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1 Introduction

The weather has a significant impact on several spheres of the economic activity.
In fact, the weather risk management market has known an important growth
since its inception in 1996. Although, the weather risk market got its start
in the energy sector, other economic sectors such as retail and leisure are now
starting to see financial benefits of protecting their revenue flows from adverse
weather conditions.

The main objective of this article is to present a model to evaluate some deriva-
tives with weather as underlying. The weather derivatives are financial contracts
whose payout depend, on a certain way, on the climate. The underlying vari-
ables can be, for example, the temperature, the rainfall, the snow or the fog,
but it is the temperature that represents the most used underlying for weather
derivatives. In this paper, we will focus only on weather derivatives with tem-
perature as underlying.

There are many factors which made the weather derivatives market developed.
For instance, the liberalization of the energy sector. The energy producers had
observed that the prices of energy are highly correlated with the weather. So, it
was natural that the industrialists of energy cannot accept that their financial
positions are at the mercy of a “bad” weather. The trading of the weather
derivatives made possible to the energy companies to be covered against the
weather risk.

In section 3, we will use the Principal Component Analysis (PCA) method which
will allow us to fill the gaps in the series of the weather dataset used within the
framework of this study. The identification of the warm and cold seasons at
Casablanca will be detailed during this section. At section 4, we will use a
stochastic model to describe the temperature behavior. We will present within
this framework a model from the family of Ornstein-Uhlenbeck processes. The
unknown parameters of the process will be estimated with 44 years of daily
temperature observations at the Casablanca meteorological station. Section 5
is dedicated to the pricing of a weather derivative contract with temperature as
underlying. At the end, numerical results will be presented by using the Euler
approximation formula and the technique of Monte Carlo simulation.

2 The weather derivatives market

The first weather derivative transaction was concluded between two American
companies in 1997. Since, the market did not cease growing to reach 4 500
contracts negotiated over the counter between April 2002 and April 2003. The
weather derivatives market is still almost American and it is organized like all the
financial markets. On one hand, the primary market is reserved to companies
covering against weather risk (end users) through highly structured contracts
and the sellers of these covers such as the insurers, re-insurers, banks and certain
energy companies. On the other hand, the secondary market where the sellers of
the covers negotiate between them standardized contracts which enable them to
manage their weather books dynamically. The contracts treated on the primary
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markets can cover till several years and relate to different underlying such as
temperature, rainfall, wind, height of waves level, snow, etc. On the secondary
market, the contracts relate to the temperature and cover, in general, at least
five days (from Monday to Friday), one or five months (period of heating from
November to March and cooling from May to September).

Segments concerned and roles played by the distributors of the weather con-
tracts, i.e. the energy companies, banks, insurers and re-insurers are very dif-
ferent. Indeed, in theory they are all capable to sell covers whose final payment
is identically structured, the internal and external regulations to which they are
subjected as well as the aim by their participation in this market make that
they do not occupy all the same sector of the market. It is thus possible that
the solutions suggested with a company eager to be protected from the climatic
risks are different according to the contract organization seller (Cf. Moreno
[24]). The OTC market of weather derivatives in Europe is starting to be devel-
oped. The French and English markets belong to the most active ones due to
the implication of several banks and insurance companies. In Africa, the market
of weather derivative is not developed yet except for some attempts in South
Africa (Cf. Bhowan [8]).

2.1 Definitions

Weather derivatives are generally structured as swaps, futures and options based
on different underlying of weather indexes. We present in this section some
indexes usually used on the market of weather derivatives where the underlying
is the temperature.

Definition (Temperature) Given a weather station, let us note by Tmax
i and

Tmin
i , respectively, the maximum and the minimum temperatures (in degree

Celsius) measured in one day i. We define the mean temperature of the day i
by

Ti =
Tmax

i + Tmin
i

2
(1)

Definition (Degree-day) For a given site, the degree-day is the representative
value of the difference between the temperature of a given day and a reference
temperature. It is in general used to evaluate the expenditure in energy for the
heating or air-conditioning. Let define Ti as the mean temperature of a day i.
We define Heating Degree Days (HDDi: measure of cold in winter) and Cooling
Degree Days (CDDi: measure of heat in summer) by the quantities

HDDi = max{Tref − Ti, 0} (2)

CDDi = max{Ti − Tref , 0} (3)

where Tref is the reference temperature (in general between 18 ◦C and 20 ◦C).
In the continuation of this paper “temperature” will mean “mean temperature”.
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2.2 The contracts

In addition to contacts traded on organized markets (for example the CME of
Chicago), there are also contracts which are concluded over the counter (OTC).
One of the most used contracts is the option. There are two types of options,
(calls) and (puts). The buyer of a HDD call, for example, pays the seller a
premium at the beginning of the contract. In return, if the number of HDDs
for the contract period is greater than the predetermined strike price the buyer
will receive a payout. The amount of the payout is determined by the strike
level and the tick amount (monetary value for each HDD exceeding the strike
level of the option). The parameters of a typical weather option are:

• The contract type (call or put),

• The contract period (e.g. January 2006),

• The underlying index HDD or CDD,

• An official meteorological station from which the temperature data are
extracted,

• The strike level,

• The tick amount (e.g. 5000 MAD/HDD),

• A maximum payout (if that exists).

To price the payout of an option, let denote K the strike level and α the tick
amount. Suppose that the contract consists of n days. The HDDs and the
CDDs for that period are, respectively

Hn =
n∑

i=1

HDDi and Cn =
n∑

i=1

CDDi (4)

So, the formula of the payout of (an uncapped) HDD call is

χ = α max{Hn −K, 0} (5)

Another type of weather derivative contracts are swaps. Indeed, a swap is a con-
tract in which two parties agree to exchange their risks during a predetermined
period of time. In the most swaps contracts, the payments are made between
two parties, where one pays a fixed price and the other a variable (or floating)
one.

In the case of standard weather swaps, there is only one date where cash-flows
are swapped contrary to interest rate swaps which have several dates of payment
(Cf. Mraoua [28]).

In the case of a standard HDD swap, the two parties agree on a given strike
level of HDDs over the period of the contract, and the amount swapped is,
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for example, 10 000 MAD/HDD away from the strike. There is, in general, a
maximum level of payout fixed at 200 degree-days.

To understand how the weather derivatives can be used in practice, we give the
following example:

A heating gas distribution company may think, rightly, that if the winter is very
cold, it will have significant incomes, therefore, it can think of selling a HDD
call. If the winter is not particularly cold, the gas company keeps the premium
of the call. If, on the other hand, the winter is very cold, the gas company will
have enough money to finance the payout of the option which it emitted because
its revenues would have been high. The gas company thus reduced its exposure
to the weather risk.

3 Weather dataset processing

In this section, we will assess the clean of the meteorological data series of
temperature. In one hand, this will be useful to estimate all the factors of the
model used in this study and in the other hand, to determine the warm and the
cold season during the year. In fact, we need that for evaluating the weather
derivative contract.

3.1 Filling the missing values

For this research, we use daily average temperature data for the Casablanca
weather station (WMO1 ID: 60155). This data was computed from the extremes
daily temperatures. The maximum and the minimum daily temperatures for the
day j are recorded at 2 m under shelter, respectively, between j− 1 (yesterday)
at 18 UTC and j at 18 UTC for the minimum, and between j at 06 UTC and
j + 1 (tomorrow) at 06 UTC for the maximum.

The data series span from January 1960 to December 2003 (i.e. 44 years with
16 071 observations). Obviously, there are few missing data (in our case, 92 miss-
ing values, i.e. 0.5 % of the total available data, which are randomly distributed
in time) which must be fixed before any treatment.

If there are missing observations in meteorological dataset, it will affect nega-
tively all the post-treatment subroutines and then the rate of missing informa-
tion will be as important as the number of omissions. In fact, weather data is
vital to the success of weather risk management, and most weather derivatives
pricing methodologies rely heavily on a “clean” weather dataset. According to
Dunis and Karalis ([17]), the Principal Component Analysis method outper-
forms the other interpolation techniques and filling methods, like the Expecta-
tion Maximization (EM) algorithm, Neural Network Regression (NNR) models,
the Data augmentation (DA) algorithm and the Kalman filter (KF).

Principal Component Analysis (PCA) is a statistical method for extracting the
1World Meteorological Organization
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most significant uncorrelated sources of variation in a multivariate system. The
objective of PCA is to reduce dimensionality, so that only the most significant
sources of information are used. This approach is very useful in highly correlated
systems.

In our case, the missing values are distributed randomly in time as one, two,
three and four consecutive observations. In order to evaluate the performance
of PCA methodology, it was tested on clean sample of temperature data. The
sample contains 573 observations (daily average temperature) for 11 variables
(neighbouring weather stations). Then, missing data were created voluntary and
artificially into the dataset (Table 1). These values are reconstructed using an
iterative algorithm of PCA method. The different cases are treated separately.

Observed value Reconstituted value Deviation RMSE
1 value

17.8 18.4 0.6 0.6
2 consecutive values

14.5 14.0 -0.5 0.35
14.9 14.9 0.0

3 consecutive values
21.8 21.3 -0.5
20.5 20.5 0.0 0.40
20.6 21.1 0.5

4 consecutive values
16.6 16.7 0.1
15.4 16.0 0.6 0.31
15.9 16.0 0.1
16.6 16.7 0.1

7 consecutive values
16.6 16.6 0.1
15.4 16.0 0.6
15.9 16.0 0.1
15.9 16.0 0.1 0.41
16.3 15.4 -0.9
14.8 14.7 -0.1
16.0 16.0 0.0

Table 1: Reconstitution of missing data using the PCA method in case of one,
two, three, four and seven consecutive missing observations

Table 1 shows that the imputations of daily mean temperature missing values
obtained by PCA method are more accurate. We use the Root Mean Squared
Error (RMSE) as standard error statistic to evaluate the deviation of the PCA
results from the actual values for a missing days. The RMSE is given by

RMSE =

√√√√ 1
N

N∑

i=1

(xobs − xrec)2 (6)

where xobs and xrec are respectively the observed and the reconstructed values.
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The RMSE error is often less than 0.6 ◦C which means that the accuracy of
reconstitution is very important.

In order to be more realistic, the imputed values of the mean temperature
dataset are compared to the actual values, taking into account the coexistence
of the different cases of omissions, in the same dataset.

Obs Date Observed Reconstituted Deviation
N◦. value value
1 04/11/1999 17.8 18.0 0.2
2 19/11/1999 14.5 13.9 -0.6
3 20/11/1999 14.9 14.9 0.0
4 21/01/2000 10.6 11.0 0.4
5 16/06/2000 21.8 21.3 -0.5
6 17/06/2000 20.5 20.5 0.0
7 18/06/2000 20.6 21.1 0.5
8 22/12/2000 14.0 14.4 0.4
9 28/02/2001 13.6 12.7 -0.9
10 13/03/2001 16.6 16.7 0.1
11 14/03/2001 15.4 16.1 0.7
12 03/04/2001 17.3 17.3 0.0
13 15/04/2001 19.3 18.2 -1.1
14 16/04/2001 16.3 16.7 0.4

Table 2: Missing values artificially created in the test sample, their correspond-
ing reconstituted values and the deviation between the two values

The mean of the RMSE error is null and its standard deviation is about 0.5 ◦C.
Consequently, PCA provides a very efficient method for filling missing data in
presence of correlated system of variables as it has been said before.

3.2 The warm and the cold seasons at Casablanca

In order to determine the warm and the cold periods during the year, we plot,
on Figure 1, the monthly evolution of the monthly mean temperature over the
period 1971–2000.

We notice that the warm period begins at the end of May and ends between
October and November, the other period represents the cold one. A hierarchical
ascendant classification was executed to define exactly the beginning and the
end of each period. According to Figure 2, we have defined these periods as:

• Warm period: June to October

• Cold period: November to May
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Figure 1: Monthly evolution of the monthly mean temperature at Casablanca
(1971–2000). (Mean = 17.8)

Figure 2: Hierarchical classification of the the monthly mean temperature at
Casablanca (1971–2000)
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4 Construction of temperature model

The underlying variable of a weather derivative (temperature in our case) is a
physical quantity rather than a tradable asset. This rules out the possibility of
seeking an equivalent martingale approach to evaluate these derivatives owing
to the fact that it is impossible to build an self financing strategy which can
duplicate the underlying. Ideally, one would be to build a model of no-arbitrage
as it is the case for interest rates derivatives. However, it exists no mechanisms
which offer an outline on the world of no-arbitrage. Consequently, we will work
in an equilibrium environment (Cf. Bhowan [8] and Alaton et al. [1]).

Since the mechanisms of valuation are based on equilibrium, there must be
a strong influence of the historical data. Due to the cyclical nature of the
temperature process, we find that historical data give a reasonable idea of the
temperature level in the future (Cf. Figure 3).

Figure 3: Daily temperature evolution for Casablanca meteorological sta-
tion(January 1960–December 2003)

From Figure 3, it is clear that the temperature process should be a mean re-
verting process. The mean should have a cyclical form function. The histogram
of daily temperature differences in Casablanca station is given by Figure 4.

The histogram on Figure 4 suggests a certain form of normal distribution of the
daily temperature differences. Therefore, the temperature process should follow
a Brownian motion.

We can use a Vasicek process with mean reversion to model the temperature
behavior (this process is usually used as an interest rate model)

dTt = a(θ − Tt)dt + γdWt (7)

where Tt is the modeled process, a the speed of mean reversion, θ the mean
to which the process reverts to (constant) and γ the volatility of the process
(constant). dWt is a Wienner process.

Now, for the temperature process, we need a θ = θ(t) and a γ = γ(t) (function
which changes monthly, for the moment).

9
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Figure 4: Daily temperature differences Histogram for Casablanca-Anfa meteo-
rological station (January 1960–December 2003)

Then, our process becomes

dTt = a(θt − Tt)dt + γtdWt (8)

A functional form of θ needs to be determined and estimation for γ and a should
be calculated on the basis of historical data. In order to have a process that
reverts to its mean, it would be necessary that one has

E[Tt] ≈ θt (9)

Dornier and Queruel ([16]) showed that the process found in (8) does not checked
by (9), from where the idea according to Dornier and Queruel [16] and Bhowan
[8] to add the θ

′
t term to the process (8).

Proposition If θ = θ(t), then the process

dTt =
[
a(θt − Tt) +

dθ

dt

]
dt + γtdWt (10)

reverts to its mean θ.

Proof (from Dornier and Queruel [16]) Let consider Zt = e
∫ t
0 ads(θt − Tt)

According to Itô lemma, we can write

dZt = e
∫ t
0 adsθ

′
tdt + aet(θt − Tt)dt− e

∫ t
0 adsdT

= e
∫ t
0 ads

[
θ
′
t + a(θt − Tt)dt−

(
a(θt − Tt) + θ

′
t

)
dt− γtdWt

]
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Thus, we find

Zt = Z0 −
∫ t

0

e
∫ t
0 adsγsdWs (11)

Now, θ0 = T0 = C gives

Tt = θt + e−
∫ t
0 ads

∫ t

0

e
∫ t
0 adsγsdWs (12)

So E[Tt] = θt (because an Itô integral has a zero expected value ).

According to the graph of Figure 3, we can adjust to the mean θ, the functional
given by the equation

θt = A + Bt + C sin(ωt + ϕ) (13)

where ω = 2π
365 (we will not consider the leap years).

To be able to simulate trajectories by using the model described in (10), we
need to estimate its parameters.

4.1 Estimation of mean parameters A,B,C, ϕ

From (13), we can write θ(t) under the following form

θ(t) = A + Bt + C [sin(ωt) cos(ϕ) + cos(ωt) sin(ϕ)] (14)

Then, it is possible to estimate the parameters of the equation (14) by looking
it like a linear equation of time by operating some changes of variables and by
renaming the constants. We can then write

θ(t) = β1 + β2t + β3 sin(ωt) + β4 cos(ωt) (15)

where





A = β1

B = β2

ϕ = tan−1
(

β4
β3

)

C = β3
cos(ϕ)

By applying the least squares method to the series of the 16 060 observations
of the historic daily temperatures, we find
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A = 17.1113
B = 0.000070201
ϕ = −4.9956
C = 0.978

The graph of Figure 5 makes possible to visualize a comparison between the
observed temperatures and those estimated by using the deterministic approach
given by θ(t). For a good visualization of the behavior of the two curves, we
plotted only the first ten years of our series of observations.

Figure 5: Comparison between historic temperature and the estimated mean
θ(t). Casablanca-Anfa meteorological station (01/01/1960–31/12/1969)

4.2 Estimation of speed of mean reversion a

According to Bhowan ([8]), if

dXt = b(Xt; ξ)dt + σ(Xt; ξ)dWt (16)

then, an unbiased estimator of ξ is the zero of the martingale function given by

Gn(ξ) =
n∑

i=1

ḃ
(
X(i−1)∆; ξ

)

σ2
(
X(i−1)∆; ξ

) [Xi∆ − E[Xi|Xi−1]] (17)

where ḃ = ∂b
∂ξ

Therefore, if we take again the process developed in (10), and we make integra-
tion between i and (i− 1), we find
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Ti = θi + e−a(Ti−1 − θi−1) + e−
∫ i
0 ads

∫ i

i−1

e
∫ s
0 adsγsdWs (18)

And as

E[Ti|Ti−1] = θi + e−a(Ti−1 − θi−1) (19)

By substituting in (17), we find

Gn(ξ) =
n∑

i=1

(θi−1 − Ti−1)
γ2

i−1

[
Ti − θi − e−a(Ti−1 − θi−1)

]
(20)

Solving (20) gives

a = − log




∑n
i=1

(Ti−1−θi−1)
γ2

i−1
(Ti − θi)

∑n
i=1

(Ti−1−θi−1)
γ2

i−1

(
Ti−1−θi−1

)

 (21)

By performing the calculation in (21), we find a = 0.274750728.

4.3 Estimation of the volatility

Alaton et al. [1], suppose that the volatility of the temperature process varies
through different months, but it remains nearly constant within each month.
Consequently, γt is seen as a constant function which changes monthly.

In this article, we will use the approach developed by Bhowan ([8]), where the
volatility is regarded as a stochastic process. We calculated and plotted the
graph of the monthly standard-deviations of our dataset. We will consider a
stochastic process with mean reversion (Cf. Figure 6).

Figure 6: Monthly volatility of observed temperatures with linear trend.
Casablanca-Anfa (January 1960–December 2003)
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The stochastic differential equation of the volatility process has the following
form

dγt = aγ(γtrend − γt)dt + σγdWt (22)

By supposing that γtrend is constant (Cf. Figure 4), it remains to estimate aγ

and σγ . If we use the estimator presented in Alaton et al. [1], we get

σ2
γ =

1
n

n−1∑

j=0

(γj+1 − γj)2 (23)

where n is the number of observations.

Performing the calculation give σγ = 0.7078984.

To estimate aγ , we will use the methodology developed in the previous section.
Since γtrend is constant, we can rewrite the process in the following form

dγt = aγ(γtrend − γt)dt + σγdWt

=
[
aγ(γtrend − γt) +

dγtrend

dt

]
dt + σγdWt

Then

E[γi|γi−1] = γtrend + e−a(γi−1 − γtrend)

Hence, aγ is given by

aγ = − log




∑n
i=1

(γtrend−γi−1)
σ2

γ
(γi − γtrend)

∑n
i=1

(γtrend−γi−1)
σ2

γ
(γi−1 − γtrend)


 (24)

Performing the calculation gives aγ = 1.85275425.

4.4 Processus Simulation

In order to simulate sample paths of temperature, (10) and (22) need to be
discretised. Using the Euler scheme of approximation, we get

Tt+1 = Tt + a(θt − Tt) + θ
′
t + γnZ1 (25)

γn = γn−1 + aγ(γtrend − γn−1) + σγZ2 (26)
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where Z1, Z1 ∼ N(0, 1).

for each month, γn is simulated using (26), the simulated γn is then used in
(25) for an entire month simulation. Figure 7 gives on the same diagram the
evolution over three years (of 2004 to 2006) of a simulated trajectory of the
estimated temperature and its mean θ(t).

Figure 7: Simulation of sample paths of temperature and the mean over 3 years
estimated by using the Euler scheme (2004–2006)

4.5 Validation of the model

In this section, we compare the predicted values obtained by the stochastic
model to the actual observations for Casablanca over the year 2004 (Cf. Fig-
ure 8).

Figure 8: Observed temperatures and simulated temperature with 200 000 sim-
ulations (Casablanca-Anfa : 2004)

In order to evaluate the performance of the model, we use the relative error as
a statistical error. It is given by the formula
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RE =
Tprev − Tobs

Tobs
(27)

where Tprev and Tobs refer respectively to the predicted and the observed values.

On the daily scale, many “aberrations” were detected in the temporal evolu-
tion of the normalized relative error, which are often due the Chergui2 phe-
nomenon. Actually, this phenomenon presents some daily lifts which “escaped”
to the model. Therefore, we have tested the model for the monthly average
temperatures. The fact that the weather derivatives are often concluded over a
monthly periods, justify in other way our choice.

In Figure 9, the monthly evolution of the normalized relative error shows that
this error belongs to the interval [−1,+1] with two jumps on May and Decem-
ber. They represent the transitions between the warm and cold periods defined
before.

Figure 9: Monthly evolution of the standardized relative error (2004)

In term of Standardized Relative Error (SRE), we can say that our model fore-
casts the temperature correctly.

5 Weather swap pricing

Let us consider two parts A and B. A is an electricity distribution company
and B is a large refreshment beverage producer. A profits from a cold weather
(rise of the demand of electricity for the heating) and B benefits from a warm
weather (increase in the consumption of refreshment drinks). The two parts
seek to stabilize their incomes flows.

Let us consider the following contract:

• Contract period: from 01/01/2004 to 12/31/2004
2Dried wind and warm flow, blowing from the East of Morocco.
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• Reference temperature degree (Tref ): 18◦C

• Principal Nominal (Np): 1000 MAD

The choice of the reference temperature degree is strongly depending on the
location. In our case, the average as well as the median of the time series used
are about 17.8 ◦C, which pushed us to take the value 18 ◦C like threshold of
reference in the calculation of CDD and HDD.

As A benefits from a cold weather, its incomes are maximum during the period
November–May. In a similar way, the incomes of B are maximum for the period
June–October. Consequently, we have the degree-days and the following strike
levels for each month of 2004 (Cf. Table 3).

Month Index Strike
January HDD 160
February HDD 45
March HDD 90
April HDD 35
May HDD 85
June CDD 100
July CDD 200
August CDD 170
September CDD 30
October CDD 60
November HDD 90
December HDD 160

Table 3: Underlying indexes and strike levels for the 12 months of 2004 (contrat
period)

At the end of each month, if the degree-day is CDD, B gives a payment to A. So
on the other hand, the measurement is HDD, then it is A which gives a payment
to B. The measured degree-days must be lower than the strike levels for each
month.

By using, (2), (3) and (4), we can write

V alueB(01/01/2004)

= Np

{ ∑

i∈CS

E[max(H(i)−K(i), 0)−max(K(i)−H(i), 0)]B(0, imonth)

+
∑

j∈WS

E[max(K(j)− C(j), 0)−max(C(j)−K(j), 0)]B(0, jmonth)





where

• K(i) is the strike level of the month i,
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• CS is the set of cold season months (in our study, from November to May),

• WS is the set of warm season months (in our study, from Jun to October),

• B(0, imonth) is the discount rate for the month i.

The swap is then a sequence of collars. In order to evaluate the formula giving
V alueB(01/01/2004), we simulate the trajectories of the temperature over the
swap period like that was described previously. Thereafter, we carry out the
evaluation of the swap by the calculation of the average of the payments which
are generated by the simulation trajectories (valuation according to the Monte
Carlo method).

If we make the assumption of a discount interest rates equals to (8 %) and we
makes 90 000 simulations, we find

V alueB(01/01/2004) = Np × 69.060
= 69 060 MAD

From Figure 10, we remark that the convergence of the swap price is very slow.

Figure 10: Monte Carlo convergence of the swap price and the simulations
convergence trend

6 Conclusions and topics for further research

Weather derivatives are highly structured financial products. They allow a dy-
namic management of the weather risk and constitute a good instrument to
diversify the financial portfolios (in fact of the non correlation, in general, be-
tween weather and financial markets). Moreover, and contrary to the traditional
products of insurance against the weather disasters, the financial products based
on weather allow companies either to be covered against climatic risks and also
to make profit by speculation (Moreno [25]).
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The use of the derivatives in Morocco is still very limited, but the weather
derivatives could constitute a good instrument to cover against climatic risk.
These risks from which Morocco suffers these last years (lengthening of the
periods of dryness and freezing, floods, etc.) weigh heavily on the economy of
the country (Gauvin [19]).

In this study, we worked on a stochastic modeling to describe the behavior of the
temperature which we chose as underlying for the weather derivative product
described in this article. Other approaches to valuation of weather derivatives
are used in practice as the actuarial approach or the “Burn Analysis” method
(Cao and Wei [11] and Moreno [24]).

The determination of the cold and warm seasons, on the basis of 44 year of
data of temperature, in Casablanca and which correspond respectively to the
periods of November–May and June–October, enabled us to simulate a swap
contract on temperature. The valuation of this contract was carried out using
a temperature stochastic model. The model parameters were estimated using
daily temperature data (1960–2003). The reference temperature degree which
is a key parameter of the determination of HDD and CDD and which strongly
depends on the local conditions of the site to which relates the climatic contract,
was calculated statistically using the dataset of Casablanca.s

The model describing the stochastic behavior of the temperature was validated
on the basis of temperature observed during the year 2004. The results of
comparison of the forecasts (outputs of the model) to the observations are sat-
isfactory.

It would be interesting to treat carefully the jumps of temperatures due to the
extreme phenomena (for example Chergui wind) by integrating a term which
describes their behavior within the stochastic model. This will make it possible
to improve the performance of the daily scale model.
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