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Université frères Mentouri Constantine. Laboratoire de Mathématiques et Sciences de la Décision.
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Abstract. We study the problem of test based on the periodogram, which can be used to
test the null hypothesis H0 that the series is composed of specified linear process against
the alternative hypothesis H1 that there is an additional deterministic periodic component.

Résumé. Nous étudions le problème de test basé sur le périodogramme, pour construire
le test de l’hypothèse nulle H0 que le modèle est composé d’un processus linéaire donné
contre l’hypothèse alternative H1 que le modèle contient en plus une composante périodique
déterministe.
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1. Introduction

We consider a discrete parameter time series (Xt)t∈ZZ such that

Xt = mt + Zt , (1)

where

mt = E(Xt) =

K∑
r=1

{Ar cos(ωrt) +Br sin(ωrt)} , (2)

with Ar, Br, r = 1, . . . ,K are non-random real constants and ωr, r = 1, . . . ,K are specified
frequencies;

Zt =

∞∑
j=0

ψj(θ)εt−j , (3)
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with the εt are independently and identically distributed with E(εt) = 0 and E(ε2t ) = σ2 <
∞, and the ψj(θ) are specified functions of a vector valued parameter θ = (θ1, . . . , θp), with
ψ0(θ) = 1 and

∑∞
j=0 ψ

2
j (θ) <∞ which is the condition required for Zt to be stationary with

finite variance. Note that the AR, MA, and ARMA models may be regarded as special cases
of the linear process model (3). The time series (Xt) is then composed from the sum of K
sinusoidal components with angular frequencies ωr and additive linear process (Zt) which is
a completely stationary series having spectral density

fZ(λ, θ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

ψj(θ)e
−ijλ

∣∣∣∣∣∣
2

. (4)

Let {X1, . . . , XN} be a sample of N consecutive observations generated by the time series
(Xt)t∈ZZ. The periodogram of the set of observations, which may be defined as a function

IN,X of angular frequency with range [−π, π] that is proportional to |
∑N
t=1Xte

−iωt|2, plays
an important part in methods of making inferences about the structure of (Xt), in particular
its spectral density.

Our aim is to study the statistical tests based on the properties of the periodogram and
consisting of the null hypothesis

H0 : Ar = Br = 0 , ∀ r = 1, . . . ,K against H1 :

{
Ar, Br, r = 1, . . . ,K
are not all zero .

Walker (1965) gives some asymptotic results for the periodogram and the asymptotic rela-
tion between the periodogram of a linear process and the periodogram of the corresponding
residual process. Anderson (1993) studied the problem of testing the null hypothesis that
completely specifies the pattern of dependence. Anderson (1993) compared the sample stan-
dardized spectral distribution with the process standardized spectral distribution by means
of a good of fit criterion, such as the Cramer-von Mises criterion or the Kolmogorov-Smirnov
criterion. Quinn (1986) studies the hypothesis test a time series is composed from s sinusoidal
components, at unknown frequencies, with additive Gaussian noise, against the alternative
that there are r other sinusoidal components present.

In this paper, we develop a method for testing the null hypothesis that a time series is
composed of the linear process (3) against the alternative hypothesis that the time series
has the form given by (1), that is composed from the sum of K sinusoidal components with
angular frequencies ωr and additive linear process (Zt) of the form (3). In Section 2 we
establish some asymptotic properties of the normalized periodogram of linear process. In
Section 3 we give some applications and numerical examples. Finally proofs are deferred in
Section 4.

2. Asymptotic properties of the periodogram under the null hypothesis

We consider in this section the process (Xt) given by the model (1) and we study the
asymptotic properties of the periodogram of the set observations {X1, . . . , XN} under the
null hypothesis H0 : Ar = Br = 0 , ∀ r = 1, . . . ,K. In this case, the process (Xt) is reduced
to the linear process (Zt) given by the model (3).
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In the sequel, we denote fZ and fε the spectral densities of the processes (Zt) and (εt)
respectively and fX the spectral density of the process (Xt) under the null hypothesis H0.

We know that fZ of the process given by (3) is related to the spectral density fε of the
process (εt) (see, e.g. Brockwell and Davis, 1991) by

fZ(ω) =

∣∣∣∣∣∣
∞∑
j=0

ψj(θ)e
−ijω

∣∣∣∣∣∣
2

fε(ω), −π ≤ ω ≤ π . (5)

Since (εt) is white noise, its spectral density function is

fε(ω) =
σ2

2π
, −π ≤ ω ≤ π . (6)

Now, if we regard IN,X(ω)/2π as the sample version of the spectral density function of
fX(ω) under the null hypothesis H0, we might thought expect a similar relationship the
periodograms IN,X(ω) and IN,ε(ω) of (Xt) and (εt) respectively. If E(ε4t ) <∞ and satisfying
∞∑
j=0

|ψj(θ)||j|α <∞, α > 0, this relationship is given, under the null hypothesis H0, by

IN,X(ω) =

∣∣∣∣∣
∞∑
k=0

ψk(θ)e−ikω

∣∣∣∣∣
2

IN,ε(ω) +RN (ω) ,

where E
(
|RN (ω)|2

)
= O(1/N2α) uniformly in ω ∈ [−π, π]. (See e.g. Priestley, 1981, Theo-

rem 6.2.2, page 424).

Remark 1. We have RN (ω)
P→ 0 for every ω ∈ [−π, π], by Chebychev’s inequality and

hence RN (ω) converges in distribution to 0.

We have the following results.

Theorem 1. Let (Zt) be a linear process defined in (3) such that E(ε4t ) <∞ and satisfying
∞∑
j=0

|ψj(θ)||j|α <∞, α > 0.

If fZ(λ) > 0 for all λ ∈ [−π, π] and 0 < λ1 < · · · < λν < π, then under the null hypothesis
H0, the random variables,

Ui =

i∑
k=1

{IN,X(λk)/fZ(λk)}

ν∑
k=1

{IN,X(λk)/fZ(λk)}
, i = 1, . . . , ν − 1 (7)

have asymptotically the same distribution as the independent order statistics T1, . . . , Tν−1,
each one uniformly distributed on the interval (0, 1).
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Corollary 1. Let the conditions of Theorem 1 be satisfied and define U0 = 0, Uν = 1 and

Tν = max
1≤i≤ν

(Ui − Ui−1) = max
1≤i≤ν

IN,X(λi)/fZ(λi)∑ν
k=1{IN,X(λk)/fZ(λk)}

. (8)

Then, under the null hypothesis H0, as N →∞,

P (Tν ≤ t) −→
ν∑
j=0

(−1)j
(
ν
j

)
(1− jt)ν−1+ , (9)

where x+ = max(x, 0).

Corollary 2. Let the conditions of Theorem 1 be satisfied. Then, under the null hypothesis
H0, as N →∞,

Fν(x) =


0 if x < U1
j

ν − 1
if Uj ≤ x < Uj+1, j = 1, . . . , ν − 2

1 if x ≥ Uν−1 ,
(10)

converges to the empirical distribution function of a sample of size (ν − 1) from uniform
distribution on the interval (0, 1).

As application of Corollaries 1 and 2, we give some examples in the following section.

3. Applications

3.1. Fisher’s test for hidden periodicities

Now, if we restrict our considerations to the harmonics frequencies ωj = 2πj/N , j =
1, 2, . . . , ν =

[
N−1
2

]
; under the null hypothesis H0, when N is large and if fZ(ω) is known

a prior, Corollary 1 may be used to construct an approximate test of the null hypothesis
that (Xt) has spectral density fX of linear process, against the alternative hypothesis that
(Xt) contains an added deterministic period component of the form mt defined by (2) of
unspecified frequencies.

We evaluate the quantity IN,X(λ)/fZ(λ) at the standard frequencies ωj = 2πj/N , j =
1, . . . , ν and test the null hypothesis H0: Ar = Br = 0 all r = 1, . . . ,K. We reject the null
hypothesis H0 if the normalized periodogram {IN,X(ωi)/fZ(ωi)} contains a value substan-
tially larger than the average value; 1

ν

∑ν
i=1 {IN,X(ωi)/fZ(ωi)} i.e. if

ξν =
max1≤i≤ν {IN,X(ωi)/fZ(ωi)}
1
ν

∑ν
j=1 {IN,X(ωj)/fZ(ωj)}

(11)

is sufficiently large. We can apply the test, by computing the realized value x of ξν from
data {X1, . . . , XN} and use (9) to approximate the value of P (ξν ≥ x), then we have

P (ξν ≥ x) = P
(
Tν ≥

x

ν

)
' 1−

ν∑
j=0

(−1)j
(
ν
j

)(
1− jx

ν

)ν−1
+

(12)

and we reject the null hypothesis at level α if the value P (ξν ≥ x) is less than α.
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Remark 2. We can also test the null hypothesis H0 by referring the statistic

Tν =

max
1≤i≤ν

{IN,X(ωi)/fZ(ωi)}
ν∑
j=1

{IN,X(ωj)/fZ(ωj)}
(13)

to Fisher’s distribution with ν degrees of freedom (see e.g. Priestley, 1981, chapter 8, page
618).

Example 1. Let {X1, . . . , XN}, with the sample size N = 512, be the data generated by
the process

Xt = 1.5 cos

(
8π

9
t

)
+ Zt , (14)

where (Zt) is generated by Zt + 0.7Zt−1 = εt − 0.6εt−1 with εt ∼ i.i.d.N (0, 1).

We test the null hypothesis

H0: The spectral density of the process (Xt) is f(λ) =
1

2π

∣∣∣∣1− 0.6e−iλ

1 + 0.7e−iλ

∣∣∣∣2.

In this case ν =
[
511
2

]
= 255 and the realized value from the data of the test statistic given

in (11) is x = 5.2842 . Now from (12)

P (ξ255 ≥ 5.2842) = 0.0015 .

Then, we reject the null hypothesis at level 0.01 and 0.05.

3.2. The Kolmogorov-Smirnov test

Corollary 2 suggests, when N is large, an approximate test null hypothesis H0, that (Xt)
has completely specifed spectral density fX .

Let U1 ≤ U2 ≤ · · · ≤ Uν−1 denote the random variables defined in Theorem 1, by Corollary 2,
these random variables may be considered as an ordered sample from an uniform distribution
on an interval (0, 1). We consider the empirical distribution function Fν(x) computed from
U1, U2, . . . , Uν−1 i.e. the step function defined by

Fν(x) =


0 if x < U1
j

ν − 1
if Uj ≤ x < Uj+1, j = 1, . . . , ν − 2

1 if x ≥ Uν−1.
(15)

We plot this function and check its compatibility with the theoritical distribution for an
uniform distribution on (0, 1), F (x) = x, 0 ≤ x ≤ 1; using the Kolmogorov-Smirnov test.
Let

Dν = max
x
|Fν(x)− F (x)| ,

it follows from the theory of the well known Kolmogorov-Smirnov test (see, e.g. Feller, 1948)
for every fixed a ≥ 0, that, as ν −→∞ (or N −→∞), we have

P
(√
ν − 1Dν ≤ a

)
−→ L(a), (16)
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where

L(a) = 1− 2

∞∑
j=1

(−1)j−1e−j
2a2 . (17)

For a = 1.36, L(a) = 0.95 while for a = 1.63, L(a) = 0.99. Then, when ν (or N) is large and
if aα is the critical value of Dν for the significance level α, we reject the null hypothesis if

for any x in (0, 1), Dν > aα (ν − 1)
− 1

2 .

For ν > 30 (or for sample size N > 62), a good approximation to the level-α Kolmogorov
test is to reject the null hypothesis if the empirical distribution function Fν(x) exists from

the bounds: x± aα (ν − 1)
− 1

2 , 0 < x < 1, where a0.05 = 1.36 and a0.01 = 1.63.

An equivalent approach is to plot the standardized cumulative ”normalized periodogram”,

K(x) =

 0 if x < 1
Ui if i ≤ x < i+ 1, i = 1, . . . , ν − 1
1 if x ≥ ν

(18)

and rejecting the null hypothesis H0 at the level α if for any x in [1, ν], the function K(x)

exists from the boundaries x−1
ν−1 ± aα (ν − 1)

− 1
2 .

Example 2. Let {X1, . . . , XN}, with the sample size N = 512, be the data generated by
the process by the model

Xt + aXt−1 = εt + bεt−1

with εt ∼ i.i.d.N (0, 1). We test the null hypothesis

H0 : fX(λ) =
1

2π

∣∣∣∣1− 0.6e−iλ

1 + 0.7e−iλ

∣∣∣∣2 against H1 : H0 is false.

Figure 1 and Figure 2 show the cumulative periodogram K(x) and Kolmogorov-Smirnov
boundaries for the data with the significance level of the test α = 0.05 and α = 0.01. We do
not reject the null hypothesis even at level 0.05 and 0.01 in Figure 1. However we reject the
null hypothesis in Figure 2. The data was in fact generated by Xt + 0.7Xt−1 = εt − 0.6εt−1
and Xt + 0.6Xt−1 = εt − 0.6εt−1 in Figure 1 and Figure 2 respectively.

4. Proofs

Proof of Theorem 1. Under the null hypothesis H0 : Ar = Br = 0 , ∀ r = 1, . . . ,K,
the process (Xt) is reduced to the linear process (Zt) and then (Xt) and (Zt) have the
same spectral density (fX = fZ). Now, set Vk = IN,X(λk)/2πfZ(λk), k = 1, . . . , ν. The

vector random (V1, . . . , Vν) converges in distribution to vector of independent components
(Y1, . . . , Yν), where Yi ∼ χ2(2)/2, i = 1, . . . , ν, (see Brockwell and Davis, 1991, page 347).

Since the functions

hi : IRν −→ IR, i = 1, . . . , ν − 1
(V1, . . . , Vν) 7−→ Ui = hi(V1, . . . , Vν)

=
(∑i

k=1 Vk

)
/ (
∑ν
k=1 Vk)
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Fig. 1. The standardized cumulative normalized periodogram K(x) and the Kolmogorov-
Smirnov bounds with the significance level α = 0.05 (inner) and α = 0.01 (outer) for the
Example 2. The data {X1, . . . , X512} is generated by the model Xt+0.7Xt−1 = εt−0.6 εt−1.

are continuous, then the Ui = hi(V1, . . . , Vν), i = 1, . . . , ν − 1 converge in distribution to
Zi = hi(Y1, . . . , Yν), i = 1, . . . , ν − 1.

Now, let us deal with the distribution of the random variables

Zi = hi(Y1, . . . , Yν) = (

i∑
k=1

Yk)/(

ν∑
k=1

Yk), i = 1, . . . , ν − 1.

Since the Yk, k = 1, . . . , ν are independent and identically distributed as χ2(2)/2, the joint
density function of (Y1, . . . , Yν) is

fY1...Yν (y1, . . . , yν) =
(
e−

∑ν
i=1 yi

) ν∏
j=1

1I{yi≥0} , (19)

where

1I{yj≥0} =

{
1 if yi ≥ 0
0 otherwise .

Let Si =
∑i
k=1 Yk, i = 1, . . . , ν. This equivalent to write Y1 = S1 and Yi = Si − Si−1,

i = 2, . . . , ν.
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Fig. 2. The standardized cumulative normalized periodogram K(x) and the Kolmogorov-
Smirnov bounds with the significance level α = 0.05 (inner) and α = 0.01 (outer) for the
Example 2. The data {X1, . . . , X512} is generated by the model Xt+0.6Xt−1 = εt−0.6 εt−1.

The jacobian of the transformation

(Y1, . . . , Yν) −→ τν(Y1, . . . , Yν) = (S1, . . . , Sν)

is equal to 1, it follows from (19), that the joint density function of (S1, . . . , Sν) is

fS1...Sν (s1, . . . , sν) = (e−sν )

1I{s1≥0}

ν∏
j=2

1I{si−si−1≥0}


= (e−sν )1I{0≤s1≤···≤sν}. (20)

The marginal density of Sν is the probability density function of the sum of ν independent
standard (χ2(2)/2) exponential random variables. Thus,

fSν (sν) =
sν−1ν

(ν − 1)!
(e−sν )1I{sν≥0} . (21)
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Using (20) and (21), the conditional density of (S1, . . . , Sν−1) given Sν is

fS1···Sν−1/Sν (s1, . . . , sν−1) =
fS1...Sν (s1 . . . , sν)

fSν (sν)

= (ν − 1)!s1−νν 1I{0≤s1≤···≤sν}. (22)

By definition Zi = Si/Sν , i = 1, . . . , ν − 1; the conditional density
fZ1...Zν−1/Sν (z1, . . . , zν−1/sν) of (Z1, . . . , Zν−1) given Sν is obtained using the trans-

formation η : IRν−1 −→ IRν−1 defined by (s1, . . . , sν−1) 7−→ (z1, . . . , zν−1) = η(s1, . . . , sν−1)
where zi = si/sν , i = 1, . . . , ν − 1 (sν fixed).

The jacobian of the transformation η is equal to (sν)ν−1, it follows from (22) that the
conditional density function of (Z1, . . . , Zν−1) given Sν is

fZ1···Zν−1/Sν (z1, . . . , zν−1/sν) = (sν−1ν )(ν − 1)!s1−νν 1I{0≤sνz1≤···≤sνzν−1≤sν}

= (ν − 1)!1I{0≤z1≤···≤zν−1≤1} .

The expression of this conditional density function of (Z1, . . . , Zν−1) given Sν does not
depend on sν , we can write the unconditional joint density of (Z1, . . . , Zν−1) as

fZ1···Zν−1(z1, . . . , zν−1) = (ν − 1)!1I{0≤z1≤···≤zν−1≤1}

which is precisely the joint density of the order statistics of random sample of size (ν − 1)
from uniform distribution (0, 1). �

Proof of Corollary 1. According to Theorem 1, the random variables Ui, i = 1, . . . , ν − 1
are asymptotically distributed as the order statistics of a sample (ν−1) independent random
variables. Then under the null hypothesis H0, Tν is asymptotically distributed as the length
of the largest subinterval of (0, 1) obtained when the interval is randomly partitioned by
(ν−1) points independently and uniformly distributed on (0, 1). The explicit expression (9)
of the distribution function of this length is shown by (Feller, 1971, page 29). �

Proof of Corollary 2. The result is an immediate consequence of Theorem 1. �
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