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Abstract. The Bayesian estimation of the change-point in independent gaussian samples
is considered. The impact of an outlier on the performance of the Bayesian procedure is
studied and the posterior density under contamination is given. In this paper, we show that,
in the case of small samples, an outlier has a significant impact on the estimation of the
change-point. However, if the sample size is enough high, the estimation performs well.

Résumé. Dans cet article, nous étudions 'estimation bayesienne d’un point de rupture dans
un échantillon gaussien. L’impact d’une contamination sur les performances de la procédure
bayesienne est mis en évidence travers I’obtention de la densité a posteriori sous contamina-
tion. Nous montrons que cet impact est faible dans le cas asymptotique et n’est significatif
que pour des échantillons finis.

Key words: Bayesian estimation; Change-point; Gaussian models; Outlier.
AMS 2000 Mathematics Subject Classification : Primary 62F15 ; Secondary 62F30.

1. Introduction

Consider the following model : X7, X5, ..., X, are independent normal random variables with
X1,Xo,...,X,, are N(¢o,0?) and X,i1, Xpmi2,..., X, are N(¢1,02) where ¢y and
¢1 are real unknown constants which represent the means of the variables X; before and
after the change-point m respectively. The model can be written as follows

X, =¢o+¢ if i=1,2,....,m "
Xi=¢1+e ifi=m+1,...n
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where the ¢; are normal random independent errors with mean zero and unknown constant
variance 02 and m is an integer which lies between 1 and n — 1, n being the size of the
sample.

The problem of change-point has a long history. Since the pioneer paper of Page (1954),
many authors have treated this topic. The author used the cumulative sums called CUSUM
techniques to detect change in the distribution of sum of random variables.

Also, Chernoff and Zacks (1964) and Kander and Zachs (1966) proposed a Bayesian non-
parametric test to detect a change in the mean of a sum of independent random variables.
Ferreira (1975), Broemeling (1985); Broemeling and Tsurumi (1986) and Andrews, et al.
(1996) treated the change point problem in regression models. Menzefricke (1981) studied
the case of sequence of independent random variables where the posterior densities of the
change point and the variance ratio in different situations.

More recently, Fearnhead (2006) presented how to perform direct simulation from the pos-
terior distribution of a class of multiple change-point models where the number of change
points is unknown. Rigaill et al. (2012) derived exact, explicit and tractable formulae for the
posterior distribution of variables such as the number of change-points or their positions.

Also, Fotopoulos et al. (2010) derived exact computable expressions for the asymptotic dis-
tribution of the change-point maximum likelihood estimator when a change in the mean
occurred at an unknown point of a sequence of time-ordered independent Gaussian ran-
dom variables. In their paper, the authors interpreted the conditional distribution of this
estimator as a Bayesian solution to the change-point problem.

In this paper, our aim is to study the impact of a single outlier on the estimation of the
change-point m of the model (1) when one observation is contaminated. The Bayesian ap-
proach is our main procedure.

Assume that there exists a position & such that k € {1,...,n} and

Y =X + A, (2)
Y; = X;, Vie{l,...,ntwith i#k

where the constant A is the magnitude of the contamination which occurs at a specified
time, say k. Since the outlier can occur before or after the change-point, we will consider
two cases where we derive the posterior density of the change point when an outlier occurs.

2. Contamination before change-point

In this case, we have k € {1,...,m}. Then the model is written as follows :

E:Xz=¢0+61 iZL..,k—l et sz‘—Fl,,m
Yi=Xp+A=¢o+e+A
K:Xz:¢1+67, 1:m+1,,n

where: ¢g # ¢1, and €; ~ N(0,02); (0 > 0) avec ¢y, ¢1 et o are unknown parameters.

Assume that the priors of 02, (¢g, ¢1) and the change-point m are given by :

Journal home page: www.jafristat.net



C. Belkacem and H. Fellag, Journal Afrika Statistika, Vol. 7, 2012, pages 381-390. Bayesian
change-point estimation in the presence of a single outlier. 383

mo(0?) o< 1/0?

mo(Po, $1) x constant in R? (3)
mo(m) x1/(n—1) for m=1,2,..,n—1

o2 (¢o,¢1) and m are independent.

In the following, we give, without proof, the following lemma.

Lemma 1. The likelihood function of the parameters m, o2, ¢o and ¢1 is :

k—1
L(m,0?, o, ¢1/Y) (02)‘"/2exp{ 5 1D (Vi = 60)% + (Vi — (¢0 + A))°
=1
+ 3 (Vi o)+ Z(masl)?]}-
i=k+1 m+1

Lemma 2. The joint posterior density of ¢o, ¢1,02 and m is

71 (m, 02, ¢, 1) o prior  likelihood function

Then,
k—1
m1(m, 0%, ¢o, 1) o (07) 7"/ ewp {_%2 > (Vi = 60)* + (Y — (00 + A))°
i=1
+ ) (Vi— o)+ Z(Yim)z]}-
i=k—+1 m+1
Proof

The posterior joint density of the parameters (m, o2, ¢g, ¢1) is derived using the following
Bayes procedure :

7Tl(Tna 027 ¢05 ¢1) X L(m7027 ¢07 (ybl/Y)'ﬂ-O(ma 027 ¢07 ¢1)

Since (m, o2, ¢o, ¢1) are independent, we can write:

1
7T0(m, 027 ¢0) ¢1) o8 ;

The likelihood function of the parameters m, 02, ¢ and ¢ is given in lemma 2.1. Then,

k—1
1 (m, %, do. é1) o (0%) 72 Lep {—2; D (Vi = 60)* + (Vi — (00 + A))°
=1
+ ) (Vi e0)+ D> (Y m)zu
i=k+1 m+1
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Proposition 1. Under the conditions (3) given above, the posterior density of the change-
point m is as follows :

n—2

m(m) o [m(n —m)]~2.Qa(A)" "7

where
" Y — A)? )2 e Yi)?
Qu() = - B e m A TR, e W0 (st s 1
: k —k —k
with S]k:Z:i:j(Yi—Yj)2 and Y :mZ_JYH fork=1,..

Proof

0(/;OO/R/Rm(m,aQ,QSO,¢1)d¢0d¢1d02

The integral with respect o2 allows us to derive the posterior density of m, ¢¢ and ¢;.

! (m?¢07¢1) = /0 1 (m5027¢07¢1) do

If we assume that o2 = %, we obtain do? = —1/r% dr and then,

ﬂ.l(ma¢07¢l)0(/0 TL/Q 1 { %

k—1
> (Y= o) + (Y — (A + o))’
=1

+ > (Yi—¢0) + Z (v; — W] } dr
i=k+1 =m-+1
Using the properties of the gamma distribution, (fooo (b*/T(a)) r*te b dr = 1), we obtain
k-1 m n _%
T (m, b0, é1) o< [ D (Vi = d0)® + (Vi — (A+ o)’ + D (Yi—¢0)’+ > (Yi— 1)
=1 i=k+1 1=m-+1

To obtain 71 (m, ¢g), we have to perform the integral with respect to ¢1,

71 (m, o) = /R 71 (m, o, &) dés

Assume that,

k—1 m n
1= (Yi—00)’+ (Y= (A+¢0)*+ > Yi—00)’+ > (Yi—¢1)
i=1 i=k+1 i=m+1
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The expression can be rewritten as :

k—1

1:2(1@-—?1 LY 1—¢0)2+(Yk—A—¢o)2

i=1

+ Z (Yz‘ Y1 + Y — ¢0) + Z (Yz Yo+ Y — ¢1)

i=k+1 i=m-+1

with Y = =7 ]_H El _; Y;. We have:

k—1

DX [( T (7 )] =22 [ () (Ve )
_227;

(5 ¥2) (- 0)] 0

and

I=(k- 1)( *Qﬁo) + (m — k) (ﬁn+1*¢0>2+(”*m)< Vi1 ¢1)
FSET S ST 4 (Vi — g — A

= QuA) + S+ 0= m) (Vi — 1)

where S¥ = Zf:j (Yi - ?f) and

o 2
Q1(A) = (k—1) ( - ¢0) +(m—k) (Yk+1 - ¢0>
+ (Vi — o — A + 851y 5m
Thus,

i, on) x [ Q@)+ St (o) (Vs = 01) | o

N3

o
|
NE

n

— (Qu(A) 45y e

/R 1+ \/(Ql(A)‘FS%H)/(n_m)

Assume that
Z Y1~ ¢ .
Vs (@A) +85,) /(0 —m)
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Using the properties of ¢-distribution with n degrees of freedom, we obtain,

m(m,¢0>o<(@1<m+s;+l>‘"2<n—1>%<n—m>%/R(1+ z )_gdz

o (@A) +S7,1) 7 L —m)(n—1)]"2 (n—1)3,

which leads to,

_n-t L
mi(m, ¢o) x (Q1(A)+Sn. 1) % (n—m)~ 2.
An other integration with respect to ¢y gives the posterior density of change point m.

m(m) /R (@1(A) + 8741) T (n—m)~ o,

Then, we have

— 2 —m 2
Qu(A) + Sppy = (b =1) (V1™ = o)+ (m =) (Vi1 — 60)
+ (Ve = do = A)° + 5771+ 57+ Sp

m Ilcfl \2 m )/Z 9
ZY" A+ (>oimy Y3) n (D impa1 Ya)
k—1 m—k

= mey — 2¢o (

=1
+ (Ve — AP+ SF 4S5 + S0

[ - EYimA TEL Y -AP (SN, L YY)’
m m k—1 m—k

+ (Ve — A+ ST+ 570 + S

and,
n Zzzl le -A ’
Q1(A)+ S) iy =m |¢o — = +Q2(A)

where

m Y, — A 2 I'C_IYi 2 m Y; 2
Q2(A) = i -~ ) + (Z;:_l . ) + (Z;kjlk ) +(Ye— A2 +SF S +S0
Thus,

_n—1

lm <¢o - %Hf n QQ(A)] o

N

ma(m) o [ (n—m)”

We can write,
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1 1 b X Yi-A 2 2z
mi(m) o (n—m)”*.Qa(A) " /R 1+<W) doo

Assume that

: :<¢O_ZZ’11)@—A

i ) V@@

m
Finally,
\/7 7”771
mi(m) o (n = m)~.Qa(A VR (i) e
n—2
_n-1

Since [, ( nz_22) * dz o< (n —2)'/2 (t-distribution with n — 1 degrees of freedom), the
proof of the proposition is completed. O

3. Contamination after change-point

Now, the model is written as follows
Y;:)(,L:(ﬁo—‘rez i:l,...,m

Yi=X,=d1+¢ i=m+1,.,k—1 and i=k+1,..,n. (4)
Vi=Xpe +A=¢1+e+A

where ¢g # ¢1 , € ~ N(0,02%) and 0 > 0 with ¢g, ¢1 and o unknown parameters.
In this case, we can use the same methodology than the section 2 with the following differ-
ence: here, we have

7r1(m, 0.27 ¢0) QSI) S8 L(m7027 ¢07 ¢1/Y)'770(m7 027 ¢07 QSI)

and

1
Wo(m, 0—27 ¢0; ¢1) X ;

Since

Y; is distributed according toN(¢g, 0?)for i = 1,...,m.
Y; is distributed according toN(¢1, ag)for i=m+1,.,.k—1 or i=k+1,.,n.
Y, is distributed according toN(¢1 + A, 0?)

L(m,0*, o, ¢1/Y) o< (0°) " *exp {;2 D (Vi = 60)* + (Vi — (61 + A))
k—1 n
+ Y Yimd)? D (Vi qsl)?] }
i=m+1 k+1
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and

1
2 2\n/2—1
m1(m, o, ¢o, 1) x (0°) eacp{—Qaz

k—1 n
+ > (Yi—go)*+ > (Yi— ¢1)2] } :

i=m-+1 k+1
Then, we derive the expression of the posterior density of the change-point m as follows

—2

m1(m) o [m(n — m)] 2. [Q2(A)] 7T
with

n k—1 n
(i Yo = A (i ¥? |, (S Y0
n—m kEk—m-—1 n—=k

Q2(A) = — +(Yk—A)2+S{n+S§;11+SI?+1

4. Numerical study

To illustrate the impact of outliers on change-point problems, we present in this section
some results using simulation procedures. We simulated 100 samples from the contaminated
model (2) where ¢g = 0, ¢; = 1 and o2 = 0.5 for different values of the magnitude A. The
sample sizes N = 25,50, 100 are considered. In our simulations, we noted that position of
the outlier and of the change-point do not play any role.

In the Fig.1, we assume that N = 25, k = 5 and m = 15. One can remark that, in the case
of sample size, the method is sensitive to slight deviations of A (see Fig. 1 (c) ). Also, the
method is inefficient for A > 3.

Fig. 1. Variation of the change-point estimation with A for N =25 and m = 15

(a): A=0,0b):A=1,(c):A=3
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In the Fig.2, we present the variation of the change-point estimation with the magnitude A
when N = 50, m = 20 and k = 10. We remark that the performance of the method is not
satisfactory for A > 5.

Fig. 2. Variation of the change-point estimation with A for N = 50 and m = 20

(a): A=0,0):A=3,(c): A=5

Finally, the Fig.3 presents the case of N = 100, m = 30 and k£ = 10. One can notice that
the method is insensitive until the value of A = 14 only. Then, for slight deviations of the
magnitude, the method is stable. Also, one can say that the Bayesian procedure used in this
paper shows that the estimation is insensitive for high sample sizes but is rather useless in
small sample case.

Fig. 3. Variation of the change-point estimation with A for N = 100 and m = 15.

(a):A=0,():A=11,(c): A=14
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5. Concluding remarks

In the case of small samples, an outlier has a significant impact on the Bayesian procedure
of estimation of the change-point. In this case, the estimated change-point depends on the
magnitude of the outlier. However, if the sample size is high, this influence is not important
and makes the procedure stable in the presence of a contaminant. For further investigations,
it would be interesting to reconsider this work assuming that the magnitude is a random
variable.
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