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Abstract. Recently Necir and Meraghni (2009) proposed an asymptotically normal esti-
mator for distortion risk premiums when losses follow heavy-tailed distributions. In this
paper, we propose a bias-corrected estimator of this class of risk premiums and establish its
asymptotic normality. Our considerations are based on the high quantile estimator given by
Matthys and Beirlant (2003).

Résumé. Récemment Necir and Meraghni (2009) ont proposé un estimateur asymptotique-
ment normal pour les primes de risque de distorsion lorsque les pertes suivent des distri-
butions à queues lourdes. Dans cet article, nous proposons un estimateur à biais réduit,
pour cette classe de primes de risque et nous établissons sa normalité asymptotique. Nos
considérations sont basées sur l’estimateur des quantile extrêmes intoduit par Matthys and
Beirlant (2003).

Key words: Bias reduction; High quantiles; Hill estimator; L-statistics; Order statistics;
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1. Introduction

Many premium calculation principles are introduced in actuarial science literature (e.g.,
Denuit et al. (1985); Furman and Zitikis (2008a) and references therein). The most popular
ones are the net premium, the variance and standard deviation based premiums, the value-
at-risk, the conditional tail expectation, and the proportional-hazards transform. Many of
the premiums are special cases of the distortion premium (Wang, 1996), which is defined,
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for a given loss variable X ≥ 0 with cumulative distribution function (cdf) F, by

Ψ[F, g] =

∫ ∞
0

g(1− F (x))dx,

where g : [0, 1] → [0, 1] is a distortion function, that is : g is non-decreasing and such that
g(0) = 0 and g(1) = 1. In term of quantile function Q (s) = inf {x : F (x) ≥ s} , 0 < s < 1,
this class of risk premiums takes the following form

Ψ[Q; g] =

∫ 1

0

Q (1− s) dg (s) . (1)

Most of the distortion functions g are concave, which makes the corresponding distortion
premiums Ψ[F, g] coherent (Artzner et al., 1999 and Wirch and Hardy, 1999). In this paper,
we are motivated by the risk losses for heavy-tailed distribution. Then it is quite natural
to suppose that the distortion functions g is such that t → g (1/t) is regularly varying at
infinity with index of regular variation ρ ≥ 1, that is

g (1/t) = t−1/ρ`g (t) , (2)

where is t→ `g (t) is slowly varying as infinity, that is `g (tx) /`g (t)→ 1 as t→∞, for any
x > 0. Some examples of usual distortion functions satisfying regular variation condition (2)
are listed below:

– Net premium

g (x) = x with ρ = 1, `g (x) = 1;

– Tail value-at-risk

g (x) = min

(
x

p
, 1

)
with ρ = 1, `g (x) = 1;

– Proportional hazard transform (PHT)

g (x) = x1/β with ρ = β, `g (x) = 1;

– Dual power function principle (0 < α < 1)

g (x) = 1− (1− x)α with ρ = 1/α, `g (x) = x−α − (x−1 − 1)α;

– Gini principle (0 < α ≤ 1)

g (x) = (1 + α)x− αx2 with ρ = 1, `g (x) = (1 + α)− αx;

– Beta-distortion risk premium (Wirch and Hardy, 1999)

g (x) =

∫ x

0

ta (1− t)b

β (a, b)
dt with ρ = 1/ (a+ 1) , `g (x) =

1

(a+ 1)β (a, b)
;

where β (a, b) :=
∫ 1

0
ta(1−t)b
β(a,b) dt.
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– MINMAXVAR2 risk premium (Madan and Schoutens, 2010)

g (x) = 1−
(

1− x
1

1+λ

)1+τ
, λ > 0, τ > 0

with ρ =
1 + λ

1 + τ
, `g (x) = x−

1+τ
1+λ −

(
x−

1
1+λ − 1

)1+τ
.

Jones and Zitikis (2003) noticed that the empirical counterpart of Ψ(F ; g) is a linear combi-
nation of order statistics, commonly known as L-statistic. This opens up a fruitful venue for
developing statistical inferential results, which have been actively investigated by a number of
researchers. Specifically, let X1, ..., Xn be independent copies of X, and let X1:n ≤ · · · ≤ Xn:n

be the corresponding order statistics. The empirical estimator of the risk premium Ψ[Q, g] is
obtained by substituting Q on the right-hand side of equation (1) by by its empirical counter-
part Qn (s) := inf {x ∈ R : Fn (x) ≥ s} , 0 < s ≤ 1, associated to the empirical cdf defined

on the real line, defined by Fn (x) := n
−1∑n

i=1 I (Xi ≤ x) , with I (·) being the indicator
function. After straightforward computation, we obtain the formula

Ψ[Qn; g] =

∫ 1

0

Qn (1− s) dg (s) =

n∑
i=1

ai,n (g)Xn−i+1:n,

whose right-hand side is an L-statistic with the coefficients

ai,n (g) := g

(
i

n

)
− g

(
i− 1

n

)
. (3)

For recent literature on statistical inference for distortion premiums, we refer to Jones and
Zitikis (2003), Jones and Zitikis (2007), Centeno and Andrade (2005), Furman and Zitikis
(2008a, 2008b), Brazauskas et al. (2008), Greselin et al. (2009), Necir and Meraghni (2009),
Necir and Meraghni (2010), Brahimi et al. (2011), Peng et al. (2012) and the references
therein.

Throughout this paper, the standard notation
p→, d→ and

d
= respectively stand for conver-

gence in probability, convergence in distribution and equality in distribution. For further

notation we write W
(1)
n ≈ W

(2)
n to say that the two sequences of rv’s W

(1)
n ,W

(2)
n are such

that W
(1)
n /W

(2)
n

p→ 1. The symbol N
(
a, b2

)
denotes the normal distribution with mean a

and variance b2.

Jones and Zitikis (2003) employ asymptotic theory for L-statistics to prove that, for under-
lying distributions with a sufficient number of finite moments and under certain regularity
conditions on the distortion function g, the empirical estimator of a risk premium Ψ[Fn; g]
of Ψ(F ; g) is strongly consistent and asymptotically normal. More precisely

n1/2 (Ψ[Fn; g]−Ψ[F ; g])
d→ N

(
0, σ2

F

)
, as n→∞, (4)

provided that the asymptotic variance

σ2
F :=

∫ 1

0

∫ 1

0

(min(s, t)− st)g′(s)g′(t)dQ (1− s) dQ (1− t) ,
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is finite. The same authors are also discussed the PHT premiums estimators which cor-
responds to power distortion function g (x) = x1/ρ, ρ ≥ 1. In this case the asymptotic
normality (4) holds for any 1 < ρ < 2, provided that

E (Xν) <∞ for some ν > 2ρ/ (2− ρ) .

Empirical studies have shown that financial and actuarial data exhibit heavy tails or Pareto
like distributions. The class of regularly varying cdf’s is a major subclass of heavy-tailed
distributions, it includes distributions such as Pareto, Burr, Student, Lévy-stable, and log-
gamma, which are known to be appropriate models for fitting large insurance claims, large
fluctuations of prices, log-returns, etc. (see, e.g., Beirlant et al., 2001; Reiss and Thomas,
2007 and Rolski et al., 1999). The tail distribution of almost of these models may be written
as follows

1− F (x) = x−1/γ`F (x) , for every x > 0, (5)

where γ > 0 and `F is a slowly varying function.

Suppose that 1 − F (x) = x−1/γ , x ≥ 1. Then the risk premium PHT, which is greater
than or equal to the mean risk, must be finite for any ρ ≥ 1. This means that we have:
1 ≤ ρ < 1/γ. On the other hand, for γ > 1/2, we have 1 ≤ ρ < 2. However the second-order
moment E

(
X2
)

is infinite. In this case 2ρ/ (2− ρ) > 2, which implies that E (Xν) is infinite
for any ν > 2ρ/ (2− ρ) . Hence, the range γ ∈ (1/2, 1) is not covered by the central limit
theorem (4) and thus we need to seek another approach to handle this situation.

By making use of the extreme value theory (see for instance de Haan and Ferreira, 2006),
Necir and Meraghni (2009) proposed an alternative estimator for Ψ[F, g] and established
its asymptotic normality for any γ ∈ (1/2, 1).Though this estimator enjoys the asymptotic
normality property, it still has a problem due to the fact that, it is based on Weissman’s
estimator of high quantiles known to be largely biased. Several estimators with reduced
biases are proposed in the literature as alternatives to Weissman’s ones, see for instance,
Feureverger and Hall (1999), Beirlant et al. (2002), Gomes and Martins (2002), Gomes and
Martins (2004), Caeiro et al. (2004), Caeiro et al. (2009), Peng and Qi (2004), Matthys and
Beirlant (2003), Gomes and Figueiredo (2006) and Gomes and Pestana (2004). Actually, we
are interested in bias-reduced estimators of high quantiles with nice asymptotic properties
that provide us Gaussian approximations leading to confidence bounds for Ψ[F, g]. Our
choice is the one proposed by Matthys and Beirlant (2003).

The rest of the paper is organized as follows. In Section 2, we present a short introduction
on the risk premium estimator in the case of heavy-tailed losses which proposed by Necir
and Meraghni (2009) and then define a new reduced-biased estimator of this class of risk
premiums. We state our main results in Section 3 whose proofs are postponed to Section 4.
Some notes and remarks are made in Section 5.

2. Heavy-tailed losses case

Let us define the following estimator for Q :

Q̂n(1− s) :=

{
QWn (1− s) for 0 < s < k/n

Qn(1− s) for k/n ≤ s < 1,
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where QWn (1− s) := (k/n)γ̂
H
n Xn−k:ns

−γ̂Hn , s ↓ 0, is Weissman’s estimator (Weissman, 1978)
of high quantiles, with

γ̂Hn := k−1
k∑
i=1

log

(
Xn−i+1:n

Xn−k:n

)
,

being the well-known Hill estimator (Hill, 1975) of the tail index γ. The integer sequence
k = kn, represents the number of upper order statistics used in the computation of γ̂Hn ,
satisfying

1 < k < n, k →∞ and k/n→ 0 as n→∞. (6)

By replacing Q (1− s) by Q̂n(1− t) in formula (1), Necir and Meraghni (2009) proposed an

alternative estimator for Ψ[Q; g] as follows:

Ψ[Q̂n; g] :=

∫ 1

0

Q̂n(1− s)dg (s) =

∫ k/n

0

QWn (1− s) dg (s) +

∫ 1

k/n

Qn (1− s) dg (s)

which, by a straightforward calculation, is equal to

Ψ[Q̂n; g] := g (k/n)
Xn−k:n

1− ργ̂Hn
+

n∑
i=k+1

ai,n (g)Xn−i+1:n,

where ai,n (g) is that defined in (3) provided that ργ̂Hn ∈ (0, 1) . Moreover, the same author
showed that, under suitable regularity assumptions, for any γ ∈ (1/2, 1),

√
n
(

Ψ[Q̂n; g]−Ψ[Q; g]
)

(k/n)−1/2g(k/n)Q(1− k/n)

d→ N
(
0, σ2 (γ; ρ)

)
, as n→∞,

where

σ2(ρ, γ) =
γ2(γ2ρ2 − 2γ2ρ3 + 4γρ2 − 2γρ+ ρ2 − 2ρ+ 1)

(γρ− 1)4
+

2γ2(ρ+ γρ− 1)

(γρ− 1)2(ρ+ 2γρ− 2)
.

Matthys-Beirlant’s estimator of high quantiles is defined as follows

QMB
n (1− s) = Xn−k:n + ân,k

(k/n)
γ̂k s−γ̂k − 1

γ̂k
, 0 < s < k/n,

where γ̂k is a maximum likelihood estimator of tail index γ > 0, defined by

γ̂k = arg max
γ>0

k−1∑
i=1

log
1−

(
j

k+1

)γ
γ

−
1−

(
j

k+1

)γ
γ

Yj

 ,

and

ân,k =
1

k

k∑
i=1

j (Xn−j+1:n −Xn−j:n)

(
j

k + 1

)γ̂k
,

with

Yj := j log
Xn−j+1:n −Xn−k:n

Xn−j:n −Xn−k:n
, 1 ≤ j < k.
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Instead of Q̂n, let us define the following estimator for Q :

Q̃n(1− s) :=


QMB
n (1− s) for 0 < s <

k

n

Qn(1− s) for
k

n
≤ s < 1,

Then the bias-reduced estimator of Ψ[Q; g] is

Ψ[Q̃n; g] =

∫ 1

0

Q̃n(1− s)dg (s) ,

which by straightforward computation yields

Ψ[Q̃n; g] = g (k/n)Xn−k:n + g (k/n)
ρân,k

1− ργ̂k
+

n∑
i=k+1

ai,n (g)Xn−i+1:n, (7)

where the coefficients ai,n (g) are as in (3), observe that an,k ∼ γQ (1− k/n) . Hence it is
easy to show that an,k = γ̂kXn−k:n + op (1). It is clear that the choice of an,k = γ̂kXn−k:n,
in (7), coincides with that of Necir and Meraghni (2009).

3. Main results

Let us introduce now the tail quantile function defined by

U (t) := (1/ (1− F ))
−1

(t) = Q (1− 1/t) , 1 < t <∞.

Notice that the regular variation condition (5) implies

lim
t→∞

U (tx) /U (t) = xγ , for any x > 0. (8)

The regular condition itself is not sufficient for establishing asymptotic distributions. To this
end, we strengthen the condition (8), into the following one: the cdf F is said to fulfill the
second-order regular-variation with second-order parameter η ≤ 0 if there exists a function
t→ A (t), converging to zero when t tends to infinity, has a constant sign for large values of
t, and such that

lim
t→∞

U(tx)
U(t) −

xγ−1
γ

A (t)
=

∫ x

1

sγ−1
∫ s

1

vη−1dvds, (9)

For more details, see Section 2.3 page 43 in (de Haan and Ferreira, 2006).

Theorem 1. Assume that the second order condition (9) holds with the function A (·) and
let k = kn be an integer sequence satisfying (6) with

√
kA (n/k)→ 0 as n→∞. Then there

exists a sequence of Brownian bridges {Bn (t) , 0 ≤ t ≤ 1} such that for all large n

aγ
√
k (γ̂k − γ) ≈

√
n

k
Bn

(
k

n

)∫ 1

0

tdK(1)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(1)

γ (t) ,

and, for a sequence an,k = γU (n/k) , we have

√
k

(
ân,k
an,k

− 1

)
≈
√
n

k
Bn

(
k

n

)∫ 1

0

tdK(2)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(2)

γ (t)+γ

√
n

k
Bn

(
k

n

)
,
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where

K(1)
γ (t) :=

1

γ
log t+

1 + γ

γ2

∫ tγ

1

log u

1− u
du, (t ≥ 0) ,

K(2)
γ (t) := (γ + 1) log t+ a−1γ K(1)

γ (t) ,

and

aγ := γ−2
∫ 1

0

(1− uγ + uγ log uγ)
2

(1− uγ)
−2
du. (10)

Corollary 1. Under the assumptions of Theorem 1, we have(√
k (γ̂k − γ) ,

√
k

(
ân,k
an,k

− 1

))
d→ N

(
0,
∑2
γ

)
,

where
∑2
γ :=

(
σ2
ij

)
i,j=1,2

is the asymptotic variance-covariance matrix defined by

σ2
ij = σ2

ji = Cov
[
K(i)
γ (ξ),K(j)

γ (ξ)
]
, i 6= j,

σ2
1 = Var

[
K

(1)
γ (ξ)

]
and σ2

2 = Var
[
K

(2)
γ (ξ)

]
+ γ2, with ξ is an (0, 1)−uniform rv.

Theorem 2. Assume that the second-order regular-variation condition (9) holds with some
γ ∈ (1/2, 1), and let the quantile function Q be continuous on the interval (0, 1). Further-
more, let k = kn be integers satisfying condition (6) such that

√
kA(n/k)→ 0 when n→∞.

Then, for any 1 < ρ < 1/γ, we have

√
n
(

Ψ[Q̃n; g]−Ψ[Q; g]
)

(k/n)
−1/2

g (k/n) an,k
=

√
n

k
Bn

(
k

n

)∫ 1

0

tdK(3)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(3)

γ (t)

+
1

1− ργ

√
n

k
Bn

(
k

n

)
−

∫ 1−k/n

0

g′ (1− t)Bn (t) dQ (t)

(k/n)
−1/2

g (k/n) an,k
,

where

K(3)
γ (t) =

ρ2

(1− ργ)
2K

(1)
γ (t) +

ρ

1− ργ
K(2)
γ (t) .

Corollary 2. Under the assumptions of Theorem 2, we have

√
n
(

Ψ[Q̃n; g]−Ψ[Q; g]
)

(k/n)
−1/2

g (k/n) an,k

d→ N
(
0, D2 (γ, ρ)

)
, as n→∞,

where

D2 (γ, ρ) = Var
[
K(3)
γ (ξ)

]
+

1

(1− ργ)
2 +

2ρ2

1− ρ− γρ

(
ρ+ 3γρ− 3

(1− γρ) (ρ+ 2γρ− 2)
+

∫ 1

0

tdK(3)
γ (t)

)
.
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4. Proofs

4.1. Proof of Theorem 1

4.1.1. Asymptotic distribution of γ̂k

First, for convenience, we set

L (γ; Y) :=

k−1∑
i=1

log
1−

(
j

k+1

)γ
γ

−
1−

(
j

k+1

)γ
γ

Yj

 ,

with Y := (Y1, ..., Yk−1) . By construction, the tail index estimator γ̂k of γ, proposed by
Matthys and Beirlant (2003), is the value of γ that maximizes the quantity L (γ; Y) . In
other terms, γ̂k is the solution of the following equation

∂L (γ; Y)

∂γ
= 0. (11)

Making use of a Taylor expansion to function γ → ∂L (γ; Y)

∂γ
around γ̂k, we obtain

[
∂L (γ; Y)

∂γ

]
γ=γ̂k

− ∂L (γ; Y)

∂γ
=

1

k

[
∂2L (γ; Y)

∂2γ

]
γ=γ̂∗

k

(γ̂k − γ) .

Since γ̂k is the solution of equation (11), then

(γ̂k+1 − γ)
1

k

[
∂2L (γ; Y)

∂2γ

]
γ=γ̂∗

k

= −∂L (γ; Y)

∂γ
.

On the other hand, Matthys and Beirlant (2003) showed that, under the second order con-
dition (9),

1√
k

∂2L (γ; Y)

∂2γ
= −aγ + op (1) , as n→∞,

where aγ is the one defined in (10). Therefore, we have

aγ
√
k (γ̂k − γ) ≈ 1√

k

∂L (γ; Y)

∂γ
.

Our task now is to approximate, asymptotically, the quantity
1√
k

∂L (γ; Y)

∂γ
by a sequence

of Gaussian rv’s. More precisely, we will represent this quantity by the uniform quantile
processes, defined below, and then make use of the weak approximation given in Theorem
2.1 of Csörgő et al. (1986). To this end, let ξ1, ξ2, ... be independent uniform (0, 1) rv’s and
for each n ≥ 1, and define

Gn (t) :=
1

n

n∑
i=1

I (ξi ≤ t) , 0 ≤ t ≤ 1,
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the uniform empirical distribution function, defined to be right continuous, based on ξ1, ..., ξn
via indicator function I (·) . The uniform empirical quantile function is given by

Vn (t) := inf {s : Gn (s) ≥ t} , 0 ≤ s ≤ 1, Vn (0) := Vn (0+) ,

that is Vn is defined to be the left continuous inverse of the empirical distribution function
Gn. In term of the order statistic ξ1:n ≤ ... ≤ ξn:n, pertaining to the sample ξ1, ..., ξn, we
have Vn (t) = ξi:n, (i− 1) /n < t ≤ i/n. The corresponding uniform quantile process is
defined by

βn (t) :=
√
n (t− Vn (t)) , 0 ≤ t ≤ 1. (12)

The two sequences of order statistics X1:n ≤ ... ≤ Xn:n and ξ1:n ≤ ... ≤ ξn:n are linked via
the following equality in distribution

{Xn−j+1:n}nj=1

d
=
{
U
(
ξ−1j:n
)}n
j=1

.

Matthys and Beirlant (2003) also showed that for all large n

1√
k

∂L (γ; Y)

∂γ
=

1√
k

k−1∑
j=2

ck,jH

(
ξj:n
ξk+1:n

)
−
√
kµk + op (1) ,

where H (t) = − log (t−γ − 1) ,

ck,j = − (k + 1)

∫ j
k+1

j−1
k+1

J (s) ds and µk =

k−1∑
j=2

ck,j

∫ k
k+1

1
k+1

H (t) dt.

It is easy to show that µk =
∫ k
k+1
1
k+1

J (t)H (t) dt+O
(
k−1

)
. So it follows that

1√
k

∂L (γ; Y)

∂γ
=

1√
k

k−1∑
j=2

ck,jH

(
ξj:n
ξk+1:n

)
−
√
k

∫ k
k+1

1
k+1

J (t)H (t) dt+ op (1) .

In the sequel, for sake of conciseness, to avoid large formulas, we set ωn,k (t) =

Vn
(
k+1
n t
)

ξk+1:n
. Now, we make use of the empirical quantile function Vn (·) and rewrite the

first term of the right hand of the previous equation into

k + 1√
k

∫ k
k+1

1
k+1

J (t)H (ωn,k (t)) dt.

By using the mean value theorem to function t→ H (t) , we get

H (ωn,k (t))−H (t) = H ′ (ϑn,k (t)) (ωn,k (t)− t) ,

where ϑn,k (t) is a sequence of rv’s belongs to the open interval with endpoints ωn,k (t) and
t. Thus we arrive at

1√
k

∂L (γ; Y)

∂γ
≈ k + 1√

k

∫ k
k+1

1
k+1

J (t)H ′ (t) (ωn,k (t)− t) dt+R(1)
n , (13)
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where

R(1)
n :=

k + 1√
k

∫ k
k+1

1
k+1

J (t)

(
H ′ (ϑn,k (t))

H ′ (t)
− 1

)
H ′ (t) (ωn,k (t)− t) dt+ op (1) .

We may and do treat this remainder term R
(1)
n as did Necir and Meraghni (2009) in their

Theorem 1 and show that it tends to zero in probability as n→∞ by omitting the details.
From Smirnov’s Lemma (see Lemma 2.2.3 in de Haan and Ferreira, 2006, page 41) we have
ξk+1:n ≈ k/n, it follows that the first term of the right-hand of the equation (13) is

≈ n√
k

∫ k
k+1

1
k+1

J (t)

(
Vn
(
k + 1

n
t

)
− ξk+1:nt

)
dH (t) .

Observe now that the previous expression is equal to

n√
k

∫ k
k+1

1
k+1

J (t)

(
Vn
(
k + 1

n
t

)
− k + 1

n
t

)
dH (t)

− n√
k

∫ k
k+1

1
k+1

J (t)

(
ξk+1:nt−

k + 1

n
t

)
dH (t) .

Making use of the uniform empirical quantile process βn (·), defined in (12), we write

1√
k

∂L (γ; Y)

∂γ
≈ −

√
n

k

∫ k
k+1

1
k+1

J (t)βn

(
k + 1

n
t

)
dH (t)

+

√
n

k
βn

(
k + 1

n

)∫ k
k+1

1
k+1

tJ (t) dH (t) .

From Theorem 2.1 of Csörgő et al. (1986), on a suitable probability space, there exists a
sequence of Brownian bridges {Bn (t) , 0 ≤ t ≤ 1} such that, for every 0 ≤ δ < 1/2, we have,
as n→∞

sup
1/n≤s≤1−1/n

|βn (s)−Bn (s)|
(s (1− s))1/2−δ

= Op
(
n−τ

)
. (14)

By making use of this approximation, we readily get

1√
k

∂L (γ; Y)

∂γ
= −

√
n

k

∫ k
k+1

1
k+1

J (t)Bn

(
k + 1

n
t

)
dH (t)

+

√
n

k
Bn

(
k + 1

n

)∫ k
k+1

1
k+1

tJ (t) dH (t) +R(2)
n .

Here again, showing that the remainder term R
(2)
n tends to zero in probability is straight-

forward and we the omit the proof. It easy to show that√
n

k

∫ k
k+1

1
k+1

J (t)Bn

(
k + 1

n
t

)
dH (t) ≈

√
n

k

∫ 1

0

J (t)Bn

(
k

n
t

)
dH (t)
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and √
n

k
Bn

(
k + 1

n

)∫ k
k+1

1
k+1

tJ (t) dH (t) ≈
√
n

k
Bn

(
k

n

)∫ 1

0

tJ (t) dH (t) .

Finally we obtain

1√
k

∂L (γ; Y)

∂γ
≈
√
n

k
Bn

(
k

n

)∫ 1

0

tJ (t) dH (t)−
√
n

k

∫ 1

0

J (t)Bn

(
k

n
t

)
dH (t) .

By letting dK
(1)
γ (t) = −J (t) dH (t) , we get

aγ
1√
k

∂L (γ; Y)

∂γ
≈
√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(1)

γ (t)−
√
n

k
Bn

(
k

n

)∫ 1

0

tdK(1)
γ (t) ,

this achives the proof of first part of Theorem 1. �

4.2. Asymptotic distribution of ân,k

Recall that an,k = γU (n/k) . By letting ãn,k = γU
(
ξ−1k+1:n

)
we write

ân,k
an,k

− 1 =

(
ân,k
ãn,k

− 1

)
+
ân,k
ãn,k

(
ãn,k
an,k

− 1

)
. (15)

Next we show that both of the two terms of (15) are asymptotically centred Gaussian rv’s.
Making use of the second order condition (9), we get

Xn−j+1:n −Xn−j:n

an,k
≈

(
ξj:n
ξk+1:n

)−γ
−
(
ξj+1:n

ξk+1:n

)−γ
γ

, for 1 ≤ j ≤ k.

We also have

ân,k
an,k

=
1

k

k∑
j=1

j
Xn−j+1:n −Xn−j:n

an,k

(
j

k + 1

)γ̂k

≈ 1

k

k∑
j=1

j

(
ξj:n
ξk+1:n

)−γ
−
(
ξj+1:n

ξk+1:n

)−γ
γ

(
j

k + 1

)γ̂k
=: ∆n,k.

This last expression may be rewritten into

γ−1
k + 1

k
ξγk+1,n

k∑
j=1

(
ξ−γj:n − ξ

−γ
j+1:n

)( j

k + 1

)γ̂k+1

.

It is easy to verify that

k∑
j=1

(
ξ−γj;n − ξ

−γ
j+1:n

)( j

k + 1

)γ̂k+1

=

k∑
j=1

[(
j

k + 1

)γ̂k+1

−
(
j − 1

k + 1

)γ̂k+1
]
ξ−γj,n −

(
k

k + 1

)γ̂k+1

ξ−γk+1,n.
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Therefore

∆n,k = γ−1
k + 1

k
ξγk+1:n

k∑
j=1

[(
j

k + 1

)γ̂k+1

−
(
j − 1

k + 1

)γ̂k+1
]
ξ−γj:n − γ

−1
(

k

k + 1

)γ̂k
,

which is equal to

γ−1 (γ̂k + 1)
k + 1

k

(
n

k + 1

)γ̂k+1

ξγk+1:n

k∑
j=1

ξ−γj:n

∫ j
n

j−1
n

tγ̂dt− γ−1
(

k

k + 1

)γ̂k
.

Making use of the uniform empirical quantile function Vn (·) , we rewrite ∆n,k as

γ−1 (γ̂k + 1)
k + 1

k

(
n

k + 1

)γ̂k+1

ξγk+1:n

∫ k/n

0

sγ̂kV−γn (s) ds− γ−1
(

k

k + 1

)γ̂k
,

which, by integration by parts, equals

γ−1 (γ̂k + 1)

(
k

k + 1

)γ̂k
ξγk+1:n

∫ 1

0

sγ̂kV−γn (ks/n) ds− γ−1
(

k

k + 1

)γ̂k
.

Therefore

∆n,k = γ−1
(

k

k + 1

)γ̂k [
(γ̂k + 1) ξγk+1:n

∫ 1

0

tγ̂kV−γn (kt/n) dt− 1

]
.

=: γ−1
(

k

k + 1

)γ̂k (
∆∗n,k − 1

)
.

By the fact that
(

k
k+1

)γ̂k
= 1 +Op

(
k−1

)
, we infer that

(ân,k/an,k − 1) =
(
1 +Op

(
k−1

))
γ−1

(
∆∗n,k − 1

)
− 1.

Hence √
k

(
ân,k
an,k

− 1

)
=
√
kγ−1

(
∆∗n,k − 1− γ

)
+
√
kOp

(
k−1

)
.

Since
√
kOp

(
k−1

)
→ 0 in probability, it suffices to show that

√
k
(

∆∗n,k − 1− γ
)

is asymp-

totically centred Gaussian rv. Indeed, first notice that

∆∗n,k = (γ̂k + 1) (nξk+1:n/k)
γ

(k/n)
γ
∫ 1

0

tγ̂kV−γn (kt/n) dt.

It is east to verify that

∆∗n,k − 1− γ =: SnTn1 + Tn2 + Tn3 + Tn4,

where

Sn = (γ̂k + 1)

(
k

n

)γ ∫ 1

0

tγ̂kV−γn
(
k

n
t

)
dt,

Tn1 = (nξk+1:n/k)
γ − 1,
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Tn2 = (γ̂k + 1)

(
k

n

)γ ∫ 1

0

(
tγ̂k − tγ

)
V−γn

(
k

n
t

)
dt,

Tn3 = (γ̂k + 1)

(
k

n

)γ ∫ 1

0

tγ

[
V−γn

(
k

n
t

)
−
(
k

n
t

)−γ]
dt,

and
Tn4 = γ̂k − γ.

Next we show that Tni, i = 1, 2, 3 are asymptotically Gaussian rv’s while Sn
p→ γ + 1. First

we consider the second term Tn2. Once again, in view of the mean value theorem,

V−γn
(
k

n
t

)
−
(
k

n
t

)−γ
= −γ [ζn,k (t)]

−γ−1
(
Vn
(
k

n
t

)
− k

n
t

)
,

where ζn,k (t) is a sequence of rv’s belongs to the open interval with endpoints Vn (kt/n)
and kt/n. Then

Tn2 = − (γ̂k + 1)

(
k

n

)γ ∫ 1

0

tγ̂k
(
k

n
t

)−γ−1 [
Vn
(
k

n
t

)
−
(
k

n
t

)]
dt+R(2)

n ,

where

R(2)
n := − (γ̂k + 1)

(
k

n

)γ ∫ 1

0

tγ̂k

[(
nζn,k (t)

kt

)−γ−1
− 1

](
k

n
t

)−γ−1 [
Vn
(
k

n
t

)
−
(
k

n
t

)]
dt.

By similar arguments as used below, we may easily show that
√
kR

(2)
n

P→ 0, therefore the
details are omitted. By making use of the uniform empirical quantile process βn (·) , and by

using the fact that γ̂k
p→ γ, it becomes clear that

√
kTn2 = (1 + op (1)) (γ + 1)

√
k

n

∫ 1

0

t−1βn

(
k

n
t

)
dt.

By using similar arguments, we also show that

√
kTn1 = − (1 + op (1)) γ

√
n/kβn

(
k + 1

n

)
.

Elementary computations give

√
kTn3 = −

√
k

γ̂k − γ
γ̂k − γ + 1

.

Since γ̂k
p→ γ, then

√
kTn3 = − (1 + op (1))

√
k (γ̂k − γ) . In view of the weak approximation

(14), we get

√
kTn1 = −γ

√
n/kBn (k/n) + op (1) ,

√
kTn2 = (γ + 1)

√
n/k

∫ 1

0

t−1Bn (kt/n) dt+ op (1) ,
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and

√
kTn3 = −

√
n/k

∫ 1

0

Bn (kt/n) dK(1)
γ (t) +

√
n/kBn (k/n)

∫ 1

0

tdK(1)
γ (t) + op (1) .

It is easy to check that Sn = Tn2 +Tn3 +γ−1 +1. Since
√
kTni, i = 1, 2, 3 are asymptotically

Gaussian rv’s, then Tni
p→ 0. It follows that Sn

p→ γ−1 + 1. Finally

√
k

(
ân,k
an,k

− 1

)
= (γ + 1)

√
n/k

∫ 1

0

t−1Bn (kt/n) dt− (γ + 1)
√
n/kBn (k/n)

+
√
n/k

∫ 1

0

Bn (kt/n) dK(1)
γ (t)−

√
n/kBn (k/n)

∫ 1

0

tdK(1)
γ (t) + op (1) .

This may be rewritten into the simpler form

√
k

(
ân,k
an,k

− 1

)
=

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(2)

γ (t)−
√
n

k
Bn

(
k

n

)∫ 1

0

tdK(2)
γ (t) + op (1) ,

where K
(2)
γ (t) := (γ + 1) log t + a−1γ K

(1)
γ (t) . For the second term of right hand-side of

previous equation (15), we have first from the previous equation ân,k/an,k = 1 + op (1) , and

√
k

(
ãn,k
an,k

− 1

)
= γ

√
n/kBn

(
k

n

)
+ op (1) .

This latter compltetes the proof of Theorem 1. �

4.3. Proof of Corollary 1

The proof is achived through straightforward and elementary computations. Therefore, it is
omitted. �

4.4. Proof of Theorem 2

Let us write

Ψ[Q̃n; g]−Ψ[Q; g] = ∆n1 + ∆n2,

where

∆n1 := g (k/n)Xn−k,n + g (k/n)
ρân,k

1− ργ̂k
−
∫ k/n

0

Q (1− s) dg (s) ,

and

∆n2 :=

n∑
i=k+1

ai,n (g)Xn−i+1,n −
∫ 1

k/n

Q (1− s) dg (s) .
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It is easy to verify that

√
n∆n1

(k/n)
−1/2

g (k/n) an,k
= γ−1

√
k

(
Xn−k,n

Q (1− k/n)
− 1

)
+

ρ

1− ργ̂k

√
k

(
ân,k
an,k

− 1

)
+

ρ2

(1− ργ̂k) (1− ργ)

√
k (γ̂k − γ)

+
√
k

(
1

γ (1− ργ)
−
∫ k/n

0

Q (1− s)
g (k/n) an,k

dg (s)

)

=

4∑
i=1

∆
(i)
n1.

In view of Theorem 1, we write

∆
(1)
n1 ≈

√
n/kBn

(
k

n

)
,

∆
(2)
n1 ≈

ρ

1− ργ

{√
n

k
Bn

(
k

n

)∫ 1

0

tdK(2)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(2)

γ (t) + γ

√
n

k
Bn

(
k

n

)}
,

∆
(3)
n1 ≈

ρ2

(1− ργ)
2

{√
n

k
Bn

(
k

n

)∫ 1

0

tdK(1)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(1)

γ (t)

}
.

Therefore

√
n∆n1

(k/n)
−1/2

g (k/n) an,k
≈
√
n

k
Bn

(
k

n

)∫ 1

0

tdK(3)
γ (t)−

√
n

k

∫ 1

0

Bn

(
k

n
t

)
dK(3)

γ (t)

+
1

1− ργ

√
n

k
Bn

(
k

n

)
,

where

K(3)
γ (t) =

ρ2

(1− ργ)
2K

(1)
γ (t) +

ρ

1− ργ
K(2)
γ (t) .

It was shown in Necir and Meraghni (2009), by using the second order condition (8), that

√
n∆n2

(k/n)
−1/2

g (k/n) an,k
≈ −

∫ 1−k/n

0

g′ (1− t)Bn (t) dQ (t)

(k/n)
−1/2

g (k/n) an,k
,

and ∆
(4)
n1 tends to zero as n→∞. This achieves the proof of Theorem 2. �

4.5. Proof of Corollary 2

The proof is also achived through straightforward and elementary computations. Therefore,
the details that can be found in Necir and Meraghni (2009) are omitted here . �
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5. Conclusion

In this paper we proposed a new estimator for the distortion risk premium when losses
follow heavy-tailed distributions and established its asymptotic normality. This estimator
improves, in term of bias, that of Necir and Meraghni (2009). The computation of such
estimator depends on the choice of optimal number of upper extremes k used in the tail index
estimate. Such problem may be solved by using a heuristic method of Reiss and Thomas
dicussed in Neves and Fraga Alves (2004). The software programs of this methodology are
incorporated in the ”Xtremes” package accompanying the book of Reiss and Thomas (2007).

Acknowledgements. The authors are greatly indebted to the referees for their valuable
comments and suggestions.
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