβ |Mt) = BLUE(µ |Mt) = µ̃t , (3.8)

where
Gt = X[X′F′(FWF′)−FX]−X′F′(FWF′)−F. (3.9)

Notice that Gt satisfies the equations

Gt(X : VF′QFX) = (X : 0) , (3.10a)

LFGt(X : VF′QFX) = (LFX : 0) = (X∗ : 0) , (3.10b)

which means that LFGty = BLUE(µ∗ |Mt).

According to Isotalo et al. (2017, Sec. 4), the BLUP(y∗) under M∗ can be written as

BLUP(y∗ |M∗) = BLUE(µ∗ |M ) + V21V
−[y − BLUE(µ |M )]

= LFGy + V21V
−(In −G)y

= LFGy + V21M(MVM)−My

= BLUE(µ∗ |M ) + BLUP(ε∗ |M∗) , (3.11)

or shortly,
ỹ∗ = µ̃∗ + ε̃∗ , (3.12)

and

BLUP(y∗ |Mt∗) = BLUE(µ∗ |Mt) + V21F
′(FVF′)−F[y − BLUE(µ |Mt)]

= LFGty + V21F
′(FVF′)−F(In −Gt)y

= LFGty + V21N(NVN)−Ny

= BLUE(µ∗ |Mt) + BLUP(ε∗ |Mt∗) , (3.13)

or shortly,
ỹt∗ = µ̃t∗ + ε̃t∗ , (3.14)

where
N = PF′QFX

= PC (F′)∩C (M) . (3.15)
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The orthogonal projector N will have an important role in our considerations. We see that

C (N) = C (F′QFX) = C (F′) ∩ C (M) , MF′QFX = F′QFX , N = MN . (3.16)

For properties like (3.16), see Markiewicz & Puntanen (2017, Sec. 2).

A couple of short remarks are worth mentioning. First, notice that in (3.11) and (3.13) the
matrix V can be replaced with W ∈ W. Secondly, recall that in (3.11) and (3.13) we could
replace LF with X∗X

+ Moreover, notice that the use of term BLUE(Xβ | Mt), as in the
first expression in (3.13), requires, of course, that Xβ is estimable under the transformed
model Mt. The use of other expressions in (3.13) does not require this assumption; the
estimability of X∗β under Mt is only needed.

Let us have a closer look at ỹ∗ = µ̃∗+ ε̃∗ and ỹt∗ = µ̃t∗+ ε̃t∗ . We observe that the random
vectors µ̃∗ and ε̃∗ are uncorrelated and the corresponding property holds also for µ̃t∗ and
ε̃t∗. Hence we have

cov(ỹ∗) = cov(µ̃∗) + cov(ε̃∗) , cov(ỹt∗) = cov(µ̃t∗) + cov(ε̃t∗) . (3.17)

Now we have

ε̃∗ = V21M(MVM)−My, ε̃t∗ = V21N(NVN)−Ny, (3.18)

with covariance matrices

cov(ε̃∗) = V21M(MVM)−MV12 , cov(ε̃t∗) = V21N(NVN)−NV12 . (3.19)

Straightforward calculation shows that cov(ε̃∗, ε̃t∗) = cov(ε̃t∗) , and

cov(ε̃∗ − ε̃t∗) = cov(ε̃∗)− cov(ε̃t∗) , (3.20)

and thereby we have the Löwner ordering cov(ε̃∗) ≥L cov(ε̃t∗). Moreover, in view of Lemma 3
and (3.20), equality ε̃∗ = ε̃t∗ holds with probability 1 if and only if cov(ε̃∗) = cov(ε̃t∗). Thus,
in light of Lemma 6,

Fy ∈ S(ε∗) ⇐⇒ cov(ε̃∗) = cov(ε̃t∗) . (3.21)

We return to (3.21) in Theorem 2 and Remark 1 in Section 4.

The covariance matrix of the prediction error of ε∗ − ε̃∗ is

cov(ε∗ − ε̃∗) = cov[ε∗ −V21M(MVM)−My]

= V22 −V21M(MVM)−MV12

= cov(ε∗)− cov(ε̃∗) , (3.22)

while the covariance matrix of the prediction error of ε∗ − ε̃t∗ is

cov(ε∗ − ε̃t∗) = cov[ε∗ −V21N(NVN)−Ny]

= V22 −V21N(NVN)−NV12

= cov(ε∗)− cov(ε̃t∗) . (3.23)

Thus the covariance matrices of the prediction errors are equal if and only if
cov(ε̃∗) = cov(ε̃t∗).

For clarity, let us collect some of our observations together.
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Theorem 1. Consider the BLUPs ε̃∗ and ε̃t∗ for ε∗ under M∗ and Mt∗, respectively. De-
note N = PC (F′)∩C (M) and let W ∈ W. Then the following statements hold:

(a) ε̃∗ = V21M(MVM)−My, ε̃t∗ = V21N(NVN)−Ny,
(b) cov(ε̃∗) = V21M(MVM)−MV12 = V21W

+1/2PW1/2MW+1/2V12 ,
(c) cov(ε̃t∗) = V21N(NVN)−NV12 = V21W

+1/2PW1/2NW+1/2V12 ,
(d) cov(ε̃∗ − ε̃t∗) = cov(ε̃∗)− cov(ε̃t∗) ,
(e) cov(ε̃t∗) ≤L cov(ε̃∗) ,
(f) cov(ε∗ − ε̃∗) = cov(ε∗)− cov(ε̃∗) ,
(g) cov(ε∗ − ε̃t∗) = cov(ε∗)− cov(ε̃t∗) ,
(h) cov(ε∗ − ε̃∗) ≤L cov(ε∗ − ε̃t∗) ,
(i) cov(ε∗ − ε̃∗) = cov(ε∗ − ε̃t∗) ⇐⇒ cov(ε̃∗) = cov(ε̃t∗) .

4. Equality of the BLUPs of error term under the original and the transformed
model

Let us study when the following holds:

BLUP(ε∗ |M∗) = BLUP(ε∗ |Mt∗) with probability 1, (4.1)

i.e., for all y ∈ C (X : VM):

V21M(MVM)−My = V21N(NVN)−Ny, (4.2)

where N = PF′QFX
and we know that N has properties like in (3.16). For y ∈ C (X) we get

zeros on both sides of (4.2). For y ∈ C (VM) we get

V21M = V21N(NVN)−NVM

= V21MN(NVN)−NVM

:= V21ME , (4.3)

where E = N(NVN)−NVM ∈ Rn×n. It is interesting to confirm (algebraically) that (4.3)
is equivalent to the inclusion

C (MV12) ⊂ C (MVN) = C (MVF′QFX) , (4.4)

which is a necessary and sufficient condition for Fy being linearly sufficient for ε∗. We can
formulate this and some related result as a theorem.

Theorem 2. Denoting N = PF′QFX
, the following statements are equivalent:

(a) V21M = V21N(NVN)−NVM,
(b) C (MV12) ⊂ C (MVN) = C (MVF′QFX),
(c) C (V12) ⊂ C (VN : X) = C (VF′QFX : X),
(d) V21M(MVM)−MV12 = V21N(NVN)−NV12.

Moreover, each of the above conditions is a necessary and sufficient condition for the statistic
Fy to be linearly sufficient for ε∗ under M∗.

Remark 1. Some of the equivalences in Theorem 2 could be proved using appropriate
characterizations of linear sufficiency of Fy for ε∗; see (3.21). However, it is of great interest
to prove the equivalences of Theorem 2 using linear algebraic tools as done in Section 8. ut
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5. Linear sufficiency characterizations via covariance matrices

Recall that

(i) cov(ε̃∗ − ε̃t∗) = cov(ε̃∗)− cov(ε̃t∗) , (ii) cov(ε̃t∗) ≤L cov(ε̃∗) . (5.1)

Moreover, we can show the following:

(i) cov(µ̃∗ − µ̃t∗) = cov(µ̃t∗)− cov(µ̃∗) , (ii) cov(µ̃t∗) ≥L cov(µ̃∗) . (5.2)

To confirm (i) of (5.2) [which further implies (ii) of (5.2)] we notice that choosing W =
V + XUU′X′ ∈ W, we have

cov(µ̃∗) = cov(LFGy) = LFGVG′F′L′

= LF[X(X′W−X′)−X′ −XUU′X′]F′L′, (5.3)

cov(µ̃∗, µ̃t∗) = cov(LFGy, LFGty) = LFGVG′tF
′L′

= cov(µ̃∗) , (5.4)

because

GVG′t = G(W −XUU′X′)G′t

= GWG′t −XUU′X′

= X(X′W−X)−X′W−WG′t −XUU′X′

= X(X′W−X)−X′G′t −XUU′X′

= X(X′W−X)−X′ −XUU′X′

= GVG′. (5.5)

Now on account of (5.4), cov(µ̃∗ − µ̃t∗) = cov(µ̃∗) + cov(µ̃t∗) − 2 cov(µ̃∗) and hence (i) of
(5.2) indeed holds.

The covariance matrix between µ̃t∗ and ε̃∗ is

cov(µ̃t∗, ε̃∗) = cov[LFGty, V21M(MVM)−My]

= LFGtVM(MVM)−MV12 , (5.6)

while µ̃∗ and ε̃t∗ are uncorrelated:

cov(µ̃∗, ε̃t∗) = cov[LFGy, V21N(NVN)−Ny]

= LFGVN(NVN)−NV12

= 0 , (5.7)

where we have used GVN = GVMN = 0. Now

cov(ỹ∗ − ỹt∗) = cov[(µ̃∗ − µ̃t∗) + (ε̃∗ − ε̃t∗)]
= cov(µ̃∗ − µ̃t∗) + cov(ε̃∗ − ε̃t∗) + Σµε + Σ′µε , (5.8)

where, recalling that cov(µ̃∗, ε̃∗) = cov(µ̃t∗, ε̃t∗) = cov(µ̃∗, ε̃t∗) = 0,

Σµε = cov(µ̃∗ − µ̃t∗, ε̃∗ − ε̃t∗) = − cov(µ̃t∗, ε̃∗) . (5.9)
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Thus,

cov(ỹ∗ − ỹt∗) = cov[(µ̃∗ − µ̃t∗) + (ε̃∗ − ε̃t∗)]
= cov(µ̃∗ − µ̃t∗) + cov(ε̃∗ − ε̃t∗) + (Σµε + Σ′µε)

= [cov(µ̃t∗)− cov(µ̃∗)] + [cov(ε̃∗)− cov(ε̃t∗)] + (Σµε + Σ′µε) , (5.10)

or, using a shorter notation,

Σyy = Σµµ + Σεε + (Σµε + Σ′µε) . (5.11)

We now have

Σµµ = cov(µ̃∗ − µ̃t∗) = cov(µ̃t∗)− cov(µ̃∗) , (5.12a)

Σεε = cov(ε̃∗ − ε̃t∗) = cov(ε̃∗)− cov(ε̃t∗) , (5.12b)

but the following does not necessarily hold:

Σyy = cov(ỹ∗ − ỹt∗) = cov(ỹ∗)− cov(ỹt∗) . (5.12c)

In terms of linear sufficiency, we have

Fy ∈ S(µ∗) ⇐⇒ cov(µ̃∗) = cov(µ̃t∗) , (5.13a)

Fy ∈ S(ε∗) ⇐⇒ cov(ε̃∗) = cov(ε̃t∗) , (5.13b)

Fy ∈ S(y∗) ⇐⇒ cov(ỹ∗ − ỹt∗) = 0 . (5.13c)

Here again the last statement “differs” from the others. Actually, it is of interest to prove
the following:

Theorem 3. Let ỹ∗, ε̃∗ and µ̃∗ denote the BLUPs and BLUE under M∗ and ỹt∗, ε̃t∗ and
µ̃t∗ the corresponding BLUPs and BLUE under Mt∗ and

Σµε = cov(µ̃∗ − µ̃t∗, ε̃∗ − ε̃t∗) = − cov(µ̃t∗, ε̃∗) . (5.14)

Then the following statements are equivalent:

(a) cov(ỹ∗ − ỹt∗) = cov(ỹ∗)− cov(ỹt∗) ,
(b) cov(µ̃∗)− cov(µ̃t∗) = 1

2 (Σµε + Σ′µε) .

Proof. Combining

cov(ỹ∗)− cov(ỹt∗) = cov(µ̃∗) + cov(ε̃∗)− cov(µ̃t∗)− cov(ε̃t∗)

= [cov(µ̃∗)− cov(µ̃t∗)] + [cov(ε̃∗)− cov(ε̃t∗)]

= −[cov(µ̃t∗)− cov(µ̃∗)] + [cov(ε̃∗)− cov(ε̃t∗)]

= − cov(µ̃∗ − µ̃t∗) + cov(ε̃∗ − ε̃t∗) , (5.15)

and

cov(ỹ∗ − ỹt∗) = cov[(µ̃∗ − µ̃t∗) + (ε̃∗ − ε̃t∗)]
= cov(µ̃∗ − µ̃t∗) + cov(ε̃∗ − ε̃t∗) + (Σµε + Σ′µε) , (5.16)

and using cov(µ̃∗ − µ̃t∗) = cov(µ̃t∗)− cov(µ̃∗) proves the claim. ut
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Let us return to the linear sufficiency of Fy for y∗, which can be expressed interestingly in
terms of covariance matrices as follows.

Theorem 4. Using the notation of Theorem 3, the following statements are equivalent:

(a) Fy is BLUP-sufficient for y∗ ,
(b) cov(ỹ∗) = cov(ỹt∗) and cov(ε̃t∗)− cov(ε̃∗) = 1

2 (Σµε + Σ′µε) .

Proof. On account of Lemma 3, the equality ỹ∗ = ỹt∗ holds with probability 1 [and thereby
Fy ∈ S(y∗)] if and only if cov(ỹ∗) = cov(ỹt∗) holds along with

2 cov(ỹ∗) = cov(ỹ∗, ỹt∗) + cov(ỹt∗, ỹ∗) . (5.17)

Straightforward calculation yields

cov(ỹ∗, ỹt∗) = cov(µ̃∗) + cov(ε̃t∗) + cov(ε̃∗, µ̃t∗) = cov(µ̃∗) + cov(ε̃t∗)−Σ′µε . (5.18)

Substituting (5.18) into (5.17) gives

2[cov(µ̃∗) + cov(ε̃∗)] = 2[cov(µ̃∗) + cov(ε̃t∗)]− (Σµε + Σ′µε) , (5.19)

i.e., 2[cov(ε̃t∗)− cov(ε̃∗)] = Σµε + Σ′µε , and so the proof is completed. ut

Next we characterize the mutual relations of the linear sufficiency of Fy for X∗β, ε∗, and
y∗.

Theorem 5. Consider the following three statements:

(a) Fy is BLUE-sufficient for X∗β.
(b) Fy is BLUP-sufficient for ε∗.
(c) Fy is BLUP-sufficient for y∗.

Then above, any two conditions together imply the third one. Moreover, the equality

Σµε = −Σ′µε , (5.20)

where Σµε = − cov(µ̃t∗, ε̃∗), is a necessary and sufficient condition for the implication

(c) =⇒ (a) and (b) . (5.21)

For the proof of Theorem 5, see Section 8.

According to Isotalo et al. (2017, Th. 3.4), the condition

C (X∗) ∩ C (V21M) = {0} (5.22)

is a sufficient condition for (5.21). Next we show that this can be concluded from Theorem 5.
To do this, notice first that the condition (5.20) is

LFGtVM(MVM)−MV12 = −V21M(MVM)−MVG′tF
′L′, (5.23)

or shortly
A1VA′2 = −A2VA′1 , (5.24)
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where

A1 = LFGt = LFX[X′F′(FWF′)−FX]−X′F′(FWF′)−F

= X∗[X
′F′(FWF′)−FX]−X′F′(FWF′)−F, (5.25)

A2 = V21M(MVM)−M . (5.26)

Suppose that (c) holds which means that

(A1 −A2)V = 0 , i.e., A1V = A2V. (5.27)

Now C (A1V) ⊂ C (X∗) and C (A2V) ⊂ C (V21M) and hence the disjointness (5.22) implies
that A1V = A2V holds if only if A1V = A2V = 0 which further implies (5.24). Thus we
have confirmed, using Theorem 5, that (5.22) is a sufficient condition for (5.21).

6. Applications to linear mixed model

Consider the linear mixed model

y = Xβ + Zu + e , denoted as L = {y,Xβ + Zu,D,R,S} , (6.1)

where Xn×p and Zn×q are known matrices, β ∈ Rp is a vector of unknown fixed effects, u
is an unobservable vector (q elements) of random effects with E(u) = 0, cov(u) = Dq×q ,
cov(e,u) = Sn×q , and E(e) = 0, cov(e) = Rn×n. In this situation

cov

(
e
u

)
=

(
R S
S′ D

)
, cov

(
y
u

)
=

(
Σ ZD + S

(ZD + S)′ D

)
, (6.2)

and cov(y) = ZDZ′ + R + ZS′ + SZ′ = Σ.
The mixed model can be expressed as a version of the model with “new observations”, the
new observations being now in g = Xβ + Zu:

L∗ :=

{(
y
g

)
,

(
X
X

)
β,

(
Σ (ZD + S)Z′

Z(DZ′ + S′) ZDZ′

)}
. (6.3)

Corresponding to (1.2) and (1.4), we have

y = Xβ + ε , ε = Zu + e , cov(ε) = Σ , (6.4a)

Zu = ε∗ , cov(ε∗) = ZDZ′, cov(ε, ε∗) = (ZD + S)Z′. (6.4b)

Suppose that we transform the mixed model L by premultiplying it by F and do the
prediction of g = Xβ + Zu using this transformed model. Then the resulting transformed
setup is

Lt∗ :=

{(
Fy
g

)
,

(
FX
X

)
β,

(
FΣF′ F(ZD + S)Z′

Z(DZ′ + S′)F′ ZDZ′

)}
. (6.5)

Now, see, e.g., Haslett et al. (2015, Lemma 2), under the mixed model L , B1y is the BLUE
for Xβ and B2y is the BLUP for Zu if and only if(

B1

B2

)
(X : ΣM) =

(
X 0
0 Z(DZ′ + S′)M

)
=

(
X 0
0 cov(Zu,y)M

)
. (6.6)
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Similarly, B3y is the BLUP for g = Xβ + Zu if and only if

B3(X : ΣM) =
[
X : Z(DZ′ + S′)M

]
=

[
X : cov(g,y)M

]
. (6.7)

Thus the following holds:

BLUP(Xβ + Zu | L ) = BLUE(Xβ | L ) + BLUP(Zu | L )

= BLUE(Xβ | L ) + Z BLUP(u | L ) , (6.8)

which can be denoted as g̃ = µ̃ + Zũ , and we have the following representations for the
BLUP of g = Xβ + Zu:

BLUP(g | L ) = g̃ = Ty + Z(DZ′ + S′)Σ−(In −T)y

= Ty + Z(DZ′ + S′)M(MΣM)−My

= µ̃+ Zũ , (6.9)

where T = X(X′W−
ΣX)−X′W−

Σ and WΣ ∈ WΣ ,

WΣ =
{
WΣ ∈ Rn×n : WΣ = Σ + XUU′X′, C (WΣ) = C (X : Σ)

}
. (6.10)

The BLUP of g = Xβ + Zu under the transformed model Lt∗ can be expressed as

BLUP(g | Lt∗) = g̃t = Tty + Z(DZ′ + S′)F′Σ−(In −Tt)y

= Tty + Z(DZ′ + S′)N(NΣN)−Ny

:= µ̃t + Zũt , (6.11)

where N = PF′QFX
and

Tt = X[X′F′(FWΣF′)−FX]−X′F′(FWΣF′)−F. (6.12)

The following result now follows from Theorem 5.

Theorem 6. Consider the following three statements:

(a) Fy is BLUE-sufficient for Xβ.
(b) Fy is BLUP-sufficient for Zu.
(c) Fy is BLUP-sufficient for g = Xβ + Zu.

Then above, any two conditions together imply the third one. Moreover, using the notation
as in (6.9) and (6.11), the equality

cov(µ̃t, Zũ) = − cov(Zũ, µ̃t) (6.13)

is a necessary and sufficient condition for the implication

(c) =⇒ (a) and (b) . (6.14)
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7. Final remarks

This paper is dealing with the linear model M = {y,Xβ,V} and its transformed version
Mt = {Fy,FXβ,FVF′}. Our observed response y is coming out of y = Xβ+ε and we are
interested in predicting an unobservable random vector y∗, which is believed to come from
y∗ = X∗β + ε∗. Here X∗β is an estimable parametric function and ε∗ is a random error
whose covariance matrix with ε is known. The original setup for a linear model with new
observations can be described as

M∗ =

{(
y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}
, (7.1)

while the corresponding transformed model is

Mt∗ =

{(
Fy
y∗

)
,

(
FX
X∗

)
β,

(
FVF′ FV12

V21F
′ V22

)}
. (7.2)

A linear statistic Fy is called linearly sufficient for the estimable parametric function
of X∗β under M if there exists a matrix A such that AFy is the best linear unbiased
estimator, BLUE, for X∗β. Similarly, Fy is called linearly (prediction) sufficient for y∗, if
there exists a matrix A such that AFy is the best linear unbiased predictor, BLUP, for
y∗. What this means is that nothing essential has been lost if we base our prediction on
the response Fy instead of y. The concept of linear sufficiency is strongly connected to the
transformed model Mt, because for example, if Fy is linearly sufficient for y∗, then every
representation of the BLUP for y∗ under the transformed model Mt∗ is BLUP also under
the original model M∗.

In this paper, we pay particular attention to the linear sufficiency of Fy with respect to
y∗, X∗β, and ε∗ and the mutual relations between these sufficiencies. According to our
experience, the BLUP of ε∗ has not received much attention in statistical literature. In
particular, we give an extensive review of some interesting properties of the covariance
matrices of the BLUPs of ε∗.

In general, as mentioned by Haslett & Puntanen (2017), best linear unbiased prediction has
a wide range of applications, for example, plant variety trials, animal breeding, selection
indices in quantitative genetics, quality estimation, time series, Kalman filtering and small
area estimation. In practical applications, the covariance matrices involved may be unknown
and that complicates the considerations substantially. The review article Haslett & Puntanen
(2017) provides a short discussion on this matter. See also Robinson (1991). However, it
seems to be quite a big challenge to apply the linear sufficiency concepts in such situations.

8. Some proofs

Proof of Theorem 2.

Consider first the equivalence of (b) and (c), which follows from the following:

C (C) ⊂ C (A : B) ⇐⇒ C (QAC) ⊂ C (QAB) , (8.1)
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where A,B, and C are conformable matrices. To prove property (8.1), we note that pre-
multiplying

C (C) ⊂ C (A : B) = C (A : QAB) (8.2)

by QA yields C (QAC) ⊂ C (QAB). For the equality C (A : B) = C (A : QAB), see (1.22).
On the other hand, we obviously have

C = QAC + PAC . (8.3)

Using C (QAC) ⊂ C (QAB), (8.3) implies that for some matrices D1, . . . ,D4 we have

C = QABD1 + AD2 = (QAB : A)D3 = (A : B)D4 , (8.4)

which means that (8.1) indeed holds. The equivalence of (b) and (c) follows from (8.1).

Consider then the claim (a). We observe that (a) holds if and only if (In − E′)MV12 = 0,
i.e.,

C (MV12) ⊂ N (In −E′) = C (In −E)⊥. (8.5)

Our task is now to show that

N (In −E′) = C (MVN) = C (MVF′QFX) . (8.6)

We first observe that (In−E′)MVN = 0, i.e., C (MVN) ⊂ N (In−E′). For the dimension
of N (In −E′) we get

dim N (In −E′) = n− rank(In −E) = rank(E) , (8.7)

where we have used the fact that E is idempotent, and that for an idempotent matrix
E ∈ Rn×n, rank(E) = n− rank(In −E). The proof of (8.6) is completed by noting that

rank(NVM) ≥ rank[N(NVN)−NVM] = rank(E)

≥ rank[NVN(NVN)−NVM]

= rank(NVM) . (8.8)

Consider then the claim (d). Notice that in the expressions of the covariance matrices of ε̃∗
and ε̃t∗ the matrix V can be replaced with W ∈ W and thereby we have

cov(ε̃∗) = V21W
+1/2PW1/2MW+1/2V12 , (8.9a)

cov(ε̃t∗) = V21W
+1/2PW1/2NW+1/2V12 . (8.9b)

Using the property

PA −PB = PC (A)∩C (B)⊥ , (8.10)

which holds for conformable matrices A and B such that C (B) ⊂ C (A), see, e.g., Puntanen
et al. (2011, p. 152), we observe that

PW1/2M −PW1/2N = PC (W1/2M)∩C (W1/2N)⊥ . (8.11)
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Hence

cov(ε̃∗)− cov(ε̃t∗) = V21W
+1/2(PW1/2M −PW1/2N)W+1/2V12

= V21W
+1/2 PC (W1/2M)∩C (W1/2N)⊥ W+1/2V12

= 0 (8.12)

if and only if

C (W+1/2V12) ⊂ C [(W1/2M)⊥ : W1/2N]

= C (W+1/2X : QW : W1/2N) , (8.13)

where we have used C (W1/2M)⊥ = C (W+1/2X : QW); see Markiewicz & Puntanen (2017,
Lemma 4). Premultiplying (8.13) by W1/2 yields an equivalent inclusion

C (V12) ⊂ C (X : WN) = C (X : WMN) = C (X : VN) , (8.14)

where we have used N = MN. Thus we have shown the equivalence of (d) and (b) and the
proof is completed. ut
Proof of Theorem 5.
Consider the decomposition

Σyy = Σµµ + Σεε + (Σµε + Σ′µε) , (8.15)

i.e.,

cov(ỹ∗ − ỹt∗) = cov(µ̃∗ − µ̃t∗) + cov(ε̃∗ − ε̃t∗) + (Σµε + Σ′µε) , (8.16)

or, using other notation:

cov(ỹ∗ − ỹt∗) = cov[(µ̃∗ − µ̃t∗) + (ε̃∗ − ε̃t∗)]
= cov(A1y + A2y)

= A1VA′1 + A2VA′2 + A1VA′2 + A2VA′1 , (8.17)

where
Σµε = A1VA′2 = cov(µ̃∗ − µ̃t∗, ε̃∗ − ε̃t∗) = − cov(µ̃t∗, ε̃∗) . (8.18)

In terms of (8.15), the three claims of Theorem 5 can be expressed as follows:

(a) Σµµ = 0, (b) Σεε = 0, (c) Σyy = 0. (8.19)

Notice that A1VA′1 = 0 implies A1VA′2 = 0 and similarly A2VA′2 = 0 implies A1VA′2 = 0.
Thus we can conclude that the first part of Theorem 5 indeed holds.

The second claim in Theorem 5 concerns the condition under which (c) Σyy = 0 would
imply (a) Σµµ = 0 and (b) Σεε = 0. In other words, we want to study when the following
implication holds:

Σµµ + Σεε = −(Σµε + Σ′µε) =⇒ Σµµ = Σεε = 0 , (8.20)

i.e.,
Σµµ + Σεε = −(Σµε + Σ′µε) =⇒ Σµµ + Σεε = 0 . (8.21)

This clearly happens if and only if

Σµε + Σ′µε = 0, i.e., Σµε = −Σ′µε , (8.22)

which completes the proof. In passing we may recall the matrix Σµε satisfying (8.22) is
called skew-symmetric (or antisymmetric). ut
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