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Abstract. Let (Y,C,X) be a vector of random variables where Y, C and X are, respec-
tively, the interest variable, a right censoring and a covariable (predictor). In this paper, we
introduce a new nonlinear wavelet-based estimator of the regression function in the right
censorship model. An asymptotic expression for the mean integrated squared error of the
estimator is obtained to both continuous and discontinuous curves. It is assumed that the
lifetime observations form a stationary α−mixing sequence.

Résumé. Soit (Y,C,X) un vecteur de variables aléatoires où Y,C et X sont, respective-
ment, la variable d’intérêt, une censure à droite et une covariable (prédicteur). Dans cet
article, nous introduisons un nouveau estimateur de la fonction de régression basé sur les
ondelettes non linéaire dans le modèle de la censure à droite. Une expression asymptotique
de l’erreur quadratique moyenne intégrée de l’estimateur est obtenue pour les deux courbes
continues et discontinues. On suppose que les observations de la durée de vie forment une
suite α−mélangeante.

Key words: Censored data; Mean integrated squared error; Nonlinear wavelet-based esti-
mator; Nonparametric regression; Strong mixing condition.
AMS 2010 Mathematics Subject Classification : 62G07; 62G20.

1. Introduction

Wavelets and their applications in several areas of both pure and applied mathematics has
provided statisticians with powerful new techniques for nonparametric curve estimation by
combining recent advances in approximation theory with insights gained from applied signal
analysis. Because wavelets are localized in both time and frequency and have remarkable
approximation properties, wavelet estimators automatically adapt to these varying degrees of
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regularity (discontinuities, cusps, sharp spikes, etc.) of the underlying curves to be estimated.
This is a remarkable property of the wavelet method when compared to other common
estimation techniques, such as the kernel method, which may fail in unsmooth situations.
The recent monograph by Härdle et al. (1998) and the book by Vidakovic (1999) provide
excellent systematic discussions on wavelets and their applications in statistics.

Under the assumption that the lifetime observations are mutually independent, the nonlinear
wavelet estimator of the density function has first been considered for complete data; see,
Hall and Patil (1995). These authors showed that the asymptotic mean integrated squared
error (AMISE) formula is the same in both smooth and unsmooth density case, a fact that
is not true for the kernel method. Similar results are available for the problem of estimating
a regression function, see Hall and Patil (1996) for i.i.d. complete data and Truong and
Patil (2001) for α−mixing complete data. For right censorship model, Li (2003) consider a
nonlinear wavelet estimator of a single density function with randomly censored data and
derives its MISE. Li et al. (2008) considers the estimation of the regression function and
they showed its convergence rate over a large function class in the i.i.d. setting.

In this paper we consider the right censorship model and we introduce a new nonlinear
wavelet-based estimator of the regression function and we investigate the asymptotic ex-
pression for the MISE of the estimator. It is assumed that the lifetime observations form a
stationary α−mixing sequence.

Let Y be a lifetime variable with continuous distribution function (df) F and X a continuous
covariable (predictor) taking its values in [0, 1] with df L and corresponding density `. In
regression analysis one expects to identify, if any, the relationship between the Yi’s and
Xi’s. This means looking for a function m∗(X) describing this relationship that realizes the
minimum of the mean squared error criterion. It is well known that this minimum is achieved
by the regression function of Y given X = x, that is m(x) := E(Y |X = x) = h(x)/` (x) ,
with h(x) =

∫
yF (x, dy), where F (·, ·) being the joint df of the random vector (X,Y ) with

density f (·, ·) .
In practice, the response lifetime variable Y− a variable of interest may be subject to left
truncation and/or right censoring. As in medical follow–up research, the observation of the
time to an event may be prevented by a previous censoring occurrence. Examples of such
events include the death of a patient and the relief from symptom. Examples of censoring
occurrences include the end of the study and the loss of data caused by failure to follow up.
In this case only part of the observations are true death time or real relief time. Wavelet
procedures in conjunction with censoring have also been used for detecting change points
in several biomedical applications. Typical examples are the detection of life-threatening
cardiac arythmias in electrocardiographic signals recorded during the monitoring of patients,
or the detection of venous air embolism in doppler heart sound signals recorded during
surgery when the incision wounds lie above the heart. The recent work of Härdle et al. (1998)
provide excellent selective review article on nonlinear wavelet methods in nonparametric
curve estimation and their role on a variety of statistical applications.

Consider a real random variable (rv) Y and a strictly stationary rv’s (Yi)i≥1 with common
unknown absolutely continuous df F. In medical research, industrial life-testing, survival
analysis and other studies, the rv’s my be the lifetime of patient under study. Also let (Ci)i≥1

be a sequence of censoring rv’s with unknown df G. In contrast to statistics for complete data
studies, right-censored model involves pairs (Ti, δi) where only Ti := min (Yi, Ci) = Yi ∧ Ci
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and δi = I (Yi < Ci) , i = 1, 2, ..., n are observed, where I (A) denotes the indicator function
of the set A.

In this paper, we adapt the wavelet-based regression estimators to right censored data un-
der strong mixing conditions whose definition is given below. First, let Fki (Z) denotes the
σ−field of events generated by {Zj , i ≤ j ≤ k}. For easy reference, let us recall the following
definition.

Definition 1. Let {Zi, i ≥ 1} denotes a sequence of rv’s. Given a positive integer n, set:

α(n) = sup
{
|P(A ∩B)−P(A)P(B)| : A ∈ Fk1 (Z), B ∈ F∞k+n(Z), k ∈ IN∗

}
.

The sequence is said to be α−mixing (strongly mixing) if the mixing coefficient α(n) → 0
as n→∞.

Among various mixing conditions used in the literature, α−mixing is reasonably weak and
has many practical applications. Many processes do fulfill the strong mixing property. We
quote, here, the usual ARMA processes which are geometrically strongly mixing, i.e., there
exist ρ ∈ (0, 1) and γ > 1 such that, for any n ≥ 1, α(n) ≤ γρn (see, e.g., Jones, 1978).
The ARCH models (see Engle, 1982), their GARCH extension (see Bollerslev, 1986), the
threshold models and the EXPAR models (see Ozaki, 1979) are geometrically strongly
mixing under some general conditions. We refer the reader to the recent Bradley’s monograph
Bradley (2007).

In the sequel, {Ti, δi, Xi; i ≥ 1} is assumed to be a stationary α−mixing sequence of ran-
dom vectors with coefficient α(n). Moreover, we suppose that the sequences {Yi, i ≥ 1}
and {Ci, i ≥ 1} are α−mixing with coefficient α1(n) and α2(n) respectively. Cai (2001,
Lemma 2) showed that {Ti, i ≥ 1} is then strongly mixing; with coefficient α3(n) =
4 max (α1(n), α2(n)) .

The rest of this paper is organized as follows. In Section 2, we give the necessary definitions
and define the nonlinear wavelet-based estimators of m (·) , ` (·) and h (·). Assumptions and
main results are given in Section 3. The proofs of the main results are postponed to Section
4, where some auxiliary results are also proved. In Appendix, we collect some preliminary
lemmas, which are used in the proofs of our main results.

2. Notations and definition of estimators

Our aim is to estimate, m (·) , ` (·) and h (·) by non-linear empirical wavelet coefficients. Let
φ (x) and ψ (x) be father and mother wavelets, having the properties: φ and ψ are bounded
and compactly supported;

∫
φ2 =

∫
ψ2 = 1, µk =

∫
ykψ (y) dy = 0, for 0 ≤ k ≤ r − 1 and

µr = r!κ, where κ = (1/r!)
∫
yrψ (y) dy. Therefore, the functions

φj (x) = p1/2φ (px− j) , ψij (x) = p
1/2
i ψ (pix− j) ; x ∈ IR (1)

for arbitrary p > 0, i, j ∈ Z, i ≥ 0 and pi = p2i are orthonormal:∫
φj1φj2 = δj1j2 ,

∫
ψi1j1ψi2j2 = δi1i2δj1j2 ,

∫
φj1ψij2 = 0,
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where δij denotes the Kronecker delta, i.e., δij = 1, if i = j; and δij = 0, otherwise.
Then, the collection {φj (x) , ψij (x) , i, j ∈ Z, i ≥ 0} is an orthonormal basis of L2 (IR) . For
the existence and properties of such wavelet, we refer the reader to Cohen et al. (1993);
Daubechies (1992) and Härdle et al. (1998).

Assume that φ and ψ are compactly supported on [0, 1] . For all function f ∈ L2 (IR) , we
have the following wavelet expansion:

f (x) =

p−1∑
j=0

ajφj (x) +

∞∑
i=0

pi−1∑
j=0

aijψij (x) , (2)

where aj =
∫
fφj and aij =

∫
fψij are the wavelet coefficients of the function f (·) and the

series in (2) converges in L2 ([0, 1]) .

As is usual in the wavelet literature we assume that the regression function m (·) , density
` (·) and function h (·) are supported on the unit interval [0, 1]. In view of (2), the proposed
nonlinear wavelet estimators of the covariate density ` (·) is

ˆ̀(x) =

p−1∑
j=0

âjφj (x) +

q−1∑
i=0

pi−1∑
j=0

âijI (|âij | > δ)ψij (x) , (3)

where δ > 0 is the ”threshold” and q ≥ 1 is another smoothing parameter, and the empirical
wavelet coefficients are defined as follows:

âj =

∫
φjdLn = n−1

n∑
k=1

φj (Xk) , âij =

∫
ψijdLn = n−1

n∑
k=1

ψij (Xk) ,

where Ln = n−1
n∑
k=1

I (Xk ≤ x) is the empirical estimator of the covariat’s cumulative df L.

Similarly, as for ` (·) , the wavelet expansion of the function h (·) is given by

h (x) =

p−1∑
j=0

bjφj (x) +

∞∑
i=0

pi−1∑
j=0

bijψij (x) ,

where bj =
∫
hφj and bij =

∫
hψij . Note that the estimator of the joint df F (x, y) =

P (X ≤ x, Y ≤ y) of (X,Y ) under censorship model (see Stute, 1993) is given by

Fn (x, y) = n−1
n∑
k=1

δk
Ḡn(Tk)

I
(
X(k) ≤ x, T(k) ≤ y

)
,

where T(k) is the k − th ordered T−value and X(k) is the concomitant variable associated
with the k − th order statistic Tk, i.e., X(k) = Xj if T(k) = Tj . Here Ḡn denote the Kaplan
and Meier (1958) estimator of the df Ḡ := 1−G, i.e.,

Ḡn(t) =

n∏
i=1

(
1− 1− δi

n− i+ 1

)I(Yi≤t)
I
(
Y(n) > t

)
.

Hence the proposed nonlinear wavelet estimators of h(x) =
∫
yF (x, dy) is
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ĥ (x) =

p−1∑
j=0

b̂jφj (x) +

q−1∑
i=0

pi−1∑
j=0

b̂ijI
(∣∣∣b̂ij∣∣∣ > δ

)
ψij (x) , (4)

where b̂j and b̂ij are defined as follows:

b̂j =
1

n

n∑
k=1

δkTk
Ḡn(Tk)

φj (Xk) , b̂ij =
1

n

n∑
k=1

δkTk
Ḡn(Tk)

ψij (Xk) . (5)

Further, from (3) and (4) a wavelet estimator of m (x) is given by m̂ (x) = ĥ (x) /ˆ̀(x) , with
the convention 0/0 = 0.

3. Assumptions and main results

Throughout this paper, c denotes a positive constant which might take different values
at different place. We define the endpoints of F and G by τF = sup {y, F (y) < 1} ,
τG = sup {y, G (y) < 1} and we assume that τF <∞ and Ḡ (τF ) > 0 (this implies τF < τG).
We point out that since Y can be the lifetime we can suppose it bounded. In addition, we as-
sume that {Ci, i ≥ 1} and {(Xi, Yi) , i ≥ 1} are independent. We introduce our assumptions,
gathered below for easy reference:

A.1 The joint density `j (·, ·) of (X1, Xj+1) exists and satisfies

|`j(s, t)− `(s)`(t)| ≤ c, ∀s, t ∈ [0, 1] ,

for some constant c not depending on j.
A.2 The marginal density ` (·) satisfies ` (x) ≤ c, ∀x ∈ [0, 1] .
A.3 The smoothing parameters p, q and δ are functions of n. Suppose that p→∞, q →∞

as n → ∞ in such a manner that pqδ
2 = O (n−ε) for some 0 < ε < 1, p2r+1δ2 → ∞,

δ ≥ c
(
n−1 log n

)1/2
.

A.4 The mixing condition satisfies α (n) = O
(
n−λ

)
for some

λ ≥ max {(2− ε) /ε, 3 + 4r, 1 + (2r + 1) /ε, (ν − 1)(2ν + 1) (2− ε) /2ε(ν − 2)} ,
where ν > 2, and

ε (λ+ 1 + 2b) + 2b/ (2r + 1) ≥ 2 (b+ 1) , for b > 1.

Proposition 1. Under assumptions (A.1)–(A.4) and the conditions on φ and ψ stated in
section 2. Assume that the r− th derivatives `(r) and h(r) are continuous and bounded. Then

E

∣∣∣∣∫ (ˆ̀− `
)2

−
{
n−1p+ κ2

(
1− 2−2r

)−1
p−2r

∫
`(r)2

}∣∣∣∣ = o
(
n−1p+ p−2r

)
. (6)

E

∣∣∣∣∫ (ĥ− h)2

−
{
n−1p

∫∫
y2f (x, y)

Ḡ (y)
dxdy + κ2

(
1− 2−2r

)−1
p−2r

∫
h(r)2

}∣∣∣∣ = o
(
n−1p+ p−2r

)
.

(7)
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Theorem 1. Under the assumptions of Proposition 1. Let r > 1, suppose that 1 −
r/ (2r + 1) < ε < 2r/ (2r + 1) and p2r+1 = O (n) , then∫

(m̂−m)
2

= Op
(
n−1p+ p−2r

)
. (8)

Moreover, if p is chosen of size n1/(2r+1), then
∫

(m̂−m)
2

= Op
(
n−2r/(2r+1)

)
.

In Proposition 1 and Theorem 1 we described the performance of wavelet methods for
functions ` and h with r derivatives. Clearly that smoothness assumption does have a bearing
on our results. Nevertheless, the failure of the smoothness condition at a finite number of
points does not affect Proposition 1 and also Theorem 1, as our next result shows.

Theorem 2. Under assumptions (A.1)–(A.4) and the conditions on φ and ψ stated in
section 2. Also assume that p2r+1

q n−2r →∞, and impose the condition of r−times differen-
tiability of ` and h only in a piecewise continuous sense; that is, we ask that there exist points
0 = x0 < x1 < · · · < xN < xN+1 = 1 such that the first r derivatives of ` and h exist and
are bounded and continuous on (xj , xj+1) for 0 ≤ j ≤ N, with left- and right-hand limits.
In particular, ` and h themselves my be only piecewise continuous. Then the conclusions (6)
and (7) in Proposition 1 still hold, and also (8) in Theorem 1 holds when `(r) is continuous
and bounded.

Remark 1. Condition (A.1) is needed for covariance calculus and takes similar forms to
those used in complete data under dependence. Note also that, it is satisfied in the i.i.d.
case. Hypothesis (A.2) and (A.3) are used in de Uña-Álvarez et al. (2010) and is needed to
establish Lemmas 5–4. Assumptions (A.4) concern the mixing processes structure which is
standard in such situation. Furthermore, if we replace α (n) = O

(
n−λ

)
by α (n) = O (ρn)

for some 0 < ρ < 1, then (A.4) is automatically satisfied.

Remark 2. The error rates in our Theorems are same as that in Hall and Patil (1996)
for i.i.d. complete data, Truong and Patil (2001) for dependent complete data and de Uña-
Álvarez et al. (2010) for truncated dependent data.

Remark 3. Compared with the kernel estimator, the wavelet analogue of the bandwidth
hn of the kernel estimator is p−1. As point out by Hall and Patil (1996), the n−1p term

derives from variance (compare (nhn)
−1

in the the kernel estimator case) and the p−2r term
from squared bias (compare h2r

n for an rth−order kernel estimator), the optimal size of p is
cn1/(2r+1). Moreover, by choosing p ∼ n1/(2r+1) it can be shown that the MISE satisfy

E

∫ (
ˆ̀− `

)2

∼ n−1p+ κ2
(
1− 2−2r

)−1
p−2r

∫
`(r)2 ∼ n−2r/(2r+1),

E

∫ (
ĥ− h

)2

∼ n−1p

∫∫
y2f (x, y)

Ḡ (y)
dxdy + κ2

(
1− 2−2r

)−1
p−2r

∫
h(r)2 ∼ n−2r/(2r+1).
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4. Proofs

Observing that the orthogonality of φ and ψ implies

∫ (
ĥ− h

)2

=

p−1∑
j=0

(
b̂j − bj

)2

+

q−1∑
i=0

pi−1∑
j=0

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ)

+

q−1∑
i=0

pi−1∑
j=0

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
+

∞∑
i=q

pi−1∑
j=0

b2ij

=: I1 + I2 + I3 + I4.

In order to prove (7), it suffices to bound each term I1, I2, I3 and I4 separately, which is
done in Lemmas 1–4 respectively.

Lemma 1. Under the assumptions of Proposition 1,

E

∣∣∣∣I1 − n−1p

∫∫
y2f (x, y)

Ḡ (y)
dxdy

∣∣∣∣ = o
(
n−1p

)
. (9)

Proof. Using Lemma 5 it follows that

E

∣∣∣∣I1 − n−1p
∫∫ y2f (x, y)

Ḡ (y)
dxdy

∣∣∣∣ ≤ E
∣∣∣∣∣p−1∑
j=0

(
b̃j − bj

)2

− n−1p
∫∫ y2f (x, y)

Ḡ (y)
dxdy

∣∣∣∣∣
+
p−1∑
j=0

EB2
j + 2E

p−1∑
j=0

∣∣∣b̃j − bj∣∣∣ |Bj |
=: I11 + I12 + I13.

Firstly, using the conditional expectation property we get

E

[
δ1T1

Ḡ(T1)

∣∣∣X1 = x

]
= E

[
E

[
I (Y1 ≤ C1)Y1

Ḡ(Y1)

∣∣∣Y1

] ∣∣∣X1 = x

]
= E

[
Y1

Ḡ(Y1)
E
[
I (Y1 ≤ C1)

∣∣∣Y1

]∣∣∣X1 = x

]
= E

[
Y1

∣∣∣X1 = x
]

= m(x).

Then we have

Eb̃j = E

[
δ1T1

Ḡ(T1)
φj (X1)

∣∣∣X1

]
= E

[
φj (X1)E

[
δ1T1

Ḡ(T1)

∣∣∣X1

]]
=

∫
φj (x)m(x)`(x)dx =

∫
φj (x)h(x)dx = bj .
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Now, for simplicity we set Uj,k := δkTkφj (Xk)
/
Ḡ(Tk). Note that

nE
(
b̃j − bj

)2

=
1

n
V ar

n∑
k=1

Uj,k

= V ar (Uj,1) + 2

n−1∑
l=1

(
1− l

n

)
Cov (Uj,1, Uj,l+1) . (10)

We have

V ar (Uj,1) = E
[
U2
j,1

]
− E2 [Uj,1] := V1 − V2.

Using again the conditional expectation property, (1) and a change of variable, we get

V1 = E

[
φ2
j (X1)E

[
I (Y1 ≤ C1)Y 2

1

Ḡ2(Y1)

∣∣∣Y1

]]
=

∫∫
y2

Ḡ (y)
φ2
j (x) f (x, y) dxdy

=

∫∫
y2

Ḡ (y)
φ2 (t) f ((t+ j) /p, y) dtdy. (11)

In other hand

V2 =

(∫∫
yφj (x) f (x, y) dxdy

)2

=

(∫
φj (x)h (x) dx

)2

=

(
p−1/2

∫
φ (t)h ((t+ j) /p) dt

)2

. (12)

By
∫
φ2 = 1 and the compactness of the support of φ we get

p−1∑
j=0

V2 ≤ C
p−1∑
j=0

∫
p−1φ2 (t)h2 ((t+ j) /p) dt→ C

∫
h2 (u) du.

Hence, from (11), (12) and
p−1∑
j=0

p−1f ((t+ j) /p, y)→
∫
f (x, y) dx, it follows

p−1∑
j=0

V ar (Uj,1) = p

∫∫
f (x, y)

Ḡ (y)
dxdy + o (p) . (13)

Now, from (τF < τG) and ` (x) ≤ c, we have

|Cov (Uj,1, Uj,l+1)| = |E [Uj,1Uj,l+1]− E [Uj,1]E [Uj,l+1]|

≤ C

Ḡ2 (τF )

∫∫
|φj (x)φj (y)| |`l (x, y)− ` (x) ` (y)| dxdy

≤ Cp−1

Ḡ2 (τF )

∫∫
|φ (s)φ (t)| |`l (s, t)− ` (s) ` (t)| dsdt.
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Assumption (A.1) give

|Cov (Uj,1, Uj,l+1)| = O
(
p−1
)
. (14)

On the other hand, since |Uj,k| ≤ p1/2 ‖φ‖∞ Ḡ−1 (τF ) = O
(
p1/2

)
, from a result in Hall and

Heyde (1980, Corollary A.1), we have

|Cov (Uj,1, Uj,l+1)| = O (pα (l)) . (15)

Then to evaluate this covariance term, the idea is to introduce a sequence of integers wn
which we precise below. Then we use (14) for the close 1 and l and (15) otherwise. That is

2|
n−1∑
l=1

(1− l/n)Cov (Uj,1, Uj,l+1) | ≤ c(
∑
l≤wn

+
∑
l>wn

) |Cov (Uj,1, Uj,l+1)| .

Note that pqδ
2 = O (n−ε) and p2r+1δ2 →∞, implies p > cnε/2r. Choosing wn = p/ ln ln(n),

we have

2|
n−1∑
l=1

(1− l/n)Cov (Uj,1, Uj,l+1) | ≤ c(
∑
l≤wn

+
∑
l>wn

) min
(
p−1, pα (l)

)
= o (1) . (16)

In the same way as for the term V ar
p−1∑
j=0

(ãj − aj)2
of de Uña-Álvarez et al. (2010) (see the

proof of (4.11) in their Appendix, pp 341–344), it can be shown that

V ar

p−1∑
j=0

(
b̃j − bj

)2

= o
(
n−2p−2

)
. (17)

Then (10), (13), (16) and (17) yield that I11 = o
(
n−1p

)
.

For I12, following the line as for I11, it is easy to see that

I12 = O

(
ln ln(n)

n

) p−1∑
j=0

E

[
1

n

n∑
k=1

|φj (Xk)|

]2

≤ O
(

ln ln(n)

n

) p−1∑
j=0

E
[

1

n

n∑
k=1

|φj (Xk)| − E |φj (Xk)|

]2

+ (E [|φj (Xk)|])2


= O

(
ln ln(n)

n

)
O
(
n−1p

)
+O

(
ln ln(n)

n

)
= o

(
n−1p

)
.

Finally, as to I13, we have

I13 ≤ 2

p−1∑
j=0

E
[
b̃j − bj

]21/2p−1∑
j=0

EB2
j

1/2

= o
(
n−1p

)
.

Combining the estimates on I11, I12 and I13 together, we obtain (9). �
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Lemma 2. Under the assumptions of Proposition 1,

E

∣∣∣∣I2 − p−2rκ2
(
1− 2−2r

)−1
∫
h(r)2

∣∣∣∣ = o
(
p−2r

)
.

Proof. Let ζ > 0, and define

I21 =

q−1∑
i=0

pi−1∑
j=0

b2ijI (|bij | ≤ (1− ζ) δ) , I22 =

q−1∑
i=0

pi−1∑
j=0

b2ijI (|bij | ≤ (1 + ζ) δ) ,

∆ =
q−1∑
i=0

pi−1∑
j=0

b2ijI
(∣∣∣b̂ij − bij∣∣∣ ≤ ζδ) . Then I21 − ∆ ≤ I2 ≤ I21 + ∆. By using Taylor

expansion, we have

bij =

∫
h (x)ψij (x) dx = p

1/2
i

∫
ψ (u)h

(
u+ j

pi

)
du

= p
1/2
i

∫
ψ (u)

{
r−1∑
s=0

1

s!
(u/pi)

s
h(s) (j/pi) +

1

(r − 1)!
(u/pi)

r
∫ 1

0

(1− t)r−1
h(s)

(
j + tu

pi

)
dt

}
du

= p
−(r+1/2)
i

1

(r − 1)!

∫
urψ (u)

∫ 1

0

(1− t)r−1
h(r)

(
j + tu

pi

)
dtdu

= κp
−(r+1/2)
i (Gij +Hij) , (18)

where Gij = h(s) (j/pi) and sup0≤i≤q−1,0≤j≤pi−1 |Hij | → 0.

Note that supj |bij | ≤ cp
−(r+1/2)
i ≤ cp−(r+1/2) and pr+1/2δ →∞. Hence, for n large enough

we have

I21 = I22 =

q−1∑
i=0

pi−1∑
j=0

κ2p
−(2r+1)
i (Gij +Hij)2

= p−2rκ2
(
1− 2−2r

)−1
∫
h(r)2 + o

(
p−2r

)
.

Hence, to prove Lemma 2, it suffice to show that E∆ = o (I22) . According to Lemma 5 we
have

E∆ ≤
q−1∑
i=0

pi−1∑
j=0

b2ijP
(∣∣∣b̃ij − bij∣∣∣ > c1ζδ

)
+

q−1∑
i=0

pi−1∑
j=0

b2ijP (|Bij | > c2ζδ) , (19)

where c1 and c2 are positive constants such that c1 + c2 = 1.

In order to evaluate E∆, we first use Lemma 7 to bound P
(∣∣∣b̃ij − bij∣∣∣ > c1ζδ

)
. Set Ψijk =

δkTk
Ḡ(Tk)

ψij (Xk) . Then EΨijk = bij , |Ψijk − EΨijk| ≤ cp1/2
i := s,
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E (Ψijk − EΨijk)
2 ≤ EΨ2

ijk ≤ c and |Cov (Ψijt,Ψiju)| = O
(
p−1
i

)
for t 6= u.

Therefore, by Lemma 8, taking ν =∞, for N ∈ N, 0 < N ≤ n/2 we have

DN = max
1≤l≤2N

V ar

(
l∑

k=1

Ψijk

)
≤ cN

{(
p

1/2
i

)2/r (
p−1
i

)1−1/r
+ c

}
≤ cN. (20)

Assumption (A.3) and λ ≥ (2− ε) /ε imply pλ+1
i δ2(λ−1) < pλ+1

q δ2(λ−1) → 0. So, according

to Lemma 7, taking N =
⌈(
piδ

2
)⌉
, it follows that

P
(∣∣∣b̃ij − bij∣∣∣ > c1ζδ

)
= P

(
n∑
k=1

(Ψijk − EΨijk) > nc1ζδ

)

≤ 4 exp

{
− (nc1ζδ)

2
/16

nN−1DN + Cnc1ζδNs

}
+

32s

nc1ζδ
nα (N)

≤ 4 exp
{
−Cδ2n

}
+ C

(
p

(λ+1)/2
i δλ−1

)
→ 0. (21)

By using arguments similar to those behind (20), it follows that

V ar

(
n∑
k=1

δkTk
Ḡ(Tk)

ψij (Xk)

)
≤ cn.

Hence

EB2
ij = O

(
ln ln (n)

n

)
E

(
1

n

n∑
k=1

δkTk |ψij (Xk)|
Ḡ(Tk)

)2

= O

(
ln ln (n)

n

){
V ar

(
1

n

n∑
k=1

δkTk |ψij (Xk)|
Ḡ(Tk)

)
+ E

(
δ1T1 |ψij (X1)|

Ḡ(T1)

)2
}

= O

(
ln ln (n)

n

)
{1/n+ 1/pi} = o (1/n) . (22)

From (19), (21) and (22), and the fact that nδ2 →∞, it yields that

E∆ ≤ o

q−1∑
i=0

pi−1∑
j=0

b2ij

+

q−1∑
i=0

pi−1∑
j=0

b2ij
EB2

ij

c22ζ
2δ2

= o (I22) .

This finishes the proof of Lemma 2. �

Lemma 3. Under the assumptions of Proposition 1,

E (I3) = o
(
n−2r/(2r+1)

)
.
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Proof. Let c3, c4 denote positive numbers satisfying c3 + c4 = 1. Then, from

I
(∣∣∣b̂ij∣∣∣ > δ

)
≤ I (|bij | > c3δ) + I

(∣∣∣b̂ij − bij∣∣∣ > c4δ
)
,

we have

E (I3) ≤
q−1∑
i=0

pi−1∑
j=0

E

[(
b̂ij − bij

)2

I (|bij | > c3δ)

]
+

q−1∑
i=0

pi−1∑
j=0

E

[(
b̂ij − bij

)2

I
(∣∣∣b̂ij − bij∣∣∣ > c4δ

)]
= I31 + I32.

According to Lemma 5, it follows that

I31 ≤ 2

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I (|bij | > c3δ)

]
+ 2

q−1∑
i=0

pi−1∑
j=0

E
[
B2
ijI (|bij | > c3δ)

]
= I311 + I312.

The proof of (20) shows that E
(
b̃ij − bij

)2

≤ C/n, and (18) implies supj |bij | ≤ cp
−(r+1/2)
i .

Therefore, from n1/2δ →∞, we find

I311 = O
(
n−1

) q−1∑
i=0

piI
(
pi ≤ (c/c3δ)

2/(2r+1)
)

= O
(
n−1δ−2/(2r+1)

)
= o

(
n−2r/(2r+1)

)
. (23)

Note that pqδ
2 = O (n−ε) and δ ≥ c (ln(n)/n)

1/2
implies that q = O (ln (n)) and

pq ln (n) /n→ 0. Then by using (22) we have

I312 = O

(
ln ln (n)

n

) q−1∑
i=0

(pi
n

+ 1
)

= O

(
ln ln (n)

n

)(pq
n

+ q
)

= o
(
n−2r/(2r+1)

)
. (24)

Equations (23) and (24) yield that I31 = o
(
n−2r/(2r+1)

)
.

As to I32, let c5, c6 denote positive numbers satisfying c5 + c6 = 1. On applying Lemma 5
again, we have

I32 ≤ 2

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I (|Bij | > c4c6δ)

]

+ 2

q−1∑
i=0

pi−1∑
j=0

EB2
ij + 2

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]
. (25)
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Observe that

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I (|Bij | > c4c6δ)

]

=

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(
|Bij | > c4c6δ,

∣∣∣b̃ij − bij∣∣∣ > c4c5δ
)]

+

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(
|Bij | > c4c6δ,

∣∣∣b̃ij − bij∣∣∣ ≤ c4c5δ)]

≤
q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]
+ C

q−1∑
i=0

pi−1∑
j=0

EB2
ij ,

which, together with (25) and the proof of (24), leads to

I32 ≤ 3

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]
+ C

q−1∑
i=0

pi−1∑
j=0

EB2
ij

≤ 3

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]
+ o

(
n−2r/(2r+1)

)
.

Therefore, it suffice to show that

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]
= o

(
n−2r/(2r+1)

)
. (26)

Let a denote a positive number such that 1/a + 1/b = 1. By using Lemma 9 and (21),
according to Hölder’s inequality, we get

q−1∑
i=0

pi−1∑
j=0

E

[(
b̃ij − bij

)2

I
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

)]

≤
q−1∑
i=0

pi−1∑
j=0

(
E
∣∣∣b̃ij − bij∣∣∣2a)1/a (

P
(∣∣∣b̃ij − bij∣∣∣ > c4c5δ

))1/b

≤ c
q−1∑
i=0

pi−1∑
j=0

1

n

{
exp

(
−c1δ2n

)
+
(
pλ+1
i δ2(λ−1)

)1/(2b)
}

≤ cpq
n

exp
(
−c1δ2n

)
+ cn−1p(λ+1)/(2b)+1

q δ(λ−1)/b.

By choosing δ ≥ c2 (ln(n)/n)
1/2

with c2 is such that c1c2 = 2r/(2r + 1), and by noticing

that pqδ
2 = O (n−ε), δ ≥ c3 (ln(n)/n)

1/2
and ε (λ+ 1 + 2b) + 2b/(2r + 1) ≥ 2 (b+ 1) imply

n−1p
(λ+1)/(2b)+1
q δ(λ−1)/b = o

(
n−2r/(2r+1)

)
. Combining (23), (24) and (26), we have proved

the lemma. �
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Lemma 4. Under the assumptions of Proposition 1,

I4 =

∞∑
i=q

pi−1∑
j=0

b2ij = o
(
p−2r

)
.

Proof. From (18), it follows that

I4 =

∞∑
i=q

pi−1∑
j=0

κ2p
−(2r+1)
i (Gij +Hij)2 ≤ 2κ2

∞∑
i=q

p
−(2r+1)
i

pi−1∑
j=0

G2
ij

= O
(
p−2r
q

)
= o

(
p−2r

)
.

We achieve the proof. �

Proof of Proposition 1. The proof of (7) follows from Lemmas 1–4. The proof of (6)
concerning the covariate density is a particular case of (7) (it suffice to take δi = 1, Ti =
1, Ḡ(Ti) = 1; i ≥ 1, i.e., without censoring).
We are now in a position to give the proof of Theorem 1. �
Proof of Theorem 1. We use the following classical decomposition

m̂ (x)−m (x) =
ĥ (x)− h (x)

ˆ̀(x)
+m (x) · ` (x)− ˆ̀(x)

ˆ̀(x)
.

Then

∫
(m̂ (x)−m (x))

2
dx ≤ 2

β − sup
x∈[0,1]

∣∣∣ˆ̀2 (x)− `2 (x)
∣∣∣

×

{∫ (
ĥ (x)− h (x)

)2

dx+ β−1 sup
x∈[0,1]

(m (x))
2 ∫ (ˆ̀(x)− ` (x)

)2

dx

}
,

where β = inf
x∈[0,1]

`2 (x) . Recall that, by using the fact that |ω| = Op (E |ω|) for any rv ω,

Proposition 1 yield that

∫ (
ˆ̀(x)− ` (x)

)2

dx = Op
(
n−1p+ p−2r

)
,

∫ (
ĥ (x)− h (x)

)2

dx = Op
(
n−1p+ p−2r

)
.

From assumption (A.2) it suffices to show that

sup
x∈[0,1]

∣∣∣ˆ̀(x)− ` (x)
∣∣∣ = op (1) . (27)

The proof of (27) is analogous to that given in the proof of Theorem 3.1 of de Uña-Álvarez
et al. (2010, pages: 331–332) concerning the covariate density under truncation, therefore,
it is omitted. �
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Proof of Theorem 2. The proof is analogous to Proposition 1 and Theorem 1, we prove
only (7), the proof of (6) is similar, and (8) is a consequence of (6) and (7).

Observe that, by the orthogonality properties of φ and ψ,
∫ (

ĥ− h
)2

= Iq (Z,Z, ...) , where

Z denotes the set of all integers and

Iq (J ,J0,J1, ...) =
∑
j∈J

(
b̂j − bj

)2

+

q−1∑
i=0

∑
j∈Ji

b2ijI
(∣∣∣b̂ij∣∣∣ ≤ δ)

+

q−1∑
i=0

∑
j∈Ji

(
b̂ij − bij

)2

I
(∣∣∣b̂ij∣∣∣ > δ

)
+

∞∑
i=q

∑
j∈Ji

b2ij

:= I1 (J ) + I2 (J0,J1, ...) + I3 (J0,J1, ...) + I4 (J0,J1, ...) ,

where Ji= {0, 1, ..., pi − 1} . When h (·) is only piecewise continuous, let X denote the finite
set of points where h(s) has point of discontinuities for some 0 ≤ s ≤ r. If suppφ ⊆ (−u, u) ,
then, unless

j ∈ K = {k : k ∈ (py − u, py − u) for some y ∈ X} ,
both bj and b̂j are constructed entirely from an integral over or an average of data values from
an interval where h(r) exists and is bounded and continuous. Likewise, if suppφ ⊆ (−u, u) ,
then, unless

j ∈ Ki = {k : k ∈ (piy − u, piy − u) for some y ∈ X} ,
bj and b̂j are also constructed solely from such regions. Then we may write∫ (

ĥ− h
)2

= Iq (K,K0,K1, ...) + Iq
(
K̃, K̃0, K̃1, ...

)
,

where K̃ and K̃i denotes the complements of K and Ki in Z. The proof of (10) shows

E
(
b̃j − bj

)2

= O
(
n−1

)
, the evaluation for I12 shows EB2

j = O (ln ln (n) /n)
(
n−1 + p−1

)
.

Furthermore, noting that both K and Ki have no more than (2u+ 1) (#X ) elements for
each i. Then by Lemma 5 it follows that

EI1 (K) ≤ 2
∑
j∈K

EB2
j + 2

∑
j∈K

E
(
b̃j − bj

)2

= O (ln ln (n) /n)
(
n−1 + p−1

)
+O

(
n−1

)
= o

(
n−2r/(2r+1)

)
.

Note that

EI2 (K0,K1, ...) ≤
q−1∑
i=0

∑
j∈Ki

b2ijI (|bij | ≤ (1− ζ) δ) +

q−1∑
i=0

∑
j∈Ki

b2ijI
(∣∣∣b̃ij∣∣∣ > ζδ

)

= O
(
pδ2
)

+

q−1∑
i=0

∑
j∈Ki

p−1
i

{
P
(∣∣∣b̃ij − bij∣∣∣ > cδ

)
+ b2ijP (|Bij | > cδ)

}
. (28)
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From δ ≥ c
(
n−1 log n

)1/2
we have

E |Bij | δ−1 ≤ c
(

ln ln (n)

nδ2

)1/2

E

(
δ1T1 |ψij (X1)|

Ḡ(T1)

)
≤ c

(
ln ln (n)

p ln (n)

)1/2

→ 0,

hence similarly to the proof as for (21) one can verify that

P (|Bij | > cδ) ≤ P (|Bij − EBij | > cδ) ≤ 4 exp
{
−cδ2n

}
+ c

(
p

(λ+1)/2
i δλ−1

)
.

Therefore, in view of p2r+1
q n−2r →∞ and (A.3), from (28) and

n2r/(2r+1)p(λ+1)/2
q δλ−1 ≤ cn−(ε(λ−1)/2−2r/(2r+1)) → 0

since ε (λ− 1) /2− 2r/ (2r + 1) > b by λ ≥ 1 + (2r + 1) /ε we have

EI2 (K0,K1, ...) ≤ O
(
q
(
pqδ

2
)
p−1
q

)
+ C

q−1∑
i=0

p−1
i

(
exp

{
−Cδ2n

}
+ p

(λ+1)/2
i δλ−1

)
≤ o

(
n−2r/(2r+1)

)
+ cp−1 exp

{
−Cδ2n

}
+ Cp(λ+1)/2

q δλ−1 = o
(
n−2r/(2r+1)

)
.

By Lemma 5 and Lemma 6, from (22) it follows that

EI3 (K0,K1, ...) ≤ 2

q−1∑
i=0

∑
j∈Ki

{
EB2

ij + E
(
b̃ij − bij

)2
}

= O (q/n) = o
(
n−2r/(2r+1)

)
.

Thus I1 (K) + I2 (K0,K1, ...) + I3 (K0,K1, ...) is negligible compared to the main terms

of MISE. In view of bij = O
(
p
−1/2
i

)
and p2r+1

q n−2r → ∞ we have I3 (K0,K1, ...) =

O
(
p−1
q

)
= o

(
n−2r/(2r+1)

)
. The methods in the proof of Proposition 1 may be employed to

prove that Iq
(
K̃, K̃0, K̃1, ...

)
has precisely the asymptotic properties claimed for

∫ (
ĥ− h

)2

in Proposition 1. �
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Appendix A:

In this section we give some preliminary lemmas which have been used in the proofs of our
main results. Let {Zi, i ≥ 1} be a stationary α−mixing sequence of real rv’s with the mixing
coefficients α(n) (see, Definition 1).

Lemma 5. Set

b̃j =
1

n

n∑
k=1

δkTk
Ḡ(Tk)

φj (Xk) , b̃ij =
1

n

n∑
k=1

δkTk
Ḡ(Tk)

ψij (Xk) . (A1)
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Then under the assumption α (n) = O (n−r) for some r > 3, we have b̂j = b̃j + Bj and

b̂ij = b̃ij +Bij , where

|Bj | = O
(√

ln ln (n) /n
) 1

n

n∑
k=1

|φj (Xk)| |Yk| a.s, (A2)

|Bij | = O
(√

ln ln (n) /n
) 1

n

n∑
k=1

|ψij (Xk)| |Yk| a.s. (A3)

Proof. We have from (5) and (A1)

∣∣∣b̂j − b̃j∣∣∣ =
1

n

∣∣∣∣∣
n∑
k=1

I (Yk < Ck)Yk
Ḡn(Yk)

φj (Xk)−
n∑
k=1

I (Yk < Ck)Yk
Ḡ(Yk)

φj (Xk)

∣∣∣∣∣
≤ 1

n

n∑
k=1

|Yk| |φj (Xk)|
∣∣∣∣ Ḡ(Yk)− Ḡn(Yk)

Ḡn(Yk)Ḡ(Yk)

∣∣∣∣
≤ 1

Ḡn(τF )Ḡ(τF )
sup
t≤τF

(∣∣Ḡn(t)− Ḡ(t)
∣∣) 1

n

n∑
k=1

|Yk| |φj (Xk)| .

In the same way as for Theorem 2 of Cai (2001), it can be shown that

sup
t≤τF

(∣∣Ḡn(t)− Ḡ(t)
∣∣) = O

(√
ln ln (n) /n

)
a.s.

Similarly, we get (A3). �

Lemma 6 (Hall and Heyde (1980, Corollary A.1)). Suppose that X and Y are rv’s
such that |X| < c1 and |Y | < c2. Then

|EXY − EXEY | ≤ 4c1c2

{
sup

A∈σ(X),B∈σ(Y )

|P (XY )− P (X)P (Y )|

}
.

Lemma 7 (Liebscher (2001, Proposition 5.1)). Assume that EZ1 = 0, EZ2
1 <∞ and

|Zj | ≤ s <∞ a.s. (j = 1, ..., n) . Then, for n,N ∈ N, 0 < N ≤ n/2, for ε > 0,

P

∣∣∣∣∣∣
n∑
j=1

Zj

∣∣∣∣∣∣ > ε

 ≤ 4 exp

{
− ε2/16

nN−1DN + εsN/3

}
+ 32

s

ε
nα (N) ,

where DN = max1≤l≤2N V ar
(∑l

j=1 Zj

)
.
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Lemma 8 (Liebscher (1996, Lemma 2.3)). Assume α(n) ≤ c1n
−r, for some c1 > 0,

r > 1. Let sup
1≤i;j≤n,i 6=j

|Cov (Zi, Zj)| := R∗ (n) < ∞ be satisfied. Moreover, let Rν (n) < ∞

for some ν, 2r/ (r − 1) < ν ≤ ∞, where Rν (n) = sup1≤j≤n (E |Zj |ν)
1/ν

for 1 ≤ ν <∞ and
R∞ (n) = sup1≤j≤n ess supω∈Ω |Zj | . Then

V ar

 n∑
j=1

Zj

 ≤ n{c(r,ν) (Rν (n))
2ν/(ν−2)r

(R∗ (n))
1−ν/(ν−2)r

+R2
2 (n)

}
holds with c(r,ν) := 20r−40r/ν

r−1−2r/ν c
1/r
1 is a constant depending on r, ν only.

In order to obtain the bounds on the term I32 in Lemma 3, we also need the following
Lemma.

Lemma 9. Under the assumptions of Lemma 3. Let ν > 2, if λ ≥ (ν − 1)(2ν +

1) (2− ε) /2ε(ν − 2), then E |ãij − aij |ν = O
(
n−ν/2

)
, E

∣∣∣b̃ij − bij∣∣∣ν = O
(
n−ν/2

)
.

Proof. Following the lines of Lemma 4.5 in Liang et al. (2005) or that of de Uña-Álvarez
et al. (2010, Lemma A.7), we can verify the Lemma. We only prove the second equation,

the proof of first equation is analogous. Choosing r (n) = [(n/pq)
(ν−2)/2(ν−1)

], and positive
integers k (n) and γ (n) such that n = r (n) k (n) + γ (n) , with 0 ≤ γ (n) ≤ r (n) . Set

Mk :=
1

n

(
δkTkψij (Xk) /Ḡ(Tk)− bij

)
. Then

b̃ij − bij =

k(n)∑
l=1

lr(n)∑
j=(l−1)r(n)+1

Mj +

n∑
j=r(n)k(n)+1

Mj .

The contribution of the remainder last term is negligible (and is subsequently ignored). So,
without loss of generality, we assume γ (n) = 0, and further k (n) = 2s (n) . Then

b̃ij − bij =

2s(n)∑
l=1

lr(n)∑
j=(l−1)r(n)+1

Mj =:

2s(n)∑
l=1

ζn (l) (A4)

=

2s(n)∑
l=1

ζn (2l) +

2s(n)∑
l=1

ζn (2l − 1) =: S (n) + T (n) .

Hence E
∣∣∣b̃ij − bij∣∣∣ν ≤ C {E |S (n)|ν + E |T (n)|ν} . Next, we evaluate only E |T (n)|ν , since

the evaluation of E |S (n)|ν is similar. In view of Theorem 3 of Bradley (1983), there exist
i.i.d. rv’s ζ∗n (2l − 1) , l = 1, 2, ..., s (n) such that ζ∗n (2l − 1) has the same distribution as
ζn (2l − 1) for each l, and satisfies

P (|ζ∗n (2l − 1)− ζn (2l − 1)| ≥ εl) ≤ 18

(
‖ζn (2l − 1)‖∞

εl

)1/2

α (r (n)) , (A5)
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where 0 < εl ≤ ‖ζn (2l − 1)‖∞ , if ‖ζn (2l − 1)‖∞ > 0 and εl > 0, if ‖ζn (2l − 1)‖∞ = 0.
Then

E |T (n)|ν ≤ c{E|
2s(n)∑
l=1

(ζ∗n (2l − 1)− ζn (2l − 1)) |ν + E|
2s(n)∑
l=1

ζ∗n (2l − 1) |ν}

= c {T1 (n) + T2 (n)} .

Let us take Nn > 0 such that s (n)Nn � n−1/2, where αn � βn means 0 < lim inf αn/βn ≤
lim supαn/βn < ∞, and assume ‖ζn (2l − 1)‖∞ ≥ Nn, for l = 1, 2, ..., s (n) . Otherwise,
by rearranging the terms appropriately, we may assume that ‖ζn (2l − 1)‖∞ ≥ Nn, for
l = 1, 2, ..., s (n) , and ‖ζn (2l − 1)‖∞ < Nn, for l = s1 (n) + 1, ..., s (n) , where s1 (n) is a
positive integer with s1 (n) ≤ s (n) , then

T1 (n) ≤ c{(Nns (n))
ν

+ E(

2s(n)∑
l=1

|ζ∗n (2l − 1)− ζn (2l − 1) |)ν}.

Therefore,

T1 (n) ≤ c{(Nns (n))
ν
+E(

2s(n)∑
l=1

|ζ∗n (2l − 1)−ζn (2l − 1) |I (|ζ∗n (2l − 1)− ζn (2l − 1) | ≥ Nn))ν},

where ‖ζn (2l − 1)‖∞ ≥ Nn. Observe that

|ζ∗n (2l − 1)− ζn (2l − 1) | ≤ 2r (n)

(
cp

1/2
i ‖ψ‖∞
Ḡn(τF )

+ |bij |

)
1

n
≤ cn−12r (n) p1/2

q .

Note that, assumptions (A.3) and (A.4) imply n−
λ(ν−2)
2(ν−1)

+ 1
4 p

λ(ν−2)
2(ν−1)

+ ν
2 + 1

4
q = o

(
n−ν/2

)
. Then,

according to (A5) and Nns (n) = O
(
n−1/2

)
, it follows that

T1 (n) ≤ O
(
n−ν/2

)
+ c

(
n−1r (n) p1/2

q

)ν
(s (n))

ν−1
s(n)∑
l=1

P (|ζ∗n (2l − 1)− ζn (2l − 1) | ≥ Nn)

≤ O
(
n−ν/2

)
+ c

(
n−1r (n) p1/2

q

)ν
(s (n))

ν
(

(nNn)
−1
r (n) p1/2

q

)1/2

(r (n))
−λ

≤ cn−
λ(ν−2)
2(ν−1)

+ 1
4 p

λ(ν−2)
2(ν−1)

+ ν
2 + 1

4
q +O

(
n−ν/2

)
= O

(
n−ν/2

)
.

Next, we estimate T2 (n) . Applying the Rosenthal inequality for sums of independent rv’s
(see, Petrov, 1995, Theorem 2.9, page 59), we get

T2 (n) ≤ c{
s(n)∑
l=1

E|ζ∗n (2l − 1) |ν + (

s(n)∑
l=1

E (ζ∗n (2l − 1))
2
)ν/2}

≤ c
{
s (n)E|ζn (1) |ν +

(
s (n)E(ζn (1))2

)ν/2}
. (A6)
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From (τF < τG), we have

E|ζn (1) |ν = E|
r(n)∑
k=1

Mk|ν ≤ (r (n))
ν
E|M1|ν

≤ c (r (n))
ν
n−νE|ψij (X1) |ν

≤ c (r (n))
ν
n−νp

ν/2−1
i

∫
|ψ (t)|ν `

(
t+ j

pi

)
dt

≤ c (r (n))
ν
n−νpν/2−1

q .

Then

s (n)E|ζn (1) |ν = O
(
n−ν/2

)
. (A7)

As to E(ζn (1))2, by using Lemma 8, it follows that

E(ζn (1))2 = E|
r(n)∑
k=1

Mk|2 ≤ r (n)
{
c(R∞ (r (n))

2/λ
(R∗ (r (n)))1−1/λ +R2

2 (r (n))
}
,

where

R∞ (r (n)) := sup
1≤j≤n

ess sup
ω∈Ω
|Mk| ≤ c

(
Cp

1/2
i ‖ψ‖∞
Ḡn(τF )

+ |bij |

)
1

n
= O

(
n−1p1/2

q

)
,

R2
2 (r (n)) := E|M1|2 ≤ cn−2

∫
|ψ (t)|2 `

(
t+ j

pi

)
dt = O

(
n−2

)
,

R∗ (r (n)) := sup
1≤i;j≤r(n),i6=j

|Cov (Mi,Mj)| ≤ cn−2p−1
q .

Hence, E(ζn (1))2 ≤ cr (n)n−2 and s (n)E(ζn (1))2 ≤ cs (n) r (n)n−2 = O
(
n−1

)
, which,

together with (A6) and (A7), yields T2 (n) = O
(
n−ν/2

)
. This finishes the proof. �

References

Antoniadis, A., 2007. Wavelet methods in statistics: Some recent developments and their
applications. Statistics Surveys. Vol. 1, 16-55.

Bollerslev, T., 1986. General autoregressive conditional heteroskedasticity. J. Economt. 31,
307–327.

Bradley, R.C., 1983. Approximation theorems for strongly mixing random variables. Michi-
gan. Math. J. 30, 69-81.

Bradley, R.C., 2007. Introduction to strong mixing conditions. Vol I-III, Kendrick Press,
Utah.

Cai, Z., 2001. Estimating a distribution function for censored time series data. J. Multivariate
Anal. 78, 299-318.

Journal home page: www.jafristat.net



D. Yahia and F. Benatia, Journal Afrika Statistika, Vol. 7, 2012, pages 391–411. Nonlinear wavelet
regression function estimator for censored dependent data. 411

Cohen, A., Daubechies, I. and Vial, P., 1993. Wavelets on the interval and fast wavelet
transforms. Appl. Comput. Harmon. Anal. 1, 54-82.

Daubechies, I., 1992. Ten Lectures on Wavelets. SIAM, Philadelphia.
Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the vari-

ance of U.K. inflation. Econometrica. 50, 987-1007.
Hall, P. and Heyde, C.C., 1980. Martingale Limit Theory and its Application. Academic

Press, New York.
Hall, P. and Patil, P., 1995. Formulae for mean integrated squared error of non-linear wavelet-

based density estimators. Ann. Statist. 23, 905-928.
Hall, P. and Patil, P., 1996. On the choice of smoothing parameter, threshold and truncation

in nonparametric regression by nonlinear wavelet methods. J. of the Royal Statistical
Society. Series B. Methodological 58, 361-377.
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