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Résumé. L’investigation probabiliste des records d’une suite de variables aleatoires
a reçu une grande attention depuis 1952 jusqu’à nos jours. Une grande partie
de cette théorie a concerné les suites de variables aléatoires indépendantes,
identiquement distribuées ou non, à valeurs réelles. Il existe quelques résultats
pour les variables aléatoires dépendantes à valeurs réelles. Certains articles
traitent également de variables aléatoires multivariées. Cependant, une théorie
majeure relative aux données dépendantes ou multivariées est encore à faire.
En préparation de cela, les lois de probabilité des records sont étudiées ici, sans
aucune hypothèse sur la structure de dépendance des variables. Les résultats
sont étendus aux suite de variables à valeurs dans un espace partiellement or-
donné sur lequel l’ordre est compatible avec la mesurabilité. Les caractérisations
générales sont testées sur les résultats connus portant principalementent sur les
suites iid. Le cadre est prêt pour passer à la théorie en haute dimension et pour
differents types de dépendance.

1. Introduction

The theory of records both dealing with record values and record times for a
sequence of random variables (Xn)n≥1, defined on the same probability space
(Ω,A,P) and taking their values in some measurable space E endowed with a
partial order (≤) is a relatively recent sub-discipline of Probability Theory and
Statistics. That theory goes back to Chandler (1952) and back to Feller (1966)
who applied it to gambling problems.

By now, the theory has had extraordinary developments in a great variety of
directions including characterization of distributions or of stochastic processes,
statistical estimations. A few number of attempts beyond the scheme of indepen-
dent and identically distributed (iid) sequences are available.

A stochastic process view has led to the extremal process (see Dwass (1964))
which has helped to solve many problems in Extreme Value Theory (see Resnick
(1987)).

Especially, in the iid case, that theory is tremendously developed in a number of
papers and more than a dozen of books (as quoted by Ahsanullah (2015)) has been
reported. To cite a few, we have the following books : Ahsanullah (2008), Ahsanul-
lah (1988), Ahsanullah (1995), Ahsanullah (2004), Ahsanullah (2006), Arnold et
al. (1998), Gulatis and Padgett (2003), Nevzorev (2001), Resnick (1987) (partially).

Although several departures from the real-valued sequences frame, from the iid
case and even from the independent assumption, it seems that there does not
exist a complete review on the results of such generalizations, including the ones
related to partial order relations, for examples in finite dimensional spaces like Rd,
d > 1.
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The aim of this paper is two-fold. First, we wish to propose a general frame for
the theory of records values and record times in an arbitrary partially or totally
ordered space, including random fields and to find out the finite-dimensional
probability laws for the records values and times. Such a general frame would be
an appropriate place to summarize available generalizations and to be the basis
to get new extensions.

It is expected that this presentations and the general formulas therein will quick
off new trends of innovative research works from the readers.

2. General setting

2.1. Basic definitions about records on R

We are going to introduce all the needed definitions on a sequence of real numbers
x = (xn)n≥1.

(A) - Strong record times and strong upper records.

Let us define them by induction. The first record time, in general, is set to one, and
we write u(1) = 1 and the first record is defined by

x(1) = xu(1) =: x1.

Next we search

u(2) =

{
inf{j > u(1), xj > xu(1)} ≡ inf A2 if A2 6= ∅
+∞ otherwise .

If u(2) < +∞, we call u(2) the second strong record time and the strong record value
is given by

x(2) = xu(2).

Given that the n-th strong record time exists, we may define

u(n+ 1) =

{
inf{j > u(n), xj > xu(n)} ≡ An if An 6= ∅
=+∞ otherwise .

And, as previously, u(n+ 1) is the (n+ 1)th strong record time if u(n+ 1) < +∞, and

x(n+1) = xu(n+1)

is the (n+ 1)− th strong record value.

Either me way proceed indefinitely and the sequence of record times (u(n))n≥1 is
unbounded or we stop the first time we have u(n) = +∞ and in such a case, the
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sequence x has only (n− 1) record values where n is necessarily greater than one.

(B) - Weak records times and weak upper record values.

We may define weak versions of record times and values by allowing repetitions of
the record values. The first weak record time set to one, and we write u(w)(1) = 1
and the weak first record value is defined by

x(1,w) = xu(w)(1) =: x1.

Next we define

u(2) =

{
inf{j > u(w)(1), xj ≥ xu(1)} ≡ inf A2 if An−1 6= ∅
+∞ otherwise .

If u(w)(2) < +∞, we call u(w)(2) the second weak record time and the weak record
value is given by

x(2,w) = xu(w)(2).

Given that the n-th weak record time exists, we may define the

u(w)(n+ 1) =

{
inf{j > u(w)(n), xj ≥ xu(n)} = inf An if An 6= ∅
+∞ otherwise .

Next we have, as previously, that if u(w)(n + 1) is the (n + 1) − th weak record time
if u(w)(n+ 1) < +∞, we may define

x(n+1,w) = xu(w)(n+1)

is the (n+ 1)-th weak strong record value.

C - Lower records.

Generally we set the first record time to one for any kind of record value. The strong
lower record times (`(n))n≥1 and lower record values (x`(n))n≥1 are similarly defined
by setting `(1) = 1 and x(1) = x`(1) = 1 and next by induction, if `(n) is finite, by

`(n+ 1) =

{
inf{j > `(n), xj < x`(n)} ≡ An if A2 6= ∅
+∞ otherwise .,

and `(n+1) is the (n+1)-th strong lower record time if it is finite and the (n+1)− th
is given by

x(n+1) = x`(n+1).

As well, the weak lower record times (`(w)(n))n≥1 and lower record value (x`(w)(n))n≥1

are similarly defined by setting `(w)(1) = 1 and y(n,w) = x`(w)(1) = 1 and next by
induction, if `(w)(n) is finite, by
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`(w)(n+ 1) =

{
+∞ if {j > `(w)(n), xj ≤ x`(w)(n)} = ∅
inf{j > `(w)(n), xj ≤ x`(w)(n)} otherwise. ,

and `(w)(n+1) is the (n+1)-th weak lower record time if it is finite and the (n+1)-th
lower record value is given by

x(n+1,w) = x`(w)(n+1).

2.2. Random records and general formulas

We are going to move from statistic records to random ones.

(I) - Introduction.

To make short, we call record values by records simply and records, without any
further precision, are strong upper records.

In this section, we consider now a sequence of random real random variables

X1, X2, . . .

defined on the same probability space (Ω,A,P). We then define the random records
associated to this sequence. The records times and records become random vari-
ables defined by capital letters as follows

U(n), L(n), U (w)(n), L(w)(n),

X(n) = XU(n), Y
(n) = XL(n),

X(n,w) = XU(w)(n),

X(n,w) = XL(w)(n)

We are going to give a series of general facts on the laws of the record values and
record times. We may focus only of the upper records, since we are able to derive
the results on lower records from those on upper records by using the transform

(X1, X2, . . .) 7→ (−X1, −X2, . . .)

or, if the Xi’s are a.s. positive, by using the transform

(X1, X2, . . .) 7→ (1/X1, 1/X2, . . .).

Hence, we are going to study mainly the strong records in this paper.
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First of all, we are going to see that the records times and the record values are
Markovian.

(II) - Markovian properties of the records and the record times.

We have the following fact concerning the strong record times.

Proposition 1. The sequence (U(n))n≥1 of strong record times is a Markovian chain
with transition probabilities

pt,n(k, j) =

{
P (Xj > Xk,maxk<h<j Xh ≤ Xk) if j > k,
0 otherwise.

Proof. Let us assume that n ≥ 2. Let j ≥ n+ 1, 1 = k1 < k2 < . . . < kn. Conditionally
on (U(1) = k1, . . . , U(n − 1) = kn−1, U(n) = kn), the event (U(n + 1) = j) depends
only on the observations Xh, kn < h ≤ j and reduces to

(Xkn+1 ≤ Xkn , Xkn+2 ≤ Xkn , . . . Xj−1 ≤ Xkn , Xj > Xkn) ,

Thus we have

P(U(n+ 1) = j)/(U(1) = k1, . . . , U(n− 1) = kn−1, U(n) = kn)

= P (Xkn+1 ≤ Xkn , Xkn+2 ≤ Xkn , . . . Xj−1 ≤ Xkn , Xj > Xkn) ,

which proves that behavior of U(n) depends only on the most recent past kn, and
by the way, provides the probability transition.

Let us move to the record values. We have

Proposition 2. The sequence (X(n))n≥1 of strong records is a Markovian chain with
transition probability

pr,n(x,A) =

+∞∑
k=n

P
(

(Xmin(j>k, Xj>xn) ∈ A)/(X(n) = x)
)
.

where x is a real number and A a Borel set of R.

Proof. Let n ≥ 2. Let x1 < x2 < . . . < xn < x. Conditionally on the intersection
B = (X(1) = x1, . . . , X

(n−1) = xn−1, X
(n) = xn), the record X(n+1) is defined on

(U(n) = k) with k ≥ n by

X(n+1) = Xmin(j>k, Xj>xn)
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so that

P((X(n+1) ∈ A)∩(U(n) = k)/B) = P
(

(Xmin(j>k, Xj>xn)) ∈ A) ∩ (U(n) = k)/(X(n) = xn)
)
.

We get

P((X(n+1) ∈ A)/B) =

+∞∑
k=n

P((Xmin(j>k, Xj>xn)) ∈ A) ∩ (U(n) = k)/(X(n) = xn)),

which concludes the proof.

Now let us face the general probability laws of the sequences of record values
(X(n))n≥1, of record times (U(n))n≥1, of inter-record times (∆(n))n≥1 = (∆n)n≥1, of
the number of record values in a sample (N(n)+n≥1.

In each case, we give a general probability law regardless to the dependence
between the Xj ’s. Next, we adapt the results to the situation where the Xj ’s are
independent.

Finally, we give detailed results for the iid case. In the last case, we apply the
previous results but compare our outcomes with formulas with those available in
the literature, in particular in books of Ahsanullah.

2.3. General Joint Cumulative Distribution Functions

We are going to provide the most general expression, so that we will be able to refine
it if we know more about the structure of the dependence of the finite-distributions.

Theorem 1. For each n ≥ 1, we have :

(a) The joint cdf of the vector of records X = (X(1), X(2), · · · , X(n))T is given, for any
y = (y1, ..., yn) ∈ Rn,

P(X(1) ≤ y1, · · · , X(n) ≤ yn) (FD1)

=

∫
P

 n⋂
j=1

(
max

zj−1+1≤h≤zj
Xh ≤ y∗j

) dP(U(1),··· ,U(n))(z1, · · · , zn),

where y∗i = ∧nj=iyj = min(yi, · · · , yn), i ∈ {1, · · · , n}.
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(b) For k-tuple (n1, · · · , nk = n), 1 ≤ k ≤ n with n0 = 0 < 1 ≤ n1 < · · · < nk, for any
y = (y1, ..., yk) ∈ Rk, we have

P(X(n1) ≤ y1, · · · , X(nk) ≤ yk = n) (FD2)

=

∫
P

 k⋂
j=1

(
max

zj−1+1≤h≤zj
Xh ≤ y∗j

) dP(U(n1),··· ,U(nk))(z1, · · · , zk.

Proof. Let us prove Formula (b). Let us consider an increasing sequence (xj)j≥1.
For 1 ≤ h ≤ ` ≤ n, we define by A(h, `, y) the assertion:(

All observations xj, h ≤ j ≤ ` is or are less or equal to y
)

.

Let us see simple cases. It is not hard to see that for 1 ≤ n1 < n2 < · · · . We easily
see that

(x1 ≤ x, xn1 ≤ y) = (A(1, 1, x) and A(1, n1, y)) = (A(1, 1,min(x, y)) and A(2, n1, y))

and

(xn1 ≤ x, xn2 ≤ y) = (A(1, n1, x) and A(1, n2, y)) = (A(1, n1,min(x, y))

and A(n1 + 1, n2, y))

If we understand the two previous examples, we can see that

(xn1
≤ x1, xn2

≤ x2, · · · , xnk
≤ xk) (1)

=

(
(A(1, n1,min(x1, · · · , xk) and A(n1 + 1, n2,min(x2, · · · , xk)

and A(n2 + 1, n3,min(x3, · · · , xk),

· · · ,

A(nk−1 + 1, nk, xk)

)
By Applying this simple rule, we have that the event (Y (n1) ≤ x1, Y

(n2) ≤
x2, · · · , Y (n2) ≤ xk) given the event

(U(n1) = z1, · · · , U(nk) = zk)

(with U(0) = 0 and z0 = 0) is equivalent to that all the observations in the bloc of
observations from Xzi+1 to Xzi are less or equal to y∗i = ∧nj=iyj for 1 ≤ i ≤ n. We get
that P(X(n1) ≤ y1, · · · , X(nk) ≤ yk = n) is equal to
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∫
P

(
k⋂
i=1

(
max

zj−1+1<h<zj
Xh ≤ y∗j

))
dP(U(n1),··· ,U(nk))(z1, · · · , zk),

which is Formula (FD2) of which (FD2) is a particular form.

We have the following corollary.

Corollary 1. We have:

(a) If the random variables Xj ’s are independent, then for k-tuple (n1, · · · , nk = n),
1 ≤ k ≤ n with n0 = 0 < 1 ≤ n1 < · · · < nk, for any y = (y1, ..., yk) ∈ Rk, we have

P(X(n1) ≤ y1, · · · , X(nk) ≤ yk = n) (FDI1)

=

∫ k∏
j=1

∏
zj−1+1≤h≤zj

FXh
(y∗j ) dP(U(n1),··· ,U(nk))(z1, · · · , zk.

(b) If the random variables Xj ’s are iid with common cdf F , then for a k-tuple
(n1, · · · , nk = n), 1 ≤ k ≤ n with n0 = 0 < 1 ≤ n1 < · · · < nk, for any y = (y1, ..., yk) ∈ Rk,
we have

P(X(n1) ≤ y1, · · · , X(nk) ≤ yk = n) (FDI2)

=

∫ k∏
j=1

F zj−zj−1(y∗j ) dP(U(n1),··· ,U(nk))(z1, · · · , zk. ♦

2.4. Finiteness or Infiniteness of the total number of records

Let us begin by a general law.

Proposition 3. For each k ≥ 1, set

X?
k = sup

h>k
Xh.

and denote

D− = {(x, y) ∈ R2, x ≤ y}.

We have for any n ≥ 2

P(U(n+ 1) = +∞) =
∑
k≥n

P(X?
k ,Xk)(D−)P(U(n) = k).
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Proof. Conditioning on (U(n) = k), (U(n + 1) = +∞) means that all the Xh, h > k,
are less than Xk. The proof is ended by the remark

P(max
h>k

Xh ≤ Xk) = P(X?
k ≤ Xk) = P((X?

k , Xk) ∈ D−) = P(X?
k ,Xk)(D−).�

Let us give an application of Proposition 3 in the independent case.

Proposition 4. Suppose that X1, X2, . . . are independent random variables with re-
spective cumulative distribution functions (cdf) Fj , j ≥ 1. Then, whenever U(n) is
finite, we have

P(U(n+ 1) = +∞) =
∑
k≥n

∫
R

(∏
j>k

Fj(x)

)
dPXk

(x)

P(U(n) = k).

Proof. Here X?
k and Xk are independent and we have

P(U(n+ 1) = +∞) =
∑
k≥n

PX?
k
⊗ PXk

(D−)P(U(n) = k).

Let us use Fubini’s theorem to have

PX?
k
⊗ PXk

(D−)

=

∫
R
dPXk

(x)

∫
R

1D−(x, y)dPX?
k

=

∫
R
P(X?

k ≤ x)dPXk
(x)

=

∫
R

(∏
j>k

Fj(x)

)
dPXk

(x).

We get the announced result by combining the above lines.

Now let us see what happens if the sequence is stationary, that is Fj = F for all
j ≥ 1. Define the lower and the upper endpoints (lep and uep) of F by

uep(F ) = inf{x ∈ R, F (x) > 1} and uep(F ) = sup{x ∈ R, F (x) < 1}

We have ∫
R

(∏
j>k

Fj(x)

)
dPXk

(x) =

∫ uep(F )

−∞
F (x)+∞dF (x).

But F (x)+∞ = 0 unless x = uep(F ). This gives
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∫
R

(∏
j>k

Fj(x)

)
dPXk

(x) =

∫ uep(F )

−∞
1{uep(F )}dF (x) = P(X = uep(F )).

We conclude that

P(U(n+ 1) = +∞) =
∑
k≥n

P(X = uep(F ))P(U(n) = k) = P(X = uep(F ))

which leads to the simple result:

Proposition 5. Suppose that X1, X2, . . . are independent and identically distributed
random variables with common cdf F and let uep(F ) denote the upper endpoint of F .
Then

P(U(n+ 1) = +∞) = P(X = uep(F )).

As a consequence, the sequence of record values (and of record times) is finite if and

only if uep(F ) is finite and is an atom of F , that is PX(uep(F )) > 0.

Consequences. The number of time records a.s. is infinite in the following cases.

(1) uep(F ) = +∞.

(2) uep(F ) < +∞ but P(X = uep(F )) = 0. Example : X ∼ U(0, 1).

The number of time records may be finite in the following cases.

(1) X is discrete and takes a finite number of points.

(2) X is discrete, takes an infinite number of values such the strict values set VX
of X has a maximum value. We mean by strict values set, the set of points taken
by X with a non-zero probability.

2.5. Probability law of the sequence of increments of the record times

We make the convention that U(0) = 0. Let n ≥ 2. If U(n) is finite, we define ∆n =
U(n)− U(n− 1). We have :

Proposition 6. If U(n) is finite, then the joint probability law of

(∆1, · · · ,∆n)
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is given by

=

∫
(x1<x2<···<xn)

P

 ⋂
1≤j≤n−1

max
1+kj≤h≤kj+1−1

Xh ≤ xj

 dP(Xk1
,··· ,Xkn

)(x1, · · · , xn),

with k1 = 1, kj ≥ 1 for j ∈ {2, · · · , n} and kj = k1 + · · ·+ kj for 1 ≤ j ≤ n.

Proof. It is clear that ∆1 = k1 is possible only for k1 = 1. So in the sequel, we fix
k1 = 1. Let us find the probability law of (∆2, . . . ,∆n) through its discrete probability
density

(∆2 = k2, ...,∆n = kn).

for kj ≥ 1, 2 ≤ j ≤ n, k1 = 1. Let us define

Cj =

(
max

1+kj≤h≤kj+1−1
Xh ≤ Xkj

, Xkj+1
> Xkj

)
, j = 1, · · · , n− 1

and

Dj(t) =

(
max

1+kj≤h≤kj+1−1
Xh ≤ t

)
, t ∈ R, j = 1, · · · , n− 1

we have

(∆2 = k2, · · · ,∆n = kn) =
⋂

1≤j≤n

Cj . (2)

So, by conditioning by

Z = (Xk1
, · · · , Xkn

) = (x1, · · · , xn),

we get

P(∆2 = k2, ...,∆n = kn)

=

∫
(x1<x2<···<xn)

P

 ⋂
1≤j≤n−1

Dj(xj)

 dP(Xk1
,··· ,Xkn

)(x1, · · · , xn).�

We have the following corollary in the independent and in the iid cases.
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Proposition 7. Let k1 = 1, kj ≥ 1 for j ∈ {2, · · · , n} and kj = k1 + · · ·+kj for 1 ≤ j ≤ n.

Suppose that U(n) is finite.

(a) If the Xj ’s are independent, we have

P(∆2 = k2, ...,∆n = kn)

=

∫
(x1<x2<···<xn)

∏
1≤j≤n−1

 ∏
1+kj≤h≤kj+1−1

FXh
(xj)

 d⊗1≤j≤n P(Xkj
(xj).

(b) (See Ahnsanullah (2001), page 32) If the Xj ’s are iid with common cdf F , we have
for k∗j = k2 + · · ·+ kj ,

P(∆2 = k2, ...,∆n = kn) =

(k∗n + 1
) ∏

2≤j≤n

k
∗
j

−1 ∏
2≤j≤n

1kj≥0.

Before we give the proof, let us introduce the following lemma.
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Lemma 1. Let us define, for an arbitrary cdf F of measure of Lebesgue-Stieljes L
and kj ∈ N \ {0},

γ(F, n, k1, k2, ...., kn) (3)

=

∫
(lep(F )≤x1<x2<···<xn)≤uep(F )

∏
1≤j≤n

F (xj)
kj−1 d

⊗
1≤j≤n

L⊗n(xj). (4)

Then for

γ(F, n, k1, k2, ...., kn) =
(∏

kj

)−1

.

Proof of Proposition Lemma 1. Let us proceed by induction. For n = 1 and k ≥ 1,
we clearly have

γ(F, n, k1, k2, ...., kn) =

∫
(lep(F )≤x≤uep(F )

F (x)k−1 dL(x)

=

∫
(lep(F )≤x≤uep(F )

F (x)k−1 dF (x)

=
[
F (x)k/k

]uep(F )

lep(F )
= k−1.

For n = 2, k ≥ 1 and ` ≥ 1, we have

γ(F, 2, k, `) =

∫
(lep(F )≤x≤y≤uep(F )

F (x)k−1F (x)k−1F (y)`−1 dL(x)dL(y)

=

∫
(lep(F )≤x≤uep(F )

F (x)k−1dL(x)

(∫
(x≤y≤uep(F )

F (y)`−1dL(y)

)
=

∫
(lep(F )≤x≤uep(F )

F (x)k−1dL(x)

[
F (y)`/`

]uep(F )

x

dL(x)

=
1

`

∫
(lep(F )≤x≤uep(F )

F (x)k−1

[
1− F (x)`

]
dL(x)

=
1

`

∫
(lep(F )≤x≤uep(F )

F (x)k+`−1dL(x)

+
1

`

∫
(lep(F )≤x≤uep(F )

F (x)kdL(x)

=
1

`
(γ(F, 1, k)− γ(F, 1, k + `, k + 1))

=
1

`

(
1

k
− 1

k + `

)
= (k(k + `)−1.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



G.S. Lo. and M. Ahsanullah, Afrika Statistika, Vol. 14 (2), 2019, pages 2019 - 2056. An
introduction to a general records theory both for dependent and high dimension. 2033

So, Formula (1) holds for n ∈ {1, 2}. Now, suppose that it holds for n ≥ 1. We have

γ(F, n+ 1, k1, · · · , kn+1)

=

∫
(lep(F )≤x1<x2<···<xn+1)≤uep(F )

∏
1≤j≤n+1

F (xj)
kj−1

∏
1≤j≤n+1

dL(xj)

=

∫
(lep(F )≤x1<x2<···<xn≤uep(F )

∏
1≤j≤n

F (xj)
kj−1

∏
1≤j≤n

dL(xj)

×
(∫

(xn≤xn+1≤uep(F )

F (xn+1)kn+1−1dL(xn+1)

)
=

1

kn+1

∫
(lep(F )≤x1<x2<···<xn≤uep(F )

∏
1≤j≤n

F (xj)
kj−1

(
1− F (xn)kn+1)

) ∏
1≤j≤n

dL(xj)

=
1

kn+1

(
γ(F, n, k1, · · · , kn)− γ(F, n+ 1, k1, · · · , kn + kn+1)

)

=
1

kn+1

 ∏
1≤j≤n

kj

−1(
1

kn
− 1

kn + kn+1

)

=

 ∏
1≤j≤n

kj

−1

.

The proof is complete of Lemma 1. �

Proof of Proposition of 7. The first is a translation of the result in Proposition 6
when the Xj ’s are independent. If the Xj are iid, we get, for k∗j = k2 + · · ·+ kj, j ≥ 2,

An ≡ P(∆2 = k2, ...,∆n = kn)

=

∫
(x1<x2<···<xn)

∏
1≤j≤n−1

F (xj)
kj+1−1 dP⊗nX (xj).

Now, by Lemma 1, by applying the Fubini Theorem where we inetgrate on xn, we
have

An =

∫
(x1<x2<···<xn)

∏
1≤j≤n−1

F (xj)
kj+1−1

⊗
1≤j≤n

dP⊗nX (xj)

=

∫
(x1<x2<···<xn−1)

∏
1≤j≤n−1

F (xj)
kj+1−1 (1− F (xn−1)) dP⊗(n−1)

X (xj)

= γ(F, n, k2, ...., kn)− γ(F, n, k2, ...., kn + 1)
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=

k∗n ∏
2≤j≤n−1

k
∗
j

−1

−

(k∗n + 1
) ∏

2≤j≤n−1

k
∗
j

−1

=

(k∗n + 1
) ∏

2≤j≤n

k
∗
j

−1

.

�.

Applications. For n = 2, we have

P(∆2 = k) =
1

k(k + 1)
, (5)

for n = 2, we get

P (∆2 = k,∆3 = `) =
1

k(k + `)(k + `+ 1)
. (6)

2.6. Probability Law of the sequence of the arrival times

Since we know the probability law of the sequence of the inter-record times, we
may get the records times by the general formula, with `1 = 1 < `2 < · · · < `n,

P(U(2) = `2, ..., U(n) = `n) = P(∆2 = `2 − `1, ...,∆n = `n − `n−1) (7)

Now, we may derive the law of (U(2), · · · , U(n)), n ≤ 2. Since we have for `2 < `3 <
· · · < `n),

P(U(2) = `2, ..., U(n) = `n) = P(∆2 = `2 − 1, ...,∆n = `n − `n−1) (8)
(9)

By applying Point (b) in proposition 7, we get

Theorem 2. (See Ahnsanullah (2001), page 33) If the Xj ’s are real-valued iid ran-
dom variables, the joint probability law of the record times (U(2), · · · , U(n)), for n ≤ 2,
is given by

P(U2 = `2, ..., Un = `n) = `−1
n

∏
2≤j≤n

(`j − 1)−11(2≤`2<···<`n). (10)
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3. Probability laws of strong records from iid sequences

Here, we are going to give the probability laws of the sequence of record values
for independent and identically distributed random variables with common
probability law PX . First, we give the joint cumulative distribution. Secondly, we
treat the case where PX is absolutely continuous with respect to the Lebesgue
measure and finally, the case where PX is a discrete probability.

Let us suppose that X, X1, X2, ... is a sequence of independent and identically
distributed real-valued random variables, defined on the same probability space
(Ω,A,P), with a common cdf F and common pdf f .

3.1. General Joint Cumulative Distribution Functions

Before we treat records, let us focus on the sequences of the maxima : Mn =
max1≤j≤n, n ≥ 1. We have

Theorem 3. For each n ≥ 1, we have :

(a) The joint cdf of the vector of records (X(1), X(2), · · · , X(n))T is given, for any y =
(y1, ..., yn) ∈ Rn,

P(M1 ≤ y1, · · · ,Mn ≤ yn) =

n∏
i=j

F

 n∧
j=i

yj

 . (PEX1)

where y∗i = ∧nj=iyj = min(yi, · · · , yn), 1 ≤ i ≤ n.

(b) For a k-tuple (n1, · · · , nk = n), 1 ≤ k ≤ n with n0 = 0 < 1 ≤ n1 < · · · < nk, for any
y = (y1, ..., yk) ∈ Rk, we have

P(M(n1) ≤ y1, · · · ,M(nk) ≤ yk = n) =
k∏
j=1

F (nj−nj−1)

 k∧
i=j

yi

 . (PEX2)

Proof. We repeat the proof of Theorem 1 to get (a) by applying the principle
described in (1) (page 2026). The formula in (b) represents a marginal law of dcf
in (a). It is get by taking x− j = +∞ in (a) for j /∈ {n1, · · · , nk}. �.

To link this with record values, we notice that (X(1), · · · , X(n)) = (MU(1), · · · ,MU(n)),
for n ≥ 1. We find a gain the joint cdf for records values as given in Theorem 1 in
the iid case, that is given (U(1) = n1, · · · , U(n) = nk), we have

(X(1), · · · , X(n)) = (Mn1
, · · · ,Mnk

)

and applying (b) in Theorem 3 allows us get the conditional law. So we have :
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Theorem 4. Let n ≥ 1. Define

Γn = {(`1, · · · , `n) ∈ (N \ {0})n, `1 = 1 < `e < · · · < `n}.

(a) The joint cdf of the vector of records (X(1), X(2), · · · , X(n))T is given, for any y =
(y1, ..., yn) ∈ Rn,

P((X(1) ≤ y1, · · · , (X(n) ≤ yn)

=
∑

(`1,··· ,`n)∈∈Γn

k∏
j=1

F (nj−nj−1)

 k∧
i=j

yi

P(U(1) = `1, · · · , U(n) = `n).

3.2. Probability laws of strong records from absolutely continuous random variable

We are going to give the finite distributional probability laws of the sequence of
strong records, the individual marginal distributions and different marginal laws
involved two or more two individual margins.

But before we begin, we wish to explain a general method which will be system-
atically used. All the computations below which are related on n-th record X(n),
n ≥ 2, are based on conditioning on the past record X(n−1). For this, the reader is
supposed to know the general formulas below. Let A be a measurable set of (Ω,A),
S and T be two real valued variables defined on the probability space (Ω,A,P). If
T has an absolute probability density function fT with respect to the Lebesgue
measure and supported by VX , we have

E(S) =

∫
VX

E(S|(T = t))fT (t)dt (11)

and

P(A) =

∫
VX

P(A|(T = t))fT (t)dt. (12)

If T is discrete with values set VX = {xj , j ∈ J}, J ⊂ N, we have

E(S) =
∑
jVX

E(S|(T = xj))P(T = xj) (13)

and

P(A) =
∑
jVX

P(A|(T = xj))P(T = xj). (14)

For advanced readers, we may use the counting measure ν on the discrete set VX
and the pdf fT (x) = P(T = x), x ∈ VX , with respect to the counting measure to
unify both formulas in
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E(S) =

∫
VX

E(S|(T = t))fT (t)dµ(t) (15)

P(A) =

∫
VX

P(A|(T = t))fT (t)dµ(t). (16)

where µ is the Lebesgue measure (µ = λ) if T has an pdf fT with respect to the
Lebesgue measure and supported by VX , is the counting measure (µ = ν) on the
discrete values set VT if T takes at most countable values.

In order to be in a better position for handling the conditioning on the immediate
past X(n−1), we introduce the random variable

N(n− n, n)

= Number of observations with time strictly between U(n− 1) and U(n).

In the sequel, f , VX and F denote the pdf of X and its the support and its cdf,
respectively, in the case of stationary sequence. We also denote

R(x) = − log(1− F (x)) and r(x) =
f(x)

1− F (x)
, x ∈ VX , F (x) < 1.

where r(.) is the hazard function of X, with obvious relation :

r(x)/dx = dR(x), x ∈ VX , F (x) < 1.

Let us give at once the joint absolutely probability law from which marginals prob-
ability will follow.

Theorem 5. (a) The joint probability law of (X(1), X(2), · · · , X(n))T , n ≥ 1, is abso-
lutely continuous to the Lebesgue mesure λ⊗n on Rn with joint pdf

f (1,2,··· ,n)(y) =

( n−1∏
i=1

r(yj)

)
f(yn), 1((y1<y2<···<yn)∩Vn

X)(y). (ADR1)

(b) More over for any k-tuple (n1, · · · , nk), 1 ≤ k ≤ n with 1 < n1 < · · · < nk, the joint
pdf with respect to λ⊗k with support VkX is given by

f (n1,n2,...,nk)(y1, · · · , yk) (ADR2)

=
R(y1)

Γ(n1)

k∏
j=2

(R(yj)−R(yj−1))nj−nj−1−1

Γ(nj − nj−1)
f(yk)

×1((y1<···<yk)∩Vk
X)(y1, · · · , yk).
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c) Each X(n), n ≥ 1, is absolutely continuous with pdf

f (n)(x) =
R(x)n−1

Γ(n)
f(x)1VX (x). (ADR3)

Remark. The strict inequality in the domain (y1 < · · · < yk) is due the the fact
for an absolutely continuous random vector, the event of the equality of some
components is a null-event. We may also say that ii comes from the fact that the
yj ’s are strong records. Actually in the case where the iid sequence is associated
to an absolutely pdf, there are string records only.

Proofs. Let us organize the proofs into points.

Direct Proof of (c). This part might be proved as a consequence of (b). But we need
to learn how to use the Markov property in a simple case. So, we give a direct proof.
Let us begin by the two first cases n = 1 and n = 2 and and next, we proceed by
induction. For n = 1, we have that X(1) = X1 and the pdf f of X1 is given by Point
(c). For n = 2, we may use the conditioning formula (16) to have

P(X(2) ∈ [y − dy/2, y + dy/2])

=

∫ y

−∞
P(X(2) ∈ [y − dy/2, y + dy/2]|X1 = x)f(x)dx

=

∫ y

−∞

(−∞∑
j=0

P((X(2) ∈ [y − dx/2, y + dy/2], N(1, 2) = j))|(X1 = x))

f(x)

)
dx.

The following reasoning will be quoted in the sequel as :

(ARG) The event

((X(2) ∈ [y − dx/2, y + dy/2], N(1, 2) = j))|(X1 = x))

means exactly thatX1 is given and we have j independent random variablesXh less
that x and the following random variables (in the enumeration) is in [y − dx/2, y +
dy/2]. The bounds of the integral come from the fact that the second record in
[y − dy/2, y + dy/2] should be greater that the first x and the fact that no point falls
in [y−dy/2, y+dy/2] except the second record based on the continuity assumption.
So, the probability of this event is still

F (x)jf(y)dy.

Then we have, for 0 < F (x) < 1
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P(X(2) ∈ [y − dx/2, y + dy/2])

=

∫ y

−∞

−∞∑
j=0

F (x)jf(y)f(x)dxdy

= f(y)dy

∫ y

−∞

f(x)

1− F (x)
dx

= f(y)dy

∫ y

−∞
r(x)dx = f(y)dy

∫
x+∞dR(x)

= R(y)f(y)dy.

We get the pdf of X(2) by letting dy → 0 and find again Formula (PLSRC) for n = 2.
Now for the general, we proceed by induction by assuming that (PLSRC) holds for
n ≥ 1. Let us find the pdf for X(n+1). We repeat the same method used for n = 2 to
get

P(X(n+1) ∈ [y − dy/2, y + dy/2])

=

∫ y

−∞
P(X(n+1) ∈ [y − dy/2, y + dy/2]|(X(n) = x))f (n)(x)dx

=

∫ y

−∞

(−∞∑
j=0

P((X(n+1) ∈ [y − dy/2, y + dy/2], N(n+ 1, n) = j))|(X(n) = x))

×f (n)(x)

)
dx.
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By using the argument (ARG) (page 2038), we see that the probability of the event
((X(n+1) ∈ [y − dx/2, y + dy/2], N(n+ 1, n) = j))|(X(n) = x)) is

F (x)jf(y)dy.

Next, we have

P(X(n+1) ∈ [y − dy/2, y + dy/2])

=

∫ +∞

x

−∞∑
j=0

F (x)jf(y)f (n)(x)dxdy

= f(y)dy

∫ +∞

x

f(x)

1− F (x)
f (n)(x)dx

= f(y)dy

∫ +∞

x

r(x)R(x)n−1

Γ(n)
dx = f(y)dy

∫ +∞

x

d(R(x)n)

nΓ(n)

=
R(x)n

Γ(n+ 1)
f(y)dy.

We get the pdf of X(n+1) by letting dy → 0 and find again Formula (c) for n+ 1. The
proof by induction is finished.�

Next we have :

Proof of (a) : The finite distributional probability law.

Let us begin by proving there result for n = 2. We have, for x fixed such that 0 ≤
F (x) < 1 and y > x,

P(X(1) ∈ [x− dx/2, x+ dx/2], X(2) ∈ [y − dy/2, y + dy/2])

= P((X(2) ∈ [y − dy/2, y + dy/2])|(X(1) ∈ [x− dx/2, x+ dx/2]))

×P(X(1) ∈ [x− dx/2, x+ dx/2])

= P((X(2) ∈ [y − dy/2, y + dy/2])|(X(1) ∈ [x− dx/2, x+ dx/2]))f(x)dx.

Since f is the pdf of X(1). Using the argument (ARG) (page 2038) above, the set

(X(2) ∈ [x− dx/2, x+ dy/2])|(X(1) ∈ [x− dx/2, x+ dy/2]),

when decomposed over the events N(1, 2) = j), leads to
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P(X(1) ∈ [x− dx/2, x+ dx/2], X(2) ∈ [x− dy/2, x+ dy/2])

=

∫
VX

+∞∑
j=0

P
(

(X(2) ∈ [x− dy/2, x+ dy/2], N(1, 2) = j)|(X(1) ∈ [x− dx/2, x+ dx/2])

)
×f(x)dx

=

+∞∑
j=0

F (x− dx/2)jf(y)dyf(x)dx

=
f(x)

1− F (x− dx/2)
dxdy.

As dx and dy go to zero, we exploit the continuity of F at x, do have

f (1,2) = r(x)f(y)1(x<y)∩V2
X
,

which proves (b) for n = 2. Suppose it is true for n ≥ 2. Let us prove it for n+ 1. Let
us fix x1 < . . . xn < xn+1, all of them in VX and let us write, for short, [xi−dxi/2, xi+
dxi/2] = xi ± dxi/2, i = 1, . . . , n. We have

P(X(1) ∈ x1 ± dx1/2, . . . , X
(n) ∈ xn ± dxn/2, X(n+1) ∈ xn+1 ± dxn+1/2)

= P((X(n+1) ∈ xn+1 ± dxn+1/2)|(X(1) ∈ x1 ± dx1/2, . . . , X
(n) ∈ xn ± dxn/2)

×P((X(1) ∈ xi ± dxi/2, . . . , X(n) ∈ xn ± dxn/2)

= P ((X(n+1) ∈ xn+1 ± dxn+1/2)|(X(1) ∈ x1 ± dx1/2, . . . , X
(n) ∈ xn ± dxn/2))

×f (1,...,n)(x1 · · · , xn)dx1 . . . dxn(1 + o(1)))

By Markov property of the records, we have

P((X(1) ∈ xi ± dxi/2, . . . , X(n) ∈ xn ± dxn/2)

= ((X(n) ∈ xn+1 ± dxn+1/2)|(X(n) ∈ xn ± dxn/2)).

By using again the argument (ARG) (page 2038), we obtain

P(X(1) ∈ x1 ± dx1/2, . . . , X
(n) ∈ xn ± dxn/2, X(n+1) ∈ xn+1 ± dxn+1/2)

=

+∞∑
j=0

P((X(n+1) ∈ xn+1 ± dxn+1/2, N(n, n+ 1) = j)|(X(n) ∈ xn ± dxn/2))

× f (1,...,n)(x1, . . . , xn)dx1 . . . dxn(1 + o(1)).
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=

+∞∑
j=0

P((X(n+1) ∈ xn+1 ± dxn+1/2, N(n, n+ 1) = j)|(X(n) ∈ xn ± dxn/2))

× f (1,...,n)(x1, . . . , xn)dx1 . . . dxn

=
1

1− F (xn − dxn/2)
f(xn+1)f (1,...,n)(x1, . . . , xn)dx1 . . . dxndxn+1

The induction hypothesis gives

P(X(1) ∈ x1 ± dx1/2, . . . , X
(n) ∈ xn ± dxn/2, X(n+1) ∈ xn+1 ± dxn+1/2)

= r(x1) . . . r(xn−1)
f(xn)

1− F (xn − dxn/2)
f(xn+1)dx1dxn+1.

We get (a) for n+ 1 by letting all the dxi go to zero for i = 1, ..., n.�

The combination of Points (a) and (c) allows to have for y ∈ VX ,

∫
+∞<x1<...<xn−1<y

n−1∏
j=1

r(xi)

 dx1 . . . dxn−1 =
R(y)n−1

Γ(n)
. (17)

Indeed, the marginal pdf f (n) of X(n) is obtained from the joint pdf f (1,...,n) by

f (n)(y) =

∫
(x1<...<xn−1<y)

(n−1)∏
j=1

r(xi)

 f(y)dx1 . . . dxn

= f(y)

∫
(+∞<x1<...<xn−1<y)

n−1∏
j=1

r(xi)

 dx1 . . . dxn.

From Point (c), we make an identification and get Formula (17). We may replace
−∞ by z ∈ VX , z < y and expect to have

∫
(z<x1<...<xn−1<y)

n−1∏
j=1

r(xi)

 =
(R(y)−R(z))n−1

Γ(n)
. (18)

This is proved in the Appendix Part 2. �
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Proof of (b) : Distribution of the sub-vector of (X(1), X(2), · · · , X(n))t, n ≥ 1.

From Point (a), may find the pdf of (X(n1), X(n2), . . . X(nk)), denoted f (n1,n2,...,nk) for
1 ≤ n1 < n2 < . . . < nk. Indeed, we have to integrate the joint pdf f (1,2,...,nk) with
respect to dxi,

i ∈ {1, . . . , nk} \ {n1, . . . , nk},

that is, for xn1
< xn2

< . . . < xnk−1
< xnk

,

f (n1,n2,...,nk)(xn1
, xn2

, . . . , xnk−1
, xnk

)

=

∫
x1<...<xnk

f (1,2,...,nk)(x1, . . . , xnk
)dx1 . . . dxn1−1 dxn1+1

. . . dxn2−1 . . . dxnk−1+1 . . . dxnk−1

= r(xn1
)

∫
x1<...<xn1−1<xn1

n1−1∏
j=1

r(xj) dx1 < . . . < dxn1−1

r(xn2
)

∫
xn1

<xn1+1<...<xn2−1<xn2

n2−1∏
j=n1+1

r(xj) dxn1+1 < . . . < dxn2−1

r(xn3
)

∫
xn2<xn2+1<...<xn3−1<xn3

n3−1∏
j=n2+1

r(xj) dxn2+1 < . . . < dxn3−1

. . .

1×
∫
xnk−1

<xnk−1+1...<xnk−1−1<xnk

nk/−1∏
j=nk−1+1

r(xj) dxnk−1+1 . . . < dxnk−1−1 × f(xnk
).

By applying Formulas (17) and (17), we get, for xn0 = lep(F ),

f (n1,n2,...,nk)(xn1 , xn2 , . . . , xnk−1
, xnk

)

= f(xnk
)

k−1∏
j=1

r(xnj
)

k∏
j=1

(R(xnj
)−R(xnj−1

))nj−nj−1−1

Γ(nj − nj−1)
f(xnk

). �

3.3. Examples of distributions of records

A few examples could be useful for studying all the strong records for instance
because of the

(A) Re-scaling property. For any sequence (xj)1≤j≤n of n real numbers, n ≥ 2, and
for any increasing function h : R → R, the records values of (h(xj))1≤j≤n are the
images by h of the record values of (xj)1≤j≤n according the same order and the
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record times are the same for (xj)1≤j≤n and (h(xj))1≤j≤n.

Another interesting rule the following representation.

(B) The Renyi representation. Let X and Y two real-valued random variables
defined on (Ω,A,P) with cdf ’s F and G where G is invertible. Then

X =d F
−1(G(Y )),

where F−1(u) = inf{x ∈ [lep(F ), uep(F )], F (x) ≥ u}, u ∈]0, 1[, is the generalized in-
verse of F and

lep(F ) = inf{x ∈ R, F (x) > 0}, uep(F ) = sup{x ∈ R, F (x) < 1}

By applying Point (A) above to random variable we have :

Proposition 8. Let us consider sequence iid sequence of random variables
(Xj)1≤j≤n with common cdf F , defined on the same probability space (Ω,A,P). Let us
suppose that F is strictly increasing. Then for any iid sequence of random variables
(Yj)1≤j≤n with common cdf G, we have the following equalities in distribution of the
two sequences

{X1, · · · , Xn} =d {Y1, · · · , Yn}, (19)

and (U(H,j) is the j-th record time from the cdf H),

{U(F, 1), · · · , U(F, 1)} =d {U(G, 1), · · · , U(G, 1)}, (20)

and finally by the re-scaling property for the record values,

{X(1), · · · , X(n)} =d {F−1(G(Y (1))), · · · , F−1(G(Y (n)))}. (21)

An important example concerns the case where G is the standard exponential cdf
: F (x) = 1− exp(−x), x ≥ 0. We get

Proposition 9. Let us consider sequence iid sequence of random variables
(Xj)1≤j≤n with common cdf F , defined on the same probability space (Ω,A,P). Let us
suppose that F is strictly increasing and G is invertible. Then for for any iid sequence
of iid standard exponential random variables (Ej)1≤j≤n , we have
the equality in distribution of the records times of the two sequences

{U(F, 1), · · · , U(F, 1)} =d {U(E, 1), · · · , U(F, 1)}, (22)

the re-scaling property

{X(1), · · · , X(n)} =d {F−1(1− exp(−E(1))), · · · , F−1(1− exp(−E(n))}. (23)
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Because of Formula (23), a huge number of problems on records are studied
through it and the Records theory becomes a theoretical study on functions F−1

and on exponential random variables.

Now, two interesting and useful examples are given, one for absolutely continuous
random variable and one for the discrete random variables : the exponential
records we are giving right now and the geometric records to be stated in page
2048 after the discrete records are presented.

(C) Exponential records. Let us consider a sequence of independent standard
exponential random variables (Xj)1≤j≤n, n ≥ 2, of intensity θ > 0, defined on the
same probability space (Ω,A,P), By Theorem 5 (page 5) and Formula (ADR) therein,
we have

f(X(1),··· ,X(n))(x1, · · · , xn) = θne−θxn1(0≤x1≤···≤xn). (24)

We see that (X(1), · · · , X(n)) are the arrival times of a Poisson stochastic process of
intensity λ and hence inter-arrival (for X(0) = 0)

X(j) −X(j−1), j ∈ {1, · · · , n},

are independent and identically distributed following θ-exponential law.

3.4. Probability laws of strong records from a discrete random variable

(I) General formula in the iid case.

Here, we suppose that X, X1, X2, ... is a sequence of independent and identically
distributed real-valued random variables, defined on the same probability space
(Ω,A,P), with a common discrete pdf f given on the strictly support VX = {xj , j ∈
J} ⊂ R, J ⊂ N, by

f(x) = P(X = x)1VX (x), x ∈ R, (25)

with the condition

(∀x ∈ VX , f(x) > 0), (∀x /∈ VX , f(x) = 0) and

( ∑
x∈VX

f(x) = 1

)
.

Similarly to the absolutely continuous case, we define for all x ∈ R,
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F (x) =
∑

j∈J, xj≤x

f(xj)

1− F (x) =
∑

j∈J, xj>x

f(xj)

= R(x) =
f(x)

1− F (x)
, for x ∈ x ∈ VX and F (x) < 1.

Actually, we mainly use the integration methods, here with respect to the counting
measure µ supported by VX and defined by

µ =
∑
j∈J

δxj ,

(where δxj
is the Dirac measure concentrated on xj with mass one), with respect

to which the probability law PX have the Radon-Nikodym derivative f , that is

dPX = f dµ.

Let us introduce a notation that will replace R(x) = − log(1 − F (x)) in the discrete
case. We denote for x < y,

J(x, y) =]x, y[∩VX and #J(x, y) = d(x, y).

For two integers r < s, we set

Jo(r, s, x, y) = {(t1, · · · , tr−s−1) ∈ J(x, y)r−s−1, t1 < · · · < tr−s−1}

We define R(x, y) = 1 if d(x, y) = 0 or r − s− 1 = 0. Otherwise, we set

R(r, s, x, y) =
∑

(t1,··· ,tr−s−1)∈Jo(r,s,x,y)

r−s−1∏
h=1

r(th). (26)

In general, similar rules based only on integration with respect to a measure apply.
We get the same formulas but the pfd ’s are with respect ot counting measures. But
for pedagogical purposes, redoing the proofs using discrete integration has its own
merit. By taking the discrete form of the pdf ’s in Proposition 5, we have

Proposition 10. (a) The joint probability law of (X(1), X(2), · · · , X(n))T , n ≥ 1, has
pdf with respect to µ⊗n with support VnX with discrete pdf

f (n)(y1, y2, · · · , yn) =

( n−1∏
i=1

r(yj)

)
f(yn), 1((y1<y2<···<yn)∩Vn

X)(y). (DDR2)

(b) More over for any k-tuple (n1, · · · , nk), 1 ≤ k ≤ n with 1 < n1 < · · · < nk, the joint
discrete pdf with respect to µ⊗k with support VkX is given by :
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f (n1,n2,...,nk)(y1, · · · , yk) = f(yn)

k−1∏
j=1

r(ynj
)

k∏
j=1

R(nj−1, nj , xnj−1
, xnj

).

(c) For each n ≥ 1, the pdf with respect to the counting measure supported by VX is
given by

f (n)(y) = R(0, n, y0, y)f(y)1VX (y). (DDR3)

Remark. Here, the strict inequality in the domain (y1 < · · · < yk) is due the fact
that the yj ’s are strong records. Here we have to distinguish between strong and
weak records.

Proof. Let us begin by the joint distribution of (X(1), X(2), · · · , X(n))T , n ≥ 1. For
y1 < y2 < · · · < yn. Let us set

U(j, j+ 1) as the number of observations strictly between the j-th record XU(j) and
the (j + 1)-th record XU(j+1).

The event

A = (X(1) = y1, · · · , X(n) = yn)

can be decomposed as

A =
∑

0≤p2<+∞,··· ,0≤pn−1<+∞

A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1).

Let us consider the cumulative forms of the pj ’s: p∗2 = p2, p∗j = p2 + · · ·+ pj, 2 ≤ j ≤
n− 1. The event

A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1)

exactly means that the first observation is equal to y1, the p2 next observations are
less that y1, the (p∗2 + 2)-th observation is equal to y2, the next p3 observations are
less that y2, the (p∗3 + 3)-th, · · · , the (p∗n−2 + (n − 2)) is equal to yn−2, the pn−1 next
observations are less that yn−1 and finally the (p∗n−1 + (n− 1))-th (the n-th) is equal
to yn. So we have

P(A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1))

= f(y1)F (y1)p2f(y2)F (y2)p3 · · · f(yn−1)F (yn−1)pn−1f(yn).

By summing over the pj ’s, we get

P(A) =

(
f(y1)

1− F (f(y1))

f(y2)

1− F (f(y2))
· · · f(yn−1)

1− F (f(yn−1))

)
f(yn).
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This puts en end to the proof of Point (1) of the theorem. �

Proof of Point (2). Let (n1, · · · , nk), 1 ≤ k ≤ n with 1 < n1 < · · · < nk, be a k-tuple
and let

1 ≤ xn1
< xn2

< · · · < xnk−1
< xnk

)

such that (xn1
, · · · , xnk

) ∈ VkX . For

A = (X(n1) = xn1
, · · · , X(nk) = xnk

)

The marginal distribution of (X(n1), · · · , X(nk)) is given, for n0, y0 = lep(F ), by

P(A) =
∑

xj , j /∈{n1,··· ,nk}

k−1∏
j=1

r(yj) f(yn)

× 1(y1<···<yn1−1<yn1
)<yn1+1<···<yn2−1<yn2

)<yn2+1<···<ynk−1<ynk
)

= f(yn)

k−1∏
j=1

r(ynj
)

k∏
j=1

∑
ynj−1+1<···<ynj−1

r(ynj−1+1) · · · ynj−1

× 1(ynj−1
<ynj−1+1<···<ynj−1<ynj

)

= f(yn)

k−1∏
j=1

r(ynj )

k∏
j=1

R(nj−1, nj , xnj−1 , xnj ). �

Proof of Point (3). Let n ≥ 1. The distribution of X(n) is the n-th marginal of the
joint distribution (X(1), X(2), · · · , X(n))T . So for n0 = 0, y0 = lep(F )and for y ∈ VX , we
have

P(X(n) = y) =
∑

yj , 1≤j≤n−1/∈{n1,··· ,nk}

k−1∏
j=1

r(yj) f(y)

× 1(y1<···<yn−1<y)

= R(0, n, y0, y)f(y).

(B) Application to geometric records. . Let us consider a sequence of iid geometric
random variables (Xj)1≤j≤n, n ≥ 2, of probability p = 1 − q ∈]0, 1[, defined on the
same probability space (Ω,A,P). Let us recall that each Xj follows the probability
law of the number of trials which is necessary to have one success in a Bernoulli
trial. Hence the common mass discrete pdf f is define by f(k) = P(X1 = k) = qk−1p,
k ≥ 1. Hence for all k ≥ 1,

1− F (k) =
∑
h>k

f(k) = p

+∞∑
h=k+1

qh−1 = qk
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and

r(k) =
r(k)

1− F (k)
= (p/q).

Now by applying Theorem 10 (page 2046) and Formula (DDR2) therein, we get for
1 ≤< k1 < · · · < kn

f(X(1),··· ,X(n))(k1, · · · , kn) = (p/q)n−1qkm−1p = (p/q)nqkn

and we have for

f(X(1),··· ,X(n))(k1, · · · , kn) = (p/q)qkn1(1≤<k1<···<kn). (27)

We also see that (X(1), · · · , X(n)) are the arrival times of a Bernoulli stochastic pro-
cess of intensity λ and hence inter-arrival (for X(0) = 0)

X(j) −X(j−1), j ∈ {1, · · · , n},

are independent and identically distributed following p-geometric laws.
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4. Records in ordered spaces

Let us suppose that we have an ordered probability space (E,B,≤). The order re-
lation is denoted by R or by (≤) and by x ¬R y, we mean that x and y are not
comparable. As well, by ordered probability space, we mean that the σ-algebra B is
compatible with the partial order relation (≤) in the following sense : the subsets
of (E, B) or (Ek,B⊗k, k ≥, are measurable :

x ∈ B, x ∈ E
]←, x] = {y ∈ E, y ≤ x} ∈ B, x ∈ E
]x, →] = {y ∈ E, y ≤ x} ∈ B, x ∈ E
Nx = {y ∈ E, y x} ∈ B, x ∈ E
N = {(x, y) ∈ E2, x ¬R y} ∈ B⊗2

etc.

For example, this holds with E = Rd, d ≥ 1, endowed with partial order :(
Rk 3 (x1, · · · , xd) ≤ (y1, · · · , yd) ∈ Rd

)
⇔
(
∀i ∈ {1, · · · , d}, xi ≤ yi

)
.

As previously, we work a sequence of random variables (Zn)n≥1 defined on some
probability space (Ω,A,P) with values in E.

4.1. Totally ordered spaces

The general characterizations of the probability laws for the records values and
the record times in Propositions 1, 2 and 6 (in pages 2024, 2024 and 2029
respectuvely) remain valid.

4.2. Partially ordered spaces

The definition of records times and records values does not change. But the events
based on them will not as simple as less or greater, since the non comparability
will count.

New proofs will not be done again. The results are adapted following the following
principles. In a totally ordered space, on (U(n) = k and U(n + 1) = k + `), ` ≥ 1, we
have

∀h ∈ [k + 1, k + `− 1], Zh ≤ Zk and Zk+` > Zk. (28)

But for a partial order, (28) becomes
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∀h ∈ [k + 1, k + `− 1],

(
(Zh ≤ Zk) ∪ (Zh ¬R Zk)

)
and Zk+` > Zk, (29)

where the intersection over h ∈ [k + 1, k + ` − 1] is the empty set for ` = 1. And we
denote

Ck,` =

k+⋂̀
j=k+1

(
(Zh ≤ Zk)

⋃
(Zh ¬R Zk)

)⋂
(Zk+` > Zk). (30)

In that regard, Proposition 1 becomes:

Proposition 11. The sequence (U(n))n≥1 of strong record times is a Markovian chain
with non-homogeneous transition probabilities

pt,n(k, j) =

 P
(

(Zj > Xk)
⋂⋂

k+1≤h≤j−1 ((Zh ≤ Zk)
⋃

(Zh ¬R Xk))

)
if j > k,

0 otherwise.

The proposition 2 remains valid as

Proposition 12. The sequence (Z(n))n≥1 of strong records is a Markovian chain with
transition probability

pr,n(x,A) =

+∞∑
k=n

P
(

(Zmin(j>k, Zj>xn) ∈ A)/(Z(n) = x)
)
.

where x is a real number and A a Borel set of R.

The only concerns is on the computations

P
(

(Zmin(j>k, Zj>xn) ∈ A)/(Z(n) = x)
)

(31)

=

∞∑
`=1

P
(

(Zk+` ∈ A)
⋂ ⋂

1≤<`−1

(
(Zk+h ≤ Zk)

⋃
(Zk+h ¬R Zk)

)
/(Z(n) = x)

)
,

(32)

with the convention that ⋂
1≤<`−1

C` = ∅,

for ` = 1 or ` = 2, whatever be the sets C`.
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Remark. Following Goldie and Resnick (1989), the notation

(Zh > Zk)c =
(

(Zh ≤ Zk)
⋃

(Zh ¬R Xk)
)
, h ≥ 1

can be used.

Proposition 6 is now

Proposition 13. If U(n) is finite, then the joint probability law of

(∆1, · · · ,∆n)

is given by

P(∆2 = k2, ...,∆n = kn)

=

∫
(x1<x2<···<xn)

P

 ⋂
1≤j≤n−1

⋂
1+kj≤h≤kj−1−1

(
(Zh ≤ Zk)

⋃
(Zh ¬R Zk)

)
dP(Xk1

,··· ,Xkn
)(x1, · · · , xn),

with k1 = 1, kj ≥ 1 for j ∈ {2, · · · , n} and kj = k1 + · · ·+ kj for 1 ≤ j ≤ n.

In a such general case, we cannot go further without knowing the topology of E.
But the three results will lead to more precise characterizations and more fine
description once that topology holds. The first step to take will concern E = Rd,
d > 1.

5. Conclusion

This presentation offers a full context of general characterization of the main ques-
tions about the probabilistic study of the records and their occurrence times of the
sequence of random variables with values in an ordered and measurable space
E. The literature has a great deal of fine tune results on records on R. We have
checked that our record value and record times characterizations remain valid for
their counter-parts on R, mostly for independent random variables and iid ones.
The basis of further and more general results is set. The step to take should con-
cern E = Rd, d > 1, on the steps of the pioneering works of Goldie and Resnick
(1989).
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Annexe.

1. Direct proof of Formula 17.

In =

∫
Rn

n∏
i=1

r(xi)1(x1<...<xn<y)dx1 . . . dxn =
(− log(1− F (y))n

Γ(n+ 1)
,

where R(x) = − log(1− F (x)), x ∈ R, and Γ(n) = (n− 1)!, n ≥ 1.

Let us show it for n = 1, 2, 3. The case n = 1 is immediate since

I1 =

∫
R
r(x)1(x<y)dx =

∫ y

−∞
dR(x) = [[R(x)]

y
−∞ = R(y). (33)

For n = 2, we have

I2 =

∫
−∞<x1<x2<y

r(x1)

(∫ y

x1

r(x2)dx2

)
dx1

=

∫
−∞<x1<y

r(x1)

(∫ y

x1

dR(x2)

)
dx1

=

∫
−∞<x1<y

r(x1)(R(y)−R(x1)dx1 (L2)

= R(y)

∫
−∞<x1<y

r(x1)dx1 −
∫
−∞<x1<y

r(x1)R(x1)dx1

= R(y)

∫
−∞<x1<y

dR(x1)−
∫
−∞<x1<y

d(R(x1)2)

= R(y)2 −R(y)2/2 = (1/2)R(y)2.

For n = 3, we use the results in Formula (33) and line (L2) of the last blocs of
formulas above to get

I2 =

∫
−∞<x1<x2<y

r(x1)r(x2) (R(y)−R(x2)) dx1dx2

=

∫
−∞<x1<y

r(x1)

(∫ y

x1

R(y)r(x2)− r(x2)R(x2)

)
dx1

=

∫
−∞<x1<y

r(x1)

∫ y

x1

(
R(y)2 −R(y)R(x1)− (R(y)2 −R(x1)2)

)
dx1
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=

∫
−∞<x1<y

∫ y

x1

(
R(y)2r(x1)−R(y)r(x1)R(x1)− (R(y)2r(x1)− r(x1)R(x1)2)

)
dx1

=

∫
−∞<x1<y

∫ y

x1

(
R(y)2dR(x1)−R(y)d(R(x1)2))/2− (R(y)2dR(x1)− dR(x1)3)/3

)
= R(y)3 − (R(y)3))/2−R(y)3 +R(y)3)/3 = (1/6)R(y)3.

From there, the induction is clear.

2. Direct proof of Formula (18) [see page 2042].

We have to prove that

∫
z<x1<...<xn−1<y

n−1∏
j=1

r(xi)

 dx1 . . . dxn−1 =
(R(y)−R(z))n−1

Γ(n)
.

Let us begin by n = 2, which corresponds to the formula∫
z<x<y

r(x)dx = (R(y)−R(z)),

which is obvious since r(x) = dR(x)/dx. Suppose it is true for n ≥ 2. Let us prove it
for n+ 1. We have

∫
z<x1<...<xn−1<xn<y

 n∏
j=1

r(xi)

 dx1 . . . dxn−1dxn

=

∫
z<x1<y

r(x1)dx1

∫
x1<x2<...<xn<y

∏
j=2

nr(xi)

 dx2 . . . dxn.

The induction hypothesis gives

∫
x1<x2<...<xn<y

 n∏
j=2

r(xi)

 dx2 . . . dxn =
(R(y)−R(x1))n−1

Γ(n)
,

and we get
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∫
z<x1<...<xn−1<xn<y

 n∏
j=1

r(xi)

 dx1 . . . dxn−1dxn

=

∫
z<x1<y

r(x1)
r(x1)(R(y)−R(x1))n−1

Γ(n)
dx1.∫

z<x1<y

r(x1)
−d(R(y)−R(x1))n

nΓ(n)
=
−d(R(y)−R(z))n

nΓ(n+ 1)
.

The proof of Formula (18) is complete.�

Direct proof of Formula (ADR1) in Theorem 5, page 2037.

We define U(j, j+1), for 2 ≤ j ≤ n−1, as the number of observations strictly between
the j-th record XU(j) and the (j + 1)-th record XU(j+1). The event

A = (Y (1) ∈ y1 ± dy1/2, · · · , Y (n) ∈ yn ± dyn/2)

can be decomposed as

A =
∑

0≤p2<+∞,··· ,0≤pn−1<+∞

A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1).

Let us accumulate the pj ’s as p∗2 = p2, p∗j = p2 + · · ·+ pj, 2 ≤ j ≤ n− 1. Since the data
are continuous, implying that the equality of observations has probability zero, we
may and do suppose that each interval yj ± dyj/ contains one observation. So the
event

A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1)

exactly means that the first observation is equal to y1, the p2 next observation are
less that y1, the (p∗2 + 2)-th observation is in y1 ± dy1/, the next p3 are less that y2,
the (p∗3 + 3)-th, · · · , the (p∗n−2 + (n− 2)) is in y2 ± dy2/, the pn−1 next observation are
less that yn−1 and finally the (p∗n−1 + (n−1))-th (the n-th) is in yn±dyn/. So we have

P(A ∩ (U(j, j + 1) = pj , 2 ≤ j n− 1)) = P(Y (1) ∈ y1 ± dy1)F (y1)p2P(Y (2) ∈ y2 ± dy2)F (y2)p3

· · · P(Y (n−1) ∈ yn−1 ± dyn−1)F (yn−1)pn−1f(yn)P(Y (n) ∈ y1 ± dyn.

By summing over the pj ’s first, next by dividing by (dy1 · · · dyn) and finally by letting
each dyJ → 0, we get

P(A) =

(
f(y1)

1− F (f(y1))

f(y2)

1− F (f(y2))
· · · f(yn−1)

1− F (f(yn−1))

)
f(yn). �
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