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Abstract. Kernel estimators of both density and regression functions are not consistent
near the finite end points of their supports. In other words, boundary effects seriously affect
the performance of these estimators. In this paper, we combine the transformation and the
reflection methods in order to introduce a new general method of boundary correction when
estimating the mean function. The asymptotic mean squared error of the proposed estimator
is obtained. Simulations show that our method performes quite well with respect to some
other existing methods.

Résumé. Les estimateurs à noyau des fonctions de densité et de régression présentent des
problèmes de convergence aux bords de leurs supports. En d’autre termes, les effets de bord
affectent sérieusement les performances de leurs estimateurs. Dans cet article, nous combi-
nons les méthodes de transformation et de réflexion, pour introduire une nouvelle méthode
générale de correction de l’effet de bord lors de l’estimation de la moyenne. L’erreur quadra-
tique moyenne asymptotique de l’estimateur proposé est obtenue. Les simulations montrent
que notre méthode se comporte assez bien par rapport à d’autres méthodes existantes.
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1. Introduction

Let Y be a real random variable (rv), and let X be a continuous covariable with probability
density function f which is supported within [0,∞). The real rv’s Y and X are repectively
called variable of interest and predictor. Our goal is to estimate the regression function,
which is the conditional expectation m(x) := E(Y |X = x) (assuming f (x) 6= 0). Then the
model can be written as

Y = m(X) + ε (1)
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where ε is a rv such that E (ε|X) = 0 and V ar (ε|X) = σ2 <∞.

There exist many interesting nonparametric estimators for the unknown regression function
m. Examples of these last can be found in, for instance, Gasser and Müller (1979), Eubank
(1988) and Fan and Gijbels (1996). Given a sample of independent replicates of (X,Y ), the
popular Nadaraya-Watson estimator Nadaraya (1964) and Watson (1964) of m is given by

mn(x) =

∑n

i=1
YiKh (x−Xi)∑n

i=1
Kh (x−Xi)

(2)

where h := hn (h → 0 and nh → ∞) is the bandwidth and Kh (.) := K (./h) , where K is
an integrable smoothing kernel which usually is nonnegative, i.e., a symmetric probability
density function with compact support. There have been numerous activities to study mn(x),
see Härdle (1990) and Wand and Jones (1995) for a review.

Boundary effects are a well known problem in the nonparametric curve estimation setup, no
matter if we think density estimation or regression. Moreover, both density and regression
estimator usually show a sharp which increase in bias and variance when estimating them at
points near the boundary region, i.e., for x ∈ [0, h), this phenomenon is referred as ”boundary
effects”. In the context of the regression function estimation, Gasser and Müller (1979)
identified the unsatisfactory behavior of (2) for points in the boundary region. They proposed
optimal boundary kernels but did not give any formulas. However, Gasser and Müller (1979)
and Müller (2012) suggested multiplying the truncated kernel at the boundary zone or
region by a linear function. Rice (1984) proposed another approach using a generalized
jackknife. Schuster (1985) introduced a reflection technique for density estimation. Eubank
and Speackman (1991) presented a method for removing boundary effects using a bias
reduction theorem. Müller (1991) proposed an explicit construction of a boundary kernel
which is the solution of a variational problem under asymmetric support. Moreover, Müller
and Wang (1994) gave explicit formulas for a new class of polynomial boundary kernels and
showed that these new kernels have some advantages over the smooth optimum boundary
kernels in Müller (1991), i.e., these new kernels have higher mean squared error (MSE)
efficiency. The local linear methods developed recently have become increasingly popular in
this context (cf. Fan and Gijbels, 1996). More recently, in Dai and Sperlich (2010) a simple
and effective boundary correction for kernel densitiy and regression estimator is proposed,
by applying local bandwidth variation at the boundaries.

To remove the boundary effects a variety of methods have been developed in the literature,
the most widely used is the reflection method, the boundary kernel method, the trans-
formation method, the pseudo-data method and the local linear method. They all have
their advantages and disadvantages. One of the drawbacks is that some of them (especially
boundary kernels), can produce negative estimators. The recent work of Karunamuni and
Alberts (2005) provides excellent selective review article on boundary kernel methods and
their statistical properties in nonparametric density estimation. In the latter reference, a
new boundary correction methodology in density estimation is proposed and studied. It is
the purpose of this paper to extend this approach to the regression case.

The rest of the paper is organized as follows. Section 2 introduces our new nonparametric re-
gression estimator and presents some asymptotic results. In Section 3, extensive simulations
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are carried out to compare the proposed estimator with outher ons. Proofs are relegated to
Section 4.

2. Main results

In this paper, we combine the transformation and reflection boundary correction methods
to estimate the mean function mn(x). At each point in the boundary region (i.e., for x = ch,
0 ≤ c ≤ 1), we propose to investigate a class of estimators of the form

m̃n(x) =

∑n

i=1
Yi {Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))}∑n

i=1
{Kh (x+ g2 (Xi)) +Kh (x− g2 (Xi))}

:=
ϕ̃n(x)

f̃n(x)
(3)

where h is the bandwidth, Kh (.) := K (./h) and K is a kernel function and g1, g2 are two
transformations that need to be determined. Also, let the kernel function K in (3) be a
non-negative, symmetric function with support [−1, 1], and satisfying∫

K (t) dt = 1,

∫
tK (t) dt = 0, and 0 <

∫
t2K (t) dt <∞,

that is, K is a kernel of order 2.

For x ≥ h, m̃n(x) reduces to the traditional kernel estimator mn(x) given in (2). Thus m̃n(x)
is a natural boundary continuation of the usual kernel estimator (2). Moreover, estimator
(3) is non-negative as long as the kernel K is non-negative. Most importantly, the proposed
estimator improves the bias while the variance remains almost unchanged.

We assume that the transformations g1, g2 in (3) are non-negative, continuous and mono-
tonically increasing functions defined on [0,∞). Further assume that g−1k exists, gk(0) = 0,
g′k = 1, and that g′′k and g′′′k exist and are continuous on [0,∞), where g−1k denoting the
inverse function of gk (for k = 1, 2). Particularly, suppose that

g′′1 (0) =
ϕ′ (0)

ϕ (0)
CK,c and g′′2 (0) =

f ′ (0)

f (0)
CK,c (4)

where

CK,c := 2

1∫
c

(t− c)K (t) dt

2

1∫
c

(t− c)K (t) dt+ c

−1 .
Suppose further that, f (j), ϕ(j) and m(j) the jth−derivatives of f, ϕ and m exist and are
continued on [0,∞), j = 0, 1, 2, with f (0) = f, ϕ(0) = ϕ and m(0) = m.
The bias and variance of our estimator are given in the following theorem, which is the main
result of this paper.

Theorem 1. Under the above conditions on f, ϕ, m, g1, g2, and K. For the estimate m̃n(x)
defined in (3), we have for x = ch, 0 ≤ c ≤ 1 :

Bias(m̃n(x)) =
h2 (A1 −m (x)A2)

f (x)
+ o(h2), (5)
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and

V ar (m̃n(x)) =
f(0)σ2(0)

nhf2(x)

(∫ 1

−1
K2 (t) dt+ 2

∫ 1

c

K (t)K (2c− t) dt
)

+ o

(
1

nh

)
. (6)

where

A1 := ϕ′′ (0)

1∫
−1

t2K (t) dt−
[
g′′′1 (0)ϕ (0) + 3g′′1 (0)

(
ϕ(1) (0)− g′′1 (0)ϕ (0)

)]
(

1∫
−1

t2K (t) dt+c2),

(7)

A2 := f ′′ (0)

1∫
−1

t2K (t) dt− [g′′′2 (0) f (0) + 3g′′2 (0) (f ′ (0)− g′′2 (0) f (0))] (

1∫
−1

t2K (t) dt+ c2)

(8)
and σ2(x) = V ar (Y/X = x) .

Hence, the MSE of m̃n(x) is

MSE (m̃n(x)) = Bias2(m̃n(x)) + V ar (m̃n(x))

The asymptotic MSE of m̃n(x) is

AMSE (m̃n(x)) =
h4 (A1 −m (x)A2)

2

f2 (x)
+
f(0)σ2(0)

nhf2(x)

(∫ 1

−1
K2 (t) dt+ 2

∫ 1

c

K (t)K (2c− t) dt
)
.

On the basis of Theorem 1, the asymptotic optimal bandwidth that minimizes the AMSE
is

hopt = Cn−1/5 with C =

σ2 (0) f(0)
(

2
∫ 1

c
K (t)K (2c− t) dt+

∫
K2 (t) dt

)
4 (A1 −m (x)A2)

2

1/5

. (9)

Remark 1. Functions satisfying the conditions (4) can be easily constructed. We employ
the following transformation in our investigation. For 0 ≤ c ≤ 1, define

gk(y) = y +
1

2
dky

2 + λ0d
2
ky

3, k = 1, 2 (10)

where d1 = g′′1 (0) (resp. d2 = g′′2 (0)) and λ0 is a positive constant such that 12λ0 > 1. This
condition on λ0 is necessary for gk(y) of (10) to be an increasing function in y.

Remark 2. The choice hopt of h is only possible in a simulation study, when all required
quantities are known, but not in a real data situation. To select the bandwidth for the
new method in practice, we can replace the unknown quantities in (9) by their estimates.
Another method is to use leave-one-out cross-validation (cf. Härdle and Vieu, 1992) to select
the bandwidth h, i.e., we find h by minimizing

CV (h) =
∑n

i=1
(yj − m̃i,h(xi))

2
,

here m̃i,h(.) is the proposed regression estimate by leaving the ith observation out.

Journal home page: www.jafristat.net



S. Kheireddine, A. Sayah and D. Yahia, Afrika Statistika, Vol. 10(1), 2015, pages 739–750.
General method of boundary correction in kernel regression estimation. 743

3. Simulation results

In this section, we present some simulation results which are designed to illustrate the
performance of our estimator (3) for small sample and large sizes. For comparison purposes,
the local linear and the classical Nadaraya–Watson estimators (2) were also considered.
Recently, local polynomial fitting, and particularly its special case - local linear fitting -
have become increasingly popular in light of recent works by Cleveland and Loader (1996)
Fan (1992) and several others. It has the advantages of achieving full asymptotic minimax
efeciency and automatically correcting for boundary bias. A review of local polynomial
smoothing is given in Fan and Gijbels (1996). The local linear regression estimator is given
by

m̂n(x) =

n∑
j=1

wjYj/wj , wj := Kh (Xj − x) (Sn,2 − Sn,1 (Xj − x)) ,

where Sn,k :=
∑n

j=1Kh (Xj − x) (Xj − x)
k
, for k = 1, 2.

To assess the effect of the correction methods near the boundaries, the following models are
investigated:

Model 1 : m1 (x) = 2x+ 1 and Model 2 : m2 (x) = 2x2 + 3x+ 1

and errors εj , assumed to be standard normally distributed independent rv’s. Likewise,
consider two cases of density f with support [0,∞) of the continuous covariable X :

density 1 : f1 (x) = exp(−x) and density 2 : f2 (x) =
2

π (1 + x2) 0
, x ≥ 0.

For each density f1, f2 and models m1,m2 we calculate the absolute biases and MSE′s of the
proposed general transformation and reflection (GTR), the local linear (LL) and Nadaraya-
Watson (NW) estimators, in left boundary region (i.e., x = ch ; for c = 0.1, 0.2, 0.3, 0.4
and 0.5). The bandwidth selection is based on cross-validation procedure. The main reason
for this choice is that it provides a fair basis for comparison among the different estimators
regardless of bandwidth effects.

Throughout our simulations, we use the Epanechnikov kernel (cf. Epanechnikov, 1969)

K (t) = (3/4)
(
1− t2

)
1[−1,1] (t) ,

where 1A (.) denotes the indicator function of a set A.

The simulated sample sizes are n = 50 (small) and n = 500 (large). All results are calculated
by averaging over 1000 simulation runs. For each model and each density, we calculate the
absolute bias and the MSE of the estimators at the points in the mentioned boundary
region. The results are shown in Tables 1 and 2. We see that in all cases the standard
Nadaraya-Watson estimator mn(x) is the worst one. This is clearly due to the boundary
effect. Furthermore, when looking at the MSE′s, our new method outperforms the others.
The bias is about the same for our method and the local linear one.
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n |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE
c = .1 c = .2 c = .3 c = .4 c = .5

GTR .0141 .0613 .0381 .0631 .0461 .0584 .0512 .0571 .0499 .0580
50 NW .2678 .1362 .2192 .1120 .1775 .0894 .1365 .0700 .0977 .0617

LL .0375 1.237 .0064 .3649 .0064 .1468 .0101 .1167 .0011 .1265
Model 1

GTR .0109 .0083 .0126 .0090 .0162 .0091 .0199 .0084 .0229 .0080
500 NW .1747 .0393 .1503 .0313 .1217 .0233 .0954 .0163 .0690 .0115

LL .0127 .0386 .0025 .0240 .0006 .0169 .0049 .0123 .0013 .0114

GTR .1361 .0595 .1877 .0786 .1841 .0785 .1304 .0656 .0873 .0715
50 NW .5705 .3934 .4356 .2540 .3413 .1782 .2923 .1453 .2550 .1295

LL .0694 .1252 .1334 .0903 .1991 .1002 .2158 .1054 .2674 .1279
Model 2

GTR .0940 .0141 .0948 .0146 .0778 .0131 .0582 .0107 .0337 .0087
500 NW .3520 .1320 .2854 .0887 .2343 .0627 .1951 .0454 .1809 .0397

LL .0458 .0300 .0955 .0263 .1327 .0305 .1517 .0358 .1780 .0428

Table 1. Bias and MSE of the indicated regression estimators at boundary, case of density1

n |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE |Bias| MSE
c = .1 c = .2 c = .3 c = .4 c = .5

GTR .1131 .1189 .1064 .1084 .0876 .0813 .1216 .0769 .1166 .0728
50 NW .8697 .8014 .6174 .4329 .4455 .2529 .2630 .1279 .1205 .0734

LL .2662 .7402 .0818 .2944 .0245 .2785 .0044 .1955 .0060 .1803
Model 1

GRT .0496 .0196 .0520 .0167 .0455 .0131 .0391 .0107 .0481 .0098
500 NW .7162 .5180 .5016 .2577 .3621 .1374 .2511 .0690 .1352 .0251

LL .0063 .0601 .0054 .0373 .0040 .0238 .0007 .0159 .0009 .0152

GRT .1257 .1758 .1205 .1411 .1339 .1119 .1479 .0946 .2261 .1172
50 NW .6272 .4902 .6220 .4794 .6345 .4856 .7076 .5848 .7271 .6305

LL .1849 1.840 .0657 .2573 .1288 .1719 .2294 .1398 .4228 .2557
Model 2

GRT .0505 .0260 .0562 .0201 .0663 .0179 .0575 .0135 .0801 .0137
500 NW .3744 .1526 .3511 .1344 .3218 .1136 .3077 .1037 .3646 .1408

LL .0004 .0752 .0274 .0489 .0806 .0359 .1517 .0418 .2958 .1023

Table 2. Bias and MSE of the indicated regression estimators at boundary, case of density2

4. Proofs

Proof of (5). For x = ch, 0 ≤ c ≤ 1, we have

m̃n(x) =

∑n

i=1
Yi {Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))}∑n

i=1
{Kh (x+ g2 (Xi)) +Kh (x− g2 (Xi))}

:=
ϕ̃n(x)

f̃n(x)
,
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where g1 and g2 are given in (4). For the numerator ϕ̃n(x), we have

E [ϕ̃n(x)] =
1

h

∫ ∫
{Kh (x+ g1(u)) +Kh (x− g1(u))} yf (u, y) dydu

=
1

h

∫
{Kh (x+ g1(u)) +Kh (x− g1(u))}ϕ (u) du

=
1

h

∫
Kh (x+ g1(u))ϕ (u) du+

1

h

∫
Kh (x− g1(u))ϕ (u) du

=: I1 + I2,

where ϕ (u) =
∫
yf (u, y) dy.

Let t = (x+ g1(u)) /h, then

I1 =

1∫
c

K (t)
ϕ
(
g−11 (h (t− c))

)
g
(1)
1

(
g−11 (h (t− c))

)dt.
A Taylor expansion of order 2 of the function ϕ

(
g−11 (.)

)
/g

(1)
1

(
g−11 (.)

)
at t = c gives

I1 =

1∫
c

K (t) [ϕ (0) + h (t− c) (ϕ′ (0)− g′′1 (0)ϕ (0))

+
h2 (t− c)2

2
{ϕ′′ (0)− g′′′1 (0)ϕ (0)− 3g′′1 (0) (ϕ′ (0)− g′′ (0)ϕ (0))}

]
dt+ o

(
h2
)

= ϕ (0)

1∫
c

K (t) dt+ h {ϕ′ (0)− g′′1 (0)ϕ (0)}
1∫

c

(t− c)K (t) dt

+
h2

2
{ϕ′′ (0)− g′′′1 (0)ϕ (0)− 3g′′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))}

1∫
c

(t− c)2K (t)

+ o
(
h2
)
. (11)

Similarly,

I2 = ϕ (0)

c∫
−1

K (t) dt− h {ϕ′ (0)− g′′1 (0)ϕ (0)}
c∫
−1

(t− c)K (t) dt

+
h2

2
{ϕ′′ (0)− g′′′1 (0)ϕ (0)− 3g′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))}

c∫
−1

(t− c)2K (t) dt

+ o
(
h2
)
. (12)

Using the properties of K, we have

c∫
−1

tK (t) dt = −
1∫

c

K (t) dt and

c∫
−1

K (t) dt = 1−
1∫

c

K (t) dt.
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Also, by the existence and the continuity of ϕ′′ (.) near 0, we have for x = ch,

ϕ (0) = ϕ (x)− chϕ′ (x) + (ch)2

2 ϕ′′ (x) + o
(
h2
)
,

ϕ′ (x) = ϕ′ (0) + chϕ′′ (0) + o (h) ,
ϕ′′ (x) = ϕ′′ (0) + o (1) .

(13)

Now combining (11) and (12) and using the properties of K along with (13), we have for
x = ch, 0 ≤ c ≤ 1

E [ϕ̃n(x)] =
1

h
E [Kh (x+ g1 (Xi))Yi] +

1

h
E [Kh (x− g1 (Xi))Yi]

= ϕ (0)

1∫
c

K (t) dt+ ϕ (0)

c∫
−1

K (t) dt+ h {ϕ′ (0)− g′′1 (0)ϕ (0)}
1∫

c

(t− c)K (t) dt

− h {ϕ′ (0)− g′′1 (0)ϕ (0)}
c∫
−1

(t− c)K (t) dt

+
h2

2
{ϕ′ (0)− g′′′1 (0)ϕ (0)− 3g′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))}

1∫
c

(t− c)2K (t)

+
h2

2
{ϕ′′ (0)− g′′′1 (0)ϕ (0)− 3g′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))}

1∫
c

(t− c)2K (t) dt

+ o
(
h2
)
. (14)

Furthermore, the kernel K provides

1∫
−1

(t− c)2K (t) dt =

1∫
−1

t2K (t) dt+ c2,

and

1∫
c

(t− c)K (t) dt−
c∫
−1

(t− c)K (t) dt = 2

1∫
c

(t− c)K (t) dt+ c.
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From (14) we have

E [ϕ̃n(x)] = ϕ (x) + h {ϕ′ (0)− g′1 (0)ϕ (0)} {2
1∫

c

(t− c)K (t) dt+ c}

+
h2

2
{ϕ′′ (0)− g′′′1 (0)ϕ (0)− 3g′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))}

× {
1∫
−1

t2K (t) dt+ c2}+ o
(
h2
)

= ϕ (x) + h

2ϕ′ (0)

1∫
c

(t− c)K (t) dt− g′′1 (0)ϕ (0) {2
1∫

c

(t− c)K (t) dt+ c}


+
h2

2

ϕ′′ (0)

1∫
−1

t2K (t) dt

− [g′′′1 (0)ϕ (0) + 3g′′1 (0) (ϕ′ (0)− g′′1 (0)ϕ (0))] (

1∫
−1

t2K (t) dt+ c2)


+ o

(
h2
)
. (15)

Under the condition (4) on the transformation g1, the second order term of the right-hand
side of (15) is zero. It can be shown that

E [ϕ̃n(x)]− ϕ (x) =: h2A1 + o
(
h2
)
,

where A1 is given in (7).

Similarly, we can get

E
[
f̃n(x)

]
= f (x) + h

2f ′ (0)

1∫
c

(t− c)K (t) dt− g′′2 (0) f (0) {2
1∫

c

(t− c)K (t) dt+ c}


+
h2

2

f ′′ (0)

1∫
−1

t2K (t) dt

− [g′′2 (0) f (0) + 3g′′2 (0) (f ′ (0)− g′′2 (0) f (0))] {
1∫
−1

t2K (t) dt+ c2}


+ o

(
h2
)

(16)

Substitute g′′2 (0) , the second term of the right-hand side of (16) is zero. Then

E
[
f̃n(x)

]
− f (x) =: h2A2 + o

(
h2
)
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where A2 is given in (8). Hence

m̃n (x) =
h2A1 + o

(
h2
)

h2A2 + o (h2)
= m (x) +

h2 (A1 −m (x)A2)

f (x)
+ o

(
h2
)
.

The asymptotic bias result (5) follows directly.

Proof of (6). In order to find the asymptotic variance of the proposed estimator (3), we
may write

m̃n (x) =

n∑
i=1

Wni(x)Yi,

with

Wni(x) =
Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))∑n

i=1 {Kh (x+ g2 (Xi)) +Kh (x− g2 (Xi))}
.

The weights Wni(x) are nonnegative and satisfy
∑n

i=1
Wni(x) = 1, for all x ∈ R. Moreover,

we have

m̃n (x)−m (x) =

n∑
i=1

Wni(x) {Yi −m (Xi)}+

n∑
i=1

Wni(x) {m (Xi)−m (x)}

=: J1 + J2.

Here J1 is the variance which is study here. Recall that the predictable quadratic variation
of J1 equals

f̃2n(x)

n∑
i=1

W 2
ni(x)σ2(Xi) = (nh)−2

n∑
i=1

σ2(Xi) {Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))}2 ,

where σ2(.) is the conditional variance i.e., σ2(·) = V ar (Y |X = ·) .

For x = ch, 0 ≤ c ≤ 1, we have, using a Taylor expansion of order 2

E

[
(nh)−2

n∑
i=1

σ2(Xi) {Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))}2
]

=
1

nh2
E
[
σ2(Xi) {Kh (x+ g1 (Xi)) +Kh (x− g1 (Xi))}2

]
=

1

nh2

∫
σ2(u) {Kh (x+ g1(u)) +Kh (x− g1(u))}2 f(u)du

=
1

nh2

[∫
σ2(u)K2

h (x+ g1(u)) f(u)du+

∫
σ2(u)K2

h (x− g1(u)) f(u)du

]
+

2

nh2

∫
σ2(u)Kh (x+ g1(u))Kh (x− g1(u)) f(u)du

=: J11 + J12.
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Firstly,

J11 =
1

nh2

h∫ 1

c

σ2(g
−1

1
((t− c)h))K2 (t)

f
(
g

−1

1
((t− c)h)

)
g′1
(
g−1

1
((t− c)h)

)dt
+h

∫ c

−1
σ2(g

−1

1
((c− t)h))K2 (t)

f
(
g

−1

1
((c− t)h)

)
g′1
(
g−1

1
((c− t)h)

)dt


=
f(0)σ2(0)

nh

∫ 1

−1
K2 (t) dt+ o(

1

nh
). (17)

Next we consider J12. By the continuity property of g′′1 and by a Taylor expansion of order
2 of g1, we have

g1 ((c− t)h) = g1 (0) + (t− c) (−h) g′1 (0) +O
(
h2
)

= (c− t)h+O
(
h2
)
,

since g1 (0) = 0 and g′1 (0) = 1. Using (17) and by the change of variables, x + g1(y) = ht,
we obtain

J12 =
2

nh2

∫ ∞
0

σ2(u)Kh (x+ g1 (Xi))Kh (x− g1 (Xi)) f(u)du

=
2

nh

∫ 1

c

σ2
(
g

−1

1 (th− x)
)
K (t)Kh

(
x− g1(g

−1

1 (th− x))
)
f(g

−1

1 (th− x))dt

=
2

nh

∫ 1

c

σ2
(
g

−1

1 (th− x)
)
K (t)Kh

(
x− (t− c)h+O

(
h2
))
f(g

−1

1 (th− x))dt

=
2

nh

∫ 1

c

σ2 (0)K (t)K (2c− t+O (h)) (f(0) +O (h)) dt

=
2σ2 (0) f(0)

nh

∫ 1

c

K (t)K (2c− t) dt+ o

(
1

nh

)
. (18)

The proof of (6) now follows from (17) and (18), which achieves the proof of Theorem 1.
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M. G. Schimek, eds.) 10–49. Physica, Heidelberg.

Dai, J., Sperlich, S. (2010). Simple and effective boundary correction for kernel densities and
regression with an application to the world income and Engel curve estimation. Compu-
tational Statistics & Data Analysis, 54(11), 2487-2497.

Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density.
Theory of Probability & Its Applications, 14(1), 153-158.

Journal home page: www.jafristat.net



S. Kheireddine, A. Sayah and D. Yahia, Afrika Statistika, Vol. 10(1), 2015, pages 739–750.
General method of boundary correction in kernel regression estimation. 750

Eubank, R. L. (1988). Spline smoothing and nonparametric regression. Marcel Dekker, New
York.

Eubank, R. L., Speckman, P. L. (1991). A bias reduction theorem with applications in
nonparametric regression. Scandinavian Journal of Statistics, 211-222.

Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American statistical
Association, 87(420), 998-1004.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman
and Hall, London.

Gasser, T., Müller, H. G. (1979). Kernel estimation of regression functions (pp. 23-68).
Springer Berlin Heidelberg.
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