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Résumé. Nous étudions dans ce papier, l’estimation non paramétrique de la fonc-
tion de hasard conditionnelle basée sur la méthode locale linéaire. Le but est de
calculer sous certaines conditions la convergence en moyenne quadratique de notre
estimateur, ainsi que les expressions du biais et de la variance de notre estimateur
sont données. L’efficacité de notre estimateur est évaluée par une étude de simula-
tion, sur un échantillon fini, qui montre une meilleure performance de l’estimateur
introduit par rapport à l’estimateur basée sur la méthode du noyau standard.

1. Introduction

In recent years, the considerable progress in computing power makes it possible
to collect and analyze more and more cumbersome data. These large data sets are
available primarily through real time monitoring and computers can efficiently
deal with such databases.

Many multivariate statistical techniques, concerning parametric models, have
been extended to functional data and a good review on this topic can be found
in Ramsay and Silverman (2005) or Bosq (2000). Recently, new studies have
been carried out in order to propose nonparametric methods taking into account
functional data. For a more comprehensive review on this subject the reader is
referred to Ferraty and Vieu (2006) and to Ferraty and Vieu (2002) for specialized
monographs.

However, it is well known that a local polynomial smoothing procedure has many
advantages over the kernel method (see, Fan and Yao (2003) and Fan and Gijbels
(1996), etc.). In particular, the former method has better properties, in terms of

bias estimation. The local linear smoothing in the functional data setting has been
considered by many authors. The first results on the regression function were
established in Baı̀llo and Grané (2009), Boj et al. (2010), Berlinet et al. (2011)
and El methni and Rachdi (2011). Other works have been realized on this subject,
for example Barrientos-Marin et al. (2010) developed a smoothing local linear
estimation of the regression operator for independent data. Moreover, Demongeot
et al. (2010) established the almost complete consistency of local linear estimator
of the conditional density when the explanatory variable is functional and the
observations are i.i.d. The mean squared error of the last estimator was studied
by Rachdi et al. (2014). The asymptotic properties (almost complete convergence
and convergence in mean square, with rates) of the local linear estimator of the
conditional cumulative distribution were established by Demongeot et al. (2014).

This work deals with the functional nonparametric estimation of the hazard
and/or the conditional hazard function. Historically, this function was first
introduced by Watson and Leadbetter (1964). Since then, several results have
been added by many authors. For example Roussas (1989). States that there
is extensive literature on nonparametric estimation of the conditional hazard
function using a wide variety of methods. This function is important in a variety
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of fields such as Medicine, Reliability, Survival Analysis or Seismology, etc.

In nonparametric functional framework, the first result has been obtained by
Ferraty et al. (2008), who used an approach based on kernel estimations. The
authors introduced a kernel estimator of the conditional hazard function and
proved some asymptotic properties (with rates) in various situations including
censored and/ or dependent variables. Quintela-Del-Rı́o (2008) extended the
results of Ferraty et al. (2008). They calculated the bias and variance of these
estimates, and established their asymptotic normality. Still while using the Kernel
method, Rabhi et al. (2013) determined the asymptotic mean square error of the
proposed estimator of the conditional hazard function. In the nonfunctional case,
a short overview on nonparametric conditional hazard function estimation can be
found in Spierdijk (2008). For functional case, Massim and Mechab (2016) have
established the almost complete convergence of the estimator of the conditional
hazard function based on the local linear approach.

In the light of what precedes on the importance of the hazard function estimation
and the availability of a significant number of advanced and detailed asymptotic
results based on the kernel approach, we were interested to find analogous result
for the estimator introduced in Massim and Mechab (2016), and next to carry out
a thorough comparison with available results.

To achieve this work, we address the described estimator in Massim and Mechab
(2016). In this paper, we explicitly determine the mean squared error convergence
and compare it to the available result and that obtained through a simulation
study.

The remainder of our paper is organized as follows. In section 2, we present our
functional model, give basic notations and describe our assumptions. In Section 3.
we first state the main theoretical result of the paper about the mean squared con-
vergence in Subsection 3.1 and then, in subsection 3.2, we present the results and
we make a comparison with those obtained through simulation study. The proofs
are given in Section 4. We conclude the paper by a conclusion and perspective
section 5.

2. Description of the Model, Notation and Assumptions

2.1. Model and estimator

Let us consider a sequence (Xi, Yi)i≥1 of independent and identically random pair
according to the distribution of the pair (X,Y ), all of them defined on the same
probability space (Ω,A,P) and taking their values in a space F ×R, where (F , d) is
a semi-metric space.

We suppose that F × R is endowed with the product σ-algebra of the Borel σ-
algebras B(F) and B(R) on F and on R respectively. For a fixed x ∈ F , we denote by
F x the conditional cumulative distribution function (cdf) of Y given (X = x) and we
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suppose that F x is absolutely continuous with respect to the Lebesgue measure
with Radon-Nikodym derivative fx, which is the conditional probability density
function (pdf) of Y given (X = x). Accordingly, the conditional hazard function (chf)
of Y , given X = x, is

hx(y) =
fx(y)

1− F x(y)
, y ∈ R and F x(y) < 1. (1)

Our main objective is to estimate the conditional hazard function ĥx(·) for x fixed,
in the form.

ĥx(y) =
f̂x(y)

1− F̂ x(y)
, y ∈ R and F̂ x(y) < 1. (2)

By the fast functional local modeling (cf. Fan (1992)), the conditional cumulative
dis- tribution function F x(y) is estimated as the argmax value of a in the optimiza-
tion problem, for each n ≥ 1, the following equation

F̂ x(y) = arg min
(a,b)∈R2

n∑
i=1

(
H(h−1H (y − Yi))− a− bβ(Xi, x)

)2
K(h−1K δ(x,Xi)) (3)

where β(., .) and δ(., .) are locating functions defined from F ×F into R, such that:

∀ξ ∈ F , β(ξ, ξ) = 0 and d(·, ·) = |δ(·, ·)|.

K is a kernel appropriately chosen, H is a distribution function and hK =
hK,n(respectively, hH = hH,n) is a sequence of positive real numbers which con-
verges to 0 when n→∞. Clearly, after direct computations, we get

F̂ x(y) =

∑
1≤i,j≤n

Wij(x)H(hH
−1(y − Yj))∑

1≤i,j≤n

Wij(x)
, ∀y ∈ R (4)

with Wij(x) = βi(βi − βj)K(h−1K δ(x,Xi))K(h−1K δ(x,Xj)) and βi = β(Xi, x).
Further, the estimator f̂x(y) of the density function fx(y) can be deduced from (4),
by

f̂x(y) =

∑
1≤i,j≤n

Wij(x)H(1)(hH
−1(y − Yj))

hH
∑

1≤i,j≤n

Wij(x)
, ∀y ∈ R (5)

where H(1) denotes the derivative of H. By putting together Equations 4 and 5, the
final form of our estimator (L.M.M.) is: for n ≥ 1, y ∈ R,

ĥx(y) =

h−1H
∑

1≤i,j≤n

Wij(x)H ′(hH
−1(y − Yj))∑

1≤i,j≤n

Wij(x)−
∑

1≤i,j≤n

Wij(x)H(hH
−1(y − Yj))

. (6)
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(See Massim and Mechab (2016)). To be complete, let us remind the conditional
hazard function based on the kernel method (K.M.), given for n ≥ 1, y ∈ R by

ĥx(y) =

h−1H

n∑
i=1

Ki(x)H ′(hH
−1(y − Yj))

n∑
i=1

Ki(x)−
n∑
i=1

Ki(x)H(hH
−1(y − Yj))

. (7)

(See Quintela-Del-Rı́o (2008)). Before we treat the asymptotic theory of the estima-
tor (6) and compare it with that of the estimator (7), we need more notations and
clear assumptions given below.

2.2. Notations and assumptions

Let us introduce a set of hypotheses which will be needed to state our main result.
Here and below, x (resp. y) will denote a fixed point in F (resp. R), Nx (resp. Ny) a
fixed neighborhood of a fixed point x (resp. of y) and φx(r1, r2) = P(r2 < δ(X,x) < r1).

(H1) For any r > 0, φx(r) := φx(−r, r) > 0. There exists a function χx(·) such that

∀t ∈ (−1, 1), lim
hK→0

φx(thK , hK)

φx(hK)
= χx(t).

(H2)We denote, for any l ∈ {0, 2} and j = 0, 1, the functions

ψl,j(x, y) =
∂lF x

(j)

(y)

∂yl
and Ψl,j(s) = E[ψl,j(X, y)− ψl,j(x, y)|β(x,X) = s] (8)

where Ψ
(1)
l,j (0) and Ψ

(2)
l,j (0) of the function Ψl,j(·) exist and g(k) denotes the kth order

derivative of g.

(H3) The functions δ(·, ·) and β(·, ·) are such that
∀z ∈ F , C1|δ(x, z)| ≤ |β(x, z)| ≤ C2|δ(x, z)|, with C1 > 0, C2 > 0,

sup
u∈B(x,r)

|β(u, x)− δ(x, u)| = o(r)

and

hK

∫
B(x,hK)

β(u, x)dPX(u) = o

(∫
B(x,hK)

β2(u, x)dPX(u)

)
where B(x, r) = {x′ ∈ F : |δ(x′, x)| ≤ r}.

(H4) The kernel K is a positive, differentiable function which is supported within
(−1, 1) satisfies
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K2(1)−
∫ 1

−1
(K2(u))(1)χx(u)du > 0.

(H5) The kernel H is a differentiable function which has a bounded first derivative
such that ∫

|t|2H(1)(t)dt <∞,
∫

(H(1))
2
(t)dt <∞ and

∫
H(1)(t)dt = 1.

(H6) ∃α <∞, fx(y) ≤ α, ∀(x, y) ∈ F × R and

∃0 < β < 1, F x(y) ≤ 1− β, ∀(x, y) ∈ F × R.

(H7) The bandwidths hK and hH satisfy

lim
n→∞

hK = 0, lim
n→∞

hH = 0, and lim
n→∞

nh
(j)
H φx(hK) =∞, for j = 0, 1.

Some Comments on the assumptions: Assumption (H1) is the concentration
property of the explanatory variable in small balls. The function χx(.) plays a fun-
damental role in all asymptotic study, in particular for the variance term. The con-
dition (H2) is used to control the regularity of the functional space of our model
and this is needed to evaluate the bias term of the convergence rates. The as-
sumption (H3) is the same assumption as the assumption (H3) in Rachdi et al.
(2014), as introduced in Barrientos-Marin et al. (2010). The hypothesis (H4) and
(H5) on the kernels K,H and H(1) are standard conditions in the determination of
the quadratic error for functional data. The hypotheses (H6) and (H7) are technical
conditions and are also similar to those considered in Ferraty et al. (2008).

3. RESULTS

In this section we are going to state our theoretical results. In the first subsection
the proof of our main Theorem 1 is demonstrated in terms of Theorems 2-3 and
Lemmas 1-7. The full proofs of all these theoretical results are postponed to Section
4. As a result, we will have the time to focus on the simulation study in the second
subsection of the current section.

3.1. Main results: Mean Squared Convergence

Theorem 1. Under assumptions (H1)-(H7), we obtain

E
[
ĥx(y)− hx(y)

]2
= B2

n(x, y) +
VHK(x, y)

nhHφx(hK)
+ o(h4H) + o(h4K) + o

(
1

nhHφx(hK)

)
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where

Bn(x, y) =
(Bf,H − hx(y)BF,H)h2H + (Bf,K − hx(y)BF,K)h2K

1− F x(y)

with
Bf,H(x, y) = 1

2
∂2fx(y)
∂y2

∫
t2H(1)(t)dt

Bf,K(x, y) = 1
2Ψ

(2)
0,1(0)

[(
K(1)−

∫ 1
−1

(u2K(u))(1)χx(u)du
)(

K(1)−
∫ 1
−1

K(1)(u)χx(u)du
) ]

BF,H(x, y) = 1
2
∂2Fx(y)
∂y2

∫
t2H(1)(t)dt

BF,K(x, y) = 1
2Ψ

(2)
0,0(0)

[(
K(1)−

∫ 1
−1

(u2K(u))(1)χx(u)du
)(

K(1)−
∫ 1
−1

K(1)(u)χx(u)du
) ]

and

V hHK(x, y) =
hx(y)

(1− F x(y))


(
K2(1)−

∫ 1

−1(K2(u))(1)χx(u)du
)

(
K(1)−

∫ 1

−1(K(u))(1)χx(u)du
)2
 .

Comparison remark. It is clear that the bias term is of order of the (L.M.M.) esti-
mator and is given by

CHh
2
H + CKh

2
K . (9)

We already know form available literature (see for example, Quintela-Del-Rı́o (2008)
and Rabhi et al. (2013)) that bias term of the (K.M.) estimator is

CHh
2
H + CKhK . (10)

Further more, both (LMM) and (KM) estimators have equivalent asymptotic vari-
ances functions.

From these two remarks, the (LMM) estimator behaves better that the (KM) esti-
mator since hK → 0 as n→ +∞.
In subsection 3.2, we will confirm this important result by simulations.

Below we will just show how Theorem 1 is proved as a subsequent result of
Theorems 2-3 which are fully proved in Section 4.

Proof of Theorem 1. By using the following decomposition

ĥx(y)− hx(y) =
1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

fx(y)

1− F x(y)
(F̂ x(y)− F x(y))

]
6

1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

τ

β
(F̂ x(y)− F x(y))

]
6

[
(f̂x(y)− fx(y)) +

α

β
(F̂ x(y)− F x(y))

]
.
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The proof of Theorem 1 can be deduced from Theorem 2, Theorem 3 and the fol-
lowing result

∃ε > 0 such that
∑
n∈N

P(1− F̂ x(y) < ε) <∞. (11)

Theorem 2. Under assumptions (H1)-(H7), we obtain

E
[
f̂x(y)− fx(y)

]2
= B2

f,H(x, y)h4H +B2
f,K(x, y)h4K +

V fHK(x, y)

nhHφx(hK)

+o(h4H) + o(h4K) + o

(
1

nhHφx(hK)

)

where V fHK(x, y) = fx(y)

[
(K2(1)−

∫ 1
−1

(K2(u))(1)χx(u)du)
(K(1)−

∫ 1
−1

(K(u))(1)χx(u)du)
2

] ∫
(H(1)(t))2dt.

We set
f̂xN (y) =

1

n(n− 1)hHE[W12(x)]

∑
1≤i 6=j≤n

Wij(x)H(1)(h−1H (y − Yj))

and
f̂D(x) =

1

n(n− 1)E[W12(x)]

∑
1≤i6=j≤n

Wij(x)

then

f̂x(y) =
f̂xN (y)

f̂D(x)
.

The proof of Theorem 2 can be deduced from the following intermediates results.

Lemma 1. Under the hypotheses of Theorem 2, we get

E
[
f̂xN (y)

]
− fx(y) = Bf,H(x, y)h2H +Bf,K(x, y)h2K + o(h2H) + o(h2K).

Lemma 2. Under the hypotheses of Theorem 2, we have

V ar
[
f̂xN (y)

]
=

V fHK(x, y)

nhHφx(hK)
+ o

(
1

nhHφx(hk)

)
.

Lemma 3. Under the hypotheses of Theorem 2, we get

Cov(f̂xN (y), f̂D(x)) = O

(
1

nφx(hK)

)
.

Lemma 4. Under the hypotheses of Theorem 2, we have

V ar
[
f̂D(x)

]
= O

(
1

nφx(hK)

)
.
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Theorem 3. Under assumptions (H1)-(H7), we obtain

E
[
F̂ x(y)− F x(y)

]2
= B2

F,H(x, y)h4H +B2
F,K(x, y)h4K +

V FHK(x, y)

nφx(hK)

+o(h4H) + o(h4K) + o

(
1

nφx(hK)

)

where V FHK(x, y) = F x(y)(1− F x(y))

[
(K2(1)−

∫ 1
−1

(K2(u))(1)χx(u)du)
(K(1)−

∫ 1
−1

(K(u))(1)χx(u)du)
2

]
.

We note that

F̂ x(y) =
F̂ xN (y)

f̂D(x)

where
F̂ xN (y) =

1

n(n− 1)E[W12(x)]

∑
1≤i 6=j≤n

Wij(x)H(h−1H (y − Yj)).

The following lemmas will be useful for proof of Theorem 3.

Lemma 5. Under the hypotheses of Theorem 3, we get

E
[
F̂ xN (y)

]
− F x(y) = BF,H(x, y)h2H +BF,K(x, y)h2K + o(h2H) + o(h2K).

Lemma 6. Under the hypotheses of Theorem 3, we have

V ar
[
F̂ xN (y)

]
=
V FHK(x, y)

nφx(hK)
+ o

(
1

nφx(hk)

)
.

Lemma 7. Under the hypotheses of Theorem 3, we get

Cov(F̂ xN (y), f̂xD) = O

(
1

nφx(hK)

)
.

3.2. Simulation study on the finite samples

We have already justified, as mentioned in the comparison remark given after the
statement of Theorem 1, how the (LMM) estimator given in Formula (6) should
behave better that the (KM) estimator given in Formula (7). We are going to
illustrate this by a simple simulation experience.

Let us fix a functional regression model,

Yi = m(Xi) + ε

where the random variable ε is normally distributed as N (0, 1) and

m(x) = 4 exp

(
1

1 +
∫ π
0
|x(t)|2dt

)
.
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Fig. 1. Curves Xi

The functional variable X is chosen as a real-valued function with support [0, π],
we generate n = 100 functional data (see Figure 1) by:

Xi(t) = cos(Wi(t)), for all t ∈ [0, π] et i = 1, ..., n

where the random variables Wi are i.i.d. and follow the normal distribution N (0, 1).
The curves are discretized on the same grid which is composed of 100 equidistant
values in [0, π].

Based on this data, we generated the (LMM) and the (KM) statistics. First, we
compare the two obtained graphs, each of both compared with the true conditional
hazard function in Figure 2.

Next, we compare the performance of both estimators by means of the absolute
error (AE) defined

AE = |true value− estimated value|. (12)

We report the results of the computations of the AE’s in Table 1.

Form the graphs and the tables, we may draw a number of useful comments.

(a) In Figure 1, it can be seen that the (LMM) estimator fits better the chf than the
(KM) estimator.
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Fig. 2. Comparison between estimation methods

Table 1. Comparison of the AE’s

Number of sample AE (L.L.M)×103 AE (K.M)×103

10 11.9 15.1
20 1.6 1.9
40 0.7 1.3
60 6.2 17.4
80 0.6 4.8

100 19.1 25.4

Fig. 3. The AE-errors of both methods
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(b) From Table 1, we see that the absolute error for the local linear estimation
method, in most cases, is smaller than the absolute error in the kernel estimation
method.

(c) The full graphs of the AE’S are illustrated in Figure 3.

As a general conclusion, we may say the (LMM) estimator performance is better
than that of the (KM) with respect to the absolute error and the bias for n large so
that hK is small enough to impact the comparison.

4. Proofs

In the proofs below, we will need the following additional notation. C strictly
positive generic constant. For all (i, j) ∈ {1, ..., n}2, we have

Ki = K(h−1K δ(Xi, x)), Wij = Wij(x),

Hj = H(h−1H (y − Yj)), H(1)
j = H

(1)
j (h−1H (y − Yj)).

The proofs are organized as follows.
Theorem 2 presents the mean square error of the conditional density estimator.
To prove this theorem we need to prove lemmas 1-4. Similarly, to prove Theorem
3 which presents present the mean square error of the conditional distribution
estimator, we need to prove lemmas 5-7.

Proof of Theorem 2. We begin by computing the bias and the variance of f̂x(y).
We have

E
[
f̂x(y)− fx(y)

]2
=
[
E
[
f̂x(y)

]
− fx(y)

]2
+ V ar

[
f̂x(y)

]
. (13)

By simple calculations, we get

f̂x(y)− fx(y) =
(
f̂xN (y)− fx(y)

)
−
(
f̂xN (y)− E[f̂xN (y)]

)(
f̂D(x)− 1

)
−E[f̂xN (y)]

(
f̂D(x)− 1

)
+
(
f̂D(x)− 1

)2
f̂x(y).

From that fact that E[f̂D(x)] = 1, we deduce that:

E
[
f̂x(y)

]
− fx(y) =

(
E[f̂xN (y)]− fx(y)

)
− Cov

(
f̂xN (y), f̂D(x)

)
+E
[ (
f̂D(x)− E[f̂D(x)]

)2
f̂x(y)

]
.

Since the kernel H(1) is bounded, we can bound f̂x(y) by a constant C > 0, where
f̂x(y) ≤ C/hH . Hence

E
[
f̂x(y)

]
− fx(y) =

(
E[f̂xN (y)]− fx(y)

)
− Cov

(
f̂xN (y), f̂D(x)

)
+V ar

[
f̂D(x)

]
O(h−1H ).

Journal home page: www.jafristat.net, www.projecteuclid.org/as



T. Merouan, B. Mechab and I. Massim, Afrika Statistika, Vol. 13 (2), 2018, pages 1759
–1777. Quadratic error of the conditional hazard function in the local linear estimation for
functional data. 1771

Now, by Bosq and Lecoutre (1987), the variance term in (13) is

V ar
[
f̂x(y)

]
= V ar

[
f̂xN (y)

]
− 2E[f̂xN (y)]Cov

(
f̂xN (y), f̂D(x)

)
+
(
E[f̂xN (y)]

)2
V ar

(
f̂D(x)

)
o

(
1

nhHφx(hK)

)
.�

Proof of Lemma 1. We have

E[f̂xN (y)] =
1

hHE[W12]
E
[
W12E[H

(1)
2 |X2]

]
. (14)

By using a Taylor’s expansion and under assumption (H5), we get

E[H
(1)
2 |X2] = fX2(y) +

h2H
2

(∫
t2H(1)(t)dt

)
∂2fX2(y)

∂y2
+ o(h2H).

The latter can be re-written as

E[H
(1)
2 |X2] = ψ0,1(X2, y) +

h2H
2

(∫
t2H(1)(t)dt

)
ψ2,1(X2, y) + o(h2H).

Thus, from (14), we obtain

E
[
f̂xN (y)

]
=

1

E[W12]

(
E [W12ψ0,1(X2, y)] +

h2H
2

(∫
t2H(1)(t)dt

)
E [W12ψ2,1(X2, y)] + o(h2H)

)
.

Accordingly with to Ferraty et al. (2007), we may shot that for l ∈ {0, 2},

E[W12ψl,1(X2, y)] = ψl,1(x, y)E[W12] + E[W12(ψl,1(X2, y)− ψl,1(x, y))]

= ψl,1(x, y)E[W12] + E[W12E[ψl,1(X2, y)− ψl,1(x, y)|β(X2, x)]]

= ψl,1(x, y)E[W12] + E[W12Ψl,1(β(X2, x))].

By Observing that Ψl,1(0) = 0 and E [β(X2, x)W12] = 0, we get

E [W12ψl,1(X2, y)] = ψl,1(x, y)E[W12] +
1

2
Ψ

(2)
l,1 (0)E

[
β2(X2, x)W12

]
+ o(E

[
β2(X2, x)W12

]
).

So,

E
[
f̂xN (y)

]
= fx(y) +

h2H
2

∂2fx(y)

∂y2

∫
t2H(1)(t)dt+ o

(
h2H

E
[
β2(X2, x)W12

]
E[W12]

)

+Ψ
(1)
0,1(0)

E
[
β2(X2, x)W12

]
2E[W12]

+ o

(
E
[
β2(X2, x)W12

]
E[W12]

)
.

The two quantities E
[
β(x,X2)2W12

]
and E[W12] are based on the asymptotic evalu-

ation of E[Ka
1β

b
1] (see Rachdi et al. (2014) for more details). To do that, first we treat

the case b = 1 and a > 0. For this case, we use the last part of (H3) and (H4), to get

hKE[Ka
1β1] = o

(∫
B(x,hK)

β2(u, x)dPX(u)

)
= o(h2Kφx(hK)).
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So, we can see that,
E[Ka

1β1] = o(hKφx(hK)). (15)

On the other hand, for all b > 1, and after simplifications of the expressions, we
have

E[Ka
1β

b
1] = E[Ka

1 δ
b(x,X)] + o(hbKφx(hK)).

Concerning the first term, we write

h−bK E[Ka
1 δ
b] =

∫
vbKa(v)dP

h−1
K δ(x,X)

X (v)

=

∫ 1

−1

[
Ka(1)−

∫ 1

v

(
(ubKa(u))(1)

)
du

]
dP

h−1
K δ(x,X)

X (v)

=

(
K(1)φx(hK)−

∫ 1

−1
(ubKa(u))(1)φx(uhK , hK)du

)
= φx(hK)

(
K(1)−

∫ 1

−1
(ubKa(u))(1)

φx(uhK , hK)

φx(hK)
du

)
.

Then, under assumptions (H1), we get

E[Ka
1β

b
1] = hbKφx(hK)

(
K(1)−

∫ 1

−1
(ubKa(u))(1)χx(u)du

)
+ o(hbKφx(hK)). (16)

So,
E[β2(X2, x)W12]

E[W12]
= h2K

(
K(1)−

∫ 1

−1(u2K(u))(1)χx(u)du

K(1)−
∫ 1

−1(K(1)(u)χx(u)du

)
+ o(h2K).

Hence,

E
[
f̂xN (y)

]
= fx(y) +

h2H
2

∂2fx(y)

∂y2

∫
t2H(1)(t)dt+ o(h2H)

+
h2K
2

Ψ
(2)
0,1(0)

(
K(1)−

∫ 1

−1(u2K(u))(1)χx(u)du
)

(
K(1)−

∫ 1

−1K
(1)(u)χx(u)du

) + o(h2K).�

Proof of Lemma 2. We have

V ar
(
f̂xN (y)

)
=

1

(n(n− 1)hH(E[W12]))
2V ar

( ∑
1≤i 6=j≤n

WijH
(1)
j

)

=
1

(n(n− 1)hH(E[W12]))
2

[
n(n− 1)E[W 2

12(H
(1)
2 )2] + n(n− 1)E[W12W21H

(1)
2 H

(1)
1 ]

+n(n− 1)(n− 2)E[W12W13H
(1)
2 H

(1)
3 ] + n(n− 1)(n− 2)E[W12W23H

(1)
2 H

(1)
3 ]

+n(n− 1)(n− 2)E[W12W31H
(1)
2 H

(1)
1 ] + n(n− 1)(n− 2)E[W12W32(H

(1)
2 )2]

−n(n− 1)(4n− 6)E[W12H
(1)
2 ]2

]
.

(17)
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We get, after some direct calculations
E[W 2

12H
(1)
2 ] = O(h4KhHφ

2
x(hK)), E[W12W21H

(1)
2 H

(1)
1 ] = O(h4Kh

2
Hφ

2
x(hK)),

E[W12W13H
(1)
2 H

(1)
3 ] = E[W12W31H

(1)
2 H

(1)
1 ] = E[W12W23H

(1)
2 H

(1)
3 ] = O(h4Kh

2
Hφ

3
x(hK)),

E[W12W32(H
(1)
2 )2] = E2[β2

1K1]E[K2
1 (H

(1)
1 )2] + o(h4KhHφ

3
x(hK)).

Clearly, the latter term in the last cases is the leading one, and can be evaluated
in (17) by using

(n− 2)

n(n− 1)(hHE[W12])2
E2[β2

1K1]E[K2
1 (H

(1)
1 )2]

So, after the same steps as in the previous Lemma, it suffices to write

V ar
(
f̂xN (y)

)
=

E[K2
1 (H

(1)
1 )2]

n(hHE[K1])2
+ o

(
1

nhHφx(hK)

)
. (18)

Thus, by the change of variables t = h−1H (y − z), we get

E[K2
1 (H

(1)
1 )2] = E[K2

1E((H
(1)
1 )2|X1)]

and
E((H

(1)
1 )2|X1) = hH

∫
(H(1))2(t)fX1(y − hHt)dt.

Then, by Taylor’s expansion of order 1 of fX1(·) we obtain

fX1(y − hHt) = fX1(y) +O(hH) = fX1(y) + o(1).

Now, it follows from (18) that:

E[K2
1 (H

(1)
1 )2] = hH

∫
(H(1))2(t)dtE

[
K2

1f
X(y)

]
+ o(hHE[K2

1 ]).

Again, by the same steps in proof of Lemma 1, we get

E
[
K2

1f
X1(y)

]
= fx(y)E[K2

1 ] + o(E[K2
1 ])

which implies:

E[K2
1 (H

(1)
1 )2] = hHf

x(y)E[K2
1 ]

∫
(H(1))2(t)dt+ o(hHE[K2

1 ]). (19)

Consequently, we obtain from (16), (18) and (19), that

V ar
(
f̂xN (y)

)
=

fx(y)

nhHφx(hK)

(∫
H(1)(t)2dt

)
(
K2(1)−

∫ 1

−1(K2(u))(1)χx(u)du
)

(
K(1)−

∫ 1

−1(K(u))(1)χx(u)du
)2


+o

(
1

nhHφx(hK)

)
.�
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Proof of Lemma 3. By simple computations, we have

Cov
(
f̂xN (y), f̂D(x)

)
=

1

(n(n− 1)hH(E[W12]))
2Cov

( ∑
1≤i 6=j≤n

WijH
(1)
j ,

∑
1≤i′ 6=j′≤n

Wi′j′

)
=

1

(n(n− 1)hH(E[W12]))
2

[
n(n− 1)E[W 2

12H
(1)
1 ] + n(n− 1)E[W12W21H

(1)
2 ]

+n(n− 1)(n− 2)E[W12W13H
(1)
2 ] + n(n− 1)(n− 2)E[W12W23H

(1)
2 ]

+n(n− 1)(n− 2)E[W12W31H
(1)
2 ] + n(n− 1)(n− 2)E[W12W32H

(1)
2 ]

−n(n− 1)(4n− 6)(E[W12H
(1)
2 ]E[W12]

]
.

By direct manipulations, we get
E[W 2

12H
(1)
2 ] = E[W12W21H

(1)
2 ] = O(h4KhHφ

2
x(hK)),

E[W12W13H
(1)
2 ] = E[W12W31H

(1)
2 ] = O(h4KhHφ

3
x(hK)),

E[W12W23H
(1)
2 ] = E[W12W32H

(1)
2 ] = O(h4KhHφ

3
x(hK)).

Since E[W12] = O(h2Kφ
2
x(hK)), we obtain

Cov
(
f̂xN (y), f̂D(x)

)
= O

(
1

nφx(hK)

)
.�

Proof of Lemma 4. The demonstration of this result follows the lines of the proof
of the previous lemma, step by step, by replacing H(1) by 1. Thus,

V ar(f̂xD) =
1

(n(n− 1)E[W12])2
V ar

 ∑
1≤i 6=j≤n

Wij


=

1

(n(n− 1)E[W12]))
2

(
n(n− 1)E[W 2

12] + n(n− 1)E[W12W21]

+n(n− 1)(n− 2)E[W12W13] + n(n− 1)(n− 2)E[W12W23]
+n(n− 1)(n− 2)E[W12W31] + n(n− 1)(n− 2)E[W12W32]

−n(n− 1)(4n− 6)(E[W12])2
)
.

Still by straightforward manipulations, we get E[W 2
12] = E[W12W21] = O(h4Kφ

2
x(hK)),

E[W12W13] = E[W12W31] = O(h4Kφ
3
x(hK)),

E[W12W23] = E[W12W32] = O(h4Kφ
3
x(hK)).

So, we have

V ar
(
f̂xD

)
= O

(
1

nφx(hK)

)
.�

Proof of Theorem 3. The proof of this theorem is based on the same techniques
as in the proof of Theorem 2, where

E
[
F̂ x(y)− F x(y)

]2
=
[
E
[
F̂ x(y)

]
− F x(y)

]2
+ V ar

[
F̂ x(y)

]
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and to simplify the bias and the variance of the second term in the right equality,
we use the results of Ferraty et al. (2007), to obtain

E
[
F̂ x(y)

]
−F x(y) =

(
E[F̂ xN (y)]−F x(y)

)
+

E[F̂ xN (y)(f̂xD − E[f̂xD])]

(E[f̂xD])2
+

E[F̂ x(y)(f̂xD − E[f̂xD])2]

(E[f̂xD])2

and
V ar

[
F̂ x(y)

]
= V ar

(
F̂ xN (y)

)
− 4

(
E[F̂ xN (y)]

)
Cov

(
F̂ xN (y), f̂D(x)

)
+3
(
E[F̂ xN (y)]

)2
V ar

(
f̂D(x)

)
+ o

(
1

nφ(hK)

)
.�

Proof of Lemma 5. Concerning the quantities E[F̂ xN (y)], we use an integration by
part to arrive at

E[F̂ xN (y)] =
1

E[W12]
E[W12E[H2|X2]] with E[H2|X2] =

∫
H

(1)
2 (t)FX2(y − hHt)dt.

Then, the same steps used in studying E[f̂xN (y)] can be re-used to prove that

E
[
F̂ xN (y)

]
= F x(y) +

h2H
2

∂2F x(y)

∂y2

∫
t2H

(1)
2 (t)dt+ o(h2H)

+
h2K
2

Ψ
(2)
0,0(0)

(
K(1)−

∫ 1

−1(u2K(u))(1)χx(u)du
)

(
K(1)−

∫ 1

−1K
(1)(u)χx(u)du

) + o(h2K).�

Proof of Lemma 6. It clear that

V ar[F̂ xN (y)] =
1

(n(n− 1)hH(E[W12]))
2

[
n(n− 1)E[W 2

12(H2)2] + n(n− 1)E[W12W21H2H1]

+n(n− 1)(n− 2)E[W12W13H2H3] + n(n− 1)(n− 2)E[W12W23H2H3]
+n(n− 1)(n− 2)E[W12W31H2H1] + n(n− 1)(n− 2)E[W12W32(H2)2]

−n(n− 1)(4n− 6)E[W12H2]2
]
.

(20)
For these terms, we use the same steps used in Lemma 1 and we get

E[W 2
12H

2
2 ] = O(h4Kφ

2
x(hK)),E[W12W21H1H2] = O(h4Kφ

2
x(hK)),

E[W12W13H2H3] = (F x(y))2E[β4
1K

2
1 ]E2[K1] + o(h4Kφ

3
x(hK)),

E[W12W23H2H3] = (F x(y))2E[β2
1K1]E[β2

1K
2
1 ]E[K1] + o(h4Kφ

3
x(hK)),

E[W12W31H2H1] = (F x(y))2E[β2
1K1]E[β2

1K
2
1 ]E[K1] + o(h4Kφ

3
x(hK)),

E[W12W32H
2
2 ] = F x(y)E2[β2

1K1]E[K2
1 ] + o(h4Kφ

3
x(hK)),

E[W12H1] = O(h2Kφ
2
x(hK)).

(21)

Hence, it follows from (20) and (21):

V ar[F̂ xN (y)] =
F x(y)(1− F x(y))

E[K2
1 ]

(E[K1])2 + o

(
1

nφx(hK)

)
.

Finally,

V ar[F̂ xN (y)] =
F x(y)(1− F x(y))

nφx(hK)


(
K2(1)−

∫ 1

−1(K2(u))(1)χx(u)du
)

(
K(1)−

∫ 1

−1(K(u))(1)χx(u)du
)2
+ o

(
1

nφx(hK)

)
.�
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Proof of Lemma 7. Both assertions of this lemma are direct consequences of
Lemma 3.�

5. Conclusion and Perspectives

We presented in this paper the leading term of the mean square error of the
estimator of the conditional hazard by the local linear approach. In terms of mean
squared error our estimator performs competitively in comparison to existing
estimators for the conditional hazard function. Our theoretical and practical
studies confirm the superiority of the linear local approach over the classical
kernel approach. From a theoretical point of view, there are interesting prospects.
It would be very important in the next future to study the asymptotic normality
of our estimator to make statistical tests. The kNN method is an alternative
smoothing approach that offers an adaptive estimator. The very important feature
of this method is that it allows the construction of a neighbourhood adapted to the
local structure of the data. So, It would be also of interest to study the asymptotic
properties of the kNN estimator of the conditional hazard function. This will be
considered in future works.
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