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Abstract. The aim of this paper is to provide pointwise and uniform moderate deviations
principles for the kernel estimator of a nonrandom regression function. Moreover, we give an
application of these moderate deviations principles to the construction of confidence regions
for the regression function.

Résumé. L’objectif de cet article est de donner les principes de déviations modérées,
ponctuels et uniformes, satisfaits par l’estimateur à noyau d’une fonction de régression déter-
ministe. De plus, nous donnons une application de ces principes de déviations modérées à la
construction de régions de confiance pour la fonction de régression.
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1. Introduction

We consider the following regression model

Yi,n = µ(ti,n) + εi,n, i = 1, . . . , n,

where µ is an unknown real function defined on the interval [0, 1], the errors εi,n form a
triangular array of independent and identically distributed random variables with expecta-
tion zero and finite variance σ2, and (t1,n, t2,n, . . . , tn,n) is the sampling of the interval [0, 1]
defined by ti,n = (i − 1)/n. This assumption of equidistance is not essential, but simplifies
the presentation of the method and the proofs. There is no loss of generality to assume the
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random variables (εi,n)1≤i≤n,n≥1 are defined in the same probability space, e.g. in the prod-
uct space

∏
n≥1 Rn endowed with the probability P = ⊗n≥1P⊗nε where Pε is the probability

law of εi,n.
For sake of simplicity, we omit the index n, and write:

Yi = µ(ti) + εi, i = 1, . . . , n. (1)

A large amount of literature is devoted to the study of the model (1), in particular to
construct hypothesis tests and confidence bands based on asymptotic convergence to the
normal distribution. Among many others, let us cite Davison and Tsai (1992), Dette and
Munk (1998a), Dette and Munk (1998b), Dette et al. (1998), Dieboldt (1995), Eubank and
Hart (1992), Eubank and Spiegelmann (1990), Gasser et al. (1986), Härdle and Mammen
(1993), Härdle and Marron (1990), Mohdeb and Mokkadem (2004), Mohdeb and Mokkadem
(2015), Munk and Dette (1998) and Stute (1997). The use of moderate deviations principles
(MDP) for the construction of confidence bands has been introduced by Mokkadem and
Pelletier (2006) in the random design set up. Our purpose is to extend this approach to
the case of fixed design model (1). Based on the sample (ti, Y i), i = 1, . . . , n, we define the
kernel estimator µn of µ by setting

µn(t) =
1

nhn

n∑
i=1

YiK

(
t− ti
hn

)
where the bandwidth (hn) is a sequence of positive real numbers that goes to zero, and
where the kernel K is a function satisfying

∫
RK(z) dz = 1.

Let us recall the concept of large and moderate deviations. A function J : R → [0,∞] is
called a good rate function if, for each M < ∞, the level set {x ∈ R : J(x) ≤ M} is a
compact set. A R-valued sequence (Zn)n≥1 satisfies a large deviations principle (LDP) with
speed (νn) and good rate function J if:

(a) (νn) is a positive sequence such that limn→∞ νn =∞,
(b) for every Borel set B ⊂ R,

− infx∈B̆ J(x) ≤ lim infn→∞ ν−1
n logP (Zn ∈ B )

≤ lim supn→∞ ν−1
n logP (Zn ∈ B ) ≤ − infx∈B J(x),

where B̆ and B denote the interior and the closure of B respectively. Let (vn) be a
nonrandom sequence that goes to infinity. If the sequence (vnZn)n≥1 satisfies a LDP, we
say that (Zn)n≥1 satisfies a MDP.

The main purpose of this paper is to establish pointwise and uniform MDP for the sequence
(µn − µ). For any function G and positive sequence (un), set

I(G, t, un) =
1

nun

n∑
i=1

G2

(
t− ti
un

)
,

and let (vn) be a nonrandom sequence that goes to infinity. For t ∈]0, 1[, we give conditions
under which the sequence (

vn
(µn(t)− µ(t))√
I(K2, t, hn)

)
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satisfies a LDP with speed (nhn/v
2
n) and good rate function

J : x 7→ x2

2σ2
.

Moreover, let (ρn) be a nonrandom positive sequence that goes to zero. We give conditions
under which the sequence (

vn sup
t∈[ρn,1−ρn]

|µn(t)− µ(t)|√
I(K2, t, hn)

)

satisfies a LDP with speed (nhn/v
2
n) and good rate function J on R+.

Large and moderate deviations principles have been widely applied in statistical inference.
Their use has been initiated by the papers of Chernov (1952) and Bahadur (1960), and
then developped in various directions. Let us cite, among many others, Borovkov and
Mogulskii (1992), Groeneboom (1980), Ibragimov and Radavicius (1981), Kallengerg
(1982), Kallengerg (1983a), Kallengerg (1983b), Korostelev and Leonov (1995), Nikitin
(1995), Mokkadem and Pelletier (2006), and Puhalskii and Spokoiny (1998). In Section 2.2,
we provide an application of our MDP results to the construction of confidence regions for µ.

Our paper is now organized as follows. Our assumptions and main results are stated in
Section 2. Section 3 is deserved to the proofs.

2. Assumptions and Main Results

The assumptions to which we will refer in the sequel are the following.

(A1) i) K is a nonnegative and Lipschitz function on R such that∫
RK(z)dz = 1,

∫
R zK(z)dz = 0, and

∫
R z

2K(z)dz <∞.

ii) There exists m > 3 such that lim|z|→∞ |z|mK(z) = 0.
(A2) i) µ is Lipschitz on [0, 1].

ii) µ is twice differentiable on ]0, 1[, supt∈]0,1[ |µ′(t)| <∞, and supt∈]0,1[ |µ′′(t)| <∞.
(A3) There exists a > 0 such that E(exp(a|εi|)) <∞.

2.1. Moderate deviations principles

Our main results are the two following theorems.

Theorem 1 (Pointwise MDP). Let (A1), (A2)i), and (A3) hold, and set t ∈]0, 1[. For
all sequences (hn) and (vn) satisfying the conditions

vn →∞,
nhn
v2
n

→∞, and
vn
nh2

n

→ 0, (2)
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the sequence (
vn

(µn(t)− E(µn(t)))√
I(K2, t, hn)

)
satisfies a LDP with speed (nhn/v

2
n) and good rate function J on R.

Theorem 2 (Uniform MDP). Let (A1), (A2)i), and (A3) hold, assume that (hn) and
(vn) satisfy the conditions

vn →∞,
nhn

v2
n log(1/hn)

→∞, and
vn
nh2

n

→ 0, (3)

and let (ρn) be such that

0 < ρn <
1

2
, ρn → 0,

ρn
hn
→∞, and vn

(
hn
ρn

)m−2

→ 0. (4)

Then, the sequence (
vn sup

t∈[ρn,1−ρn]

|µn(t)− E(µn(t))|√
I(K2, t, hn)

)
satisfies a LDP with speed (nhn/v

2
n) and good rate function J on R+.

Let us point out that, to obtain the uniform MDP, we require the condition
nhn[v2

n log(1/hn)]−1 →∞ in (3), whereas, for the pointwise MDP, the slightly weaker condi-
tion nhnv

−2
n →∞ in (2) is sufficient. This difference of assumptions between the pointwise

case and the uniform case is usual in the nonparametric framework. It is of course com-
pletely explained by the difference between the pointwise and the uniform weak asymptotic
behaviours of the kernel estimator µn. As a matter of fact, let us recall that, for t ∈]0, 1[,
µn(t) is known to satisfy the central limit theorem (CLT)

Zn(t) =

√
nhn (µn(t)− E(µn(t)))√

I(K2, t, hn)

D→ N
(
0, σ2

)
,

(where
D→ denotes the convergence in distribution) and that, for ρ ∈]0, 1/2[, Stadtmüller

(1986) proved that

√
2 log(1/hn)

[
sup

t∈[ρ,1−ρ]
|Zn(t)| −

√
2 log(1/hn) (1 + ηn)

]
D→ Z∗ (5)

where Z∗ is a random variable whose distribution function is z 7→ exp(−2 exp(−z)), and
where (ηn) is a nonrandom sequence (explicitly given in Stadtmüller (1986)) satisfying
limn→∞ ηn = 0. It follows that, for the sequences (vn) such that nhnv

−2
n → ∞ and

nhn[v2
n log(1/hn)]−1 → 0, the sequence (vn[µn(t) − E(µn(t))]) converges in probability

to zero, whereas the sequence (vn supt∈[ρn,1−ρn] |µn(t) − E(µn(t))|) does not, so that a
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pointwise MDP for µn exists, but not a uniform MDP.

It is often more convenient to have MDP for µn − µ rather than for µn − E(µn): this is the
object of the following corollaries.

Corollary 1 (Pointwise MDP). Let (A1), (A2)i), and (A3) hold. Set t ∈]0, 1[, and as-
sume that µ is twice differentiable at t. Then, for all sequences (hn) and (vn) satisfying the
conditions in (2) and such that vnh

2
n → 0, the sequence(
vn

(µn(t)− µ(t))√
I(K2, t, hn)

)
satisfies a LDP with speed (nhn/v

2
n) and good rate function J on R.

Corollary 2 (Uniform MDP). Let (A1)-(A3) hold. Then, for all sequences (hn) and (vn)
satisfying the conditions in (3) and such that vnh

2
n → 0, and for all sequences (ρn) satisfying

the conditions in (4), the sequence(
vn sup

t∈[ρn,1−ρn]

|µn(t)− µ(t)|√
I(K2, t, hn)

)
satisfies a LDP with speed (nhn/v

2
n) and good rate function J on R+.

2.2. Application to the construction of confidence regions

Moderate deviations principles allow to construct confidence regions with positive log-
arithmic asymptotic level. These confidence regions have an asymptotic level equal to
one. Moreover, they often are asymptotic almost sure sequences of confidence regions. Let
us recall the notion of the logarithmic asymptotic level and of asymptotic almost sure
sequences of confidence regions, as defined in Mokkadem and Pelletier (2006).

Let {Dn} be a sequence of confidence regions of an unknown parameter θ, and let Ω denote
the underlying probability space. The logarithmic asymptotic level of {Dn} is γ (γ > 0)
with speed wn (wn →∞) if

lim
n→∞

1

wn
logP(θ 6∈ Dn) = −γ.

Moreover, {Dn} is an asymptotic almost sure (or consistent) sequence of confidence regions
of θ if there exists Ω0 ⊂ Ω such that:{

• P(Ω0) = 1
• ∀ω ∈ Ω0, ∃N(ω) such that n ≥ N(ω)⇒ θ ∈ Dn(ω).

To deduce confidence regions for µ from Corollaries 1 and 2, we need to estimate the variance
σ2 of the errors εi: we use the estimator

σ̂2
n =

1

n− 2

n−1∑
i=2

2

3

(
1

2
Yi−1 +

1

2
Yi+1 − Yi

)2
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introduced by Gasser et al. (1986). Moreover, we need to strenghten Assumption (A3) in
the following way.

(A′3) There exists a > 0 such that E(exp(aε2
i )) <∞.

2.2.1. Application to the construction of confidence intervals

The pointwise MDP given in Corollary 1 allows to prove the following proposition.

Proposition 1. Let (A1), (A2)i) and (A′3) hold. Set t ∈]0, 1[, assume that µ is twice differ-
entiable at t, and let (hn) and (vn) satisfy the conditions in (2) and be such that vnh

2
n → 0.

Then, for any δ > 0, we have

lim
n→∞

v2
n

nhn
logP

(
µ(t) 6∈

[
µn(t)− δ

σ̂n
√
I(K2, t, hn)

vn
, µn(t) + δ

σ̂n
√
I(K2, t, hn)

vn

])
= −δ

2

2
.

Moreover, if the additional condition nhn[v2
n log(1/hn)]−1 → ∞ holds, then the sequence of

intervals [
µn(t)− δ

σ̂n
√
I(K2, t, hn)

vn
, µn(t) + δ

σ̂n
√
I(K2, t, hn)

vn

]
is an asymptotic almost sure sequence of confidence intervals of µ(t).

Remark 1. Proposition 1 holds in particular by choosing (hn) = (n−a), 0 < a < 1/2, and
(vn) = (nb) with 0 < b < min{2a, 1− 2a, (1− a)/2}.

Before comparing the confidence intervals given by Proposition 1 with those obtained by
application of the CLT, let us first state the following corollary, which says that the quantity
I(K2, t, hn) in the bounds of the confidence intervals of Proposition 1 can be replaced by
other quantities.

Corollary 3. Let (h∗n) be a bandwidth such that limn→∞ h∗n = 0 and limn→∞ nh∗2n = ∞.
Throughout Proposition 1, the quantity I(K2, t, hn) can be replaced either by I(K2, t, h∗n) or
by
∫
RK

2(s)ds.

Hall (1992) shows that, to construct confidence intervals, slightly undersmoothing is more
efficient than bias estimation. Let (h∗n) be a bandwidth and µ∗n be the kernel estimator of µ
computed with this bandwidth (µ∗n(t) = (nh∗n)−1

∑n
i=1 YiK

[
(h∗n)−1(t− ti)

]
). To construct

confidence intervals for µ by applying the CLT and by slightly undersmoothing, (h∗n) must
be chosen such that nh∗5n → 0 (and, for instance, such that nh∗3n →∞), in which case µ∗n(t)
is known to satisfy the CLT √

nh∗n (µ∗n(t)− µ(t))

σ
√
I(K2, t, h∗n)

D→ N (0, 1) .
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Set α ∈]0, 1[, and let tα/2 be the α/2-quantile of the standard normal distribution. The
estimator σ̂2

n of Gasser et al. (1986) being consistent, it follows that

I∗n,α(t) =

[
µ∗n(t)− tα/2

σ̂n
√
I(K2, t, h∗n)√
nh∗n

, µ∗n(t) + tα/2
σ̂n
√
I(K2, t, h∗n)√
nh∗n

]
is a confidence interval for µ(t) with asymptotic level 1 − α. Now, let (un) be a positive
sequence such that un → ∞ and nh∗5n u

4
n → 0, set (hn) = (unh

∗
n) in the definition of µn(t)

and

In(t) =

[
µn(t)− tα/2

σ̂n
√
I(K2, t, h∗n)√
nh∗n

, µn(t) + tα/2
σ̂n
√
I(K2, t, h∗n)√
nh∗n

]
.

The interval In(t) is simply the translation of I∗n,α(t) from the (random) quantity µn(t) −
µ∗n(t): it has the same width as the interval I∗n,α(t), but its asymptotic level clearly equals one
(and not 1− α < 1). The application of Corollary 3 ensures that its logarithmic asymptotic
level equals t2α/2/2 with speed un. Let us point out that this implies that, for η > 0 and n
large enough,

exp

(
−

[
t2α/2

2
+ η

]
un

)
≤ P (µ(t) 6∈ In(t)) ≤ exp

(
−

[
t2α/2

2
− η

]
un

)
.

The convergence rate of the level of In(t) toward one is thus larger when (un) goes faster to
infinity. Of course, (un) cannot be chosen arbitrarily large because of the condition nh∗5n u

4
n →

0. However, it is interesting to note that it is always possible (and advised) to choose (un)
large enough so that nh5

n → ∞. In this case, the interval In(t) is centered on an estimator
µn(t) for which there is no CLT (the sequence (h−2

n [µn(t) − µ(t)]) then converging to a
usually nonzero constant), but the convergence rate of its level toward one is larger than
when In(t) is centered on estimators for which a CLT exists.

2.2.2. Application to the construction of confidence bands

The uniform MDP given in Corollary 2 allows to prove the following proposition.

Proposition 2. Let (A1), (A2) and (A′3) hold, assume that (hn), (vn), and (ρn) satisfy
the conditions in (3) and (4), and that vnh

2
n → 0. Then, for any δ > 0, we have

lim
n→∞

v2
n

nhn
logP

(
∃t ∈ [ρn, 1− ρn], µ(t) 6∈

[
µn(t)− δ

σ̂n
√
I(K2, t, hn)

vn
,

µn(t) + δ
σ̂n
√
I(K2, t, hn)

vn

])
= −δ

2

2
.

Moreover, the sequence of sets of functions

Dn =

{
g : [0, 1]→ R, |g(t)− µn(t)| ≤ δ

σ̂n
√
I(K2, t, hn)

vn
∀t ∈ [ρn, 1− ρn]

}
is an asymptotic almost sure sequence of confidence regions of µ.
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Remark 2. Proposition 2 holds in particular by choosing a Gaussian kernel K or a kernel
K with bounded support, (hn) = (n−a) with 0 < a < 1/2, (vn) = (nb) with 0 < b <
min{2a, 1− 2a, (1− a)/2}, and (ρn) = (nr) with 0 < r < a.

The quantity I(K2, t, hn) appearing in the bounds of confidence bands of Proposition 2 can
be replaced by other quantities, as stated in the following corollary.

Corollary 4. Let (h∗n) be a bandwidth such that limn→∞ nh∗2n = ∞ and limn→∞ ρn/h
∗
n =

∞. Throughout Proposition 2, the quantity I(K2, t, hn) can be replaced either by I(K2, t, h∗n)
or by

∫
RK

2(s)ds.

Let us note that the confidence bands with logarithmic asymptotic level δ2/2 with speed
(nhn/v

2
n) provided by Proposition 2 (or by Corollary 4) are unions of confidence intervals,

which all share the same logarithmic asymptotic level that also equals δ2/2 with speed
(nhn/v

2
n).

To conclude this section, we now compare the confidence bands obtained by application of
the MDP with those constructed with the help of result (5) of Stadtmüller (1986).

Let (h∗n) be a bandwidth, and let µ∗n be the kernel estimator of µ computed with
the help of this bandwidth. To construct confidence bands by applying the result (5)
of Stadtmüller (1986) and by slightly undersmoothing, (h∗n) must be chosen such that
nh∗5n log(1/h∗n) → 0 (and, let us say, such that nh∗3n log(1/h∗n) → ∞). Set ρ ∈]0, 1/2[, zα
such that exp(−2 exp(−zα)) = 1− α and, for all t ∈ [ρ, 1− ρ],

I∗n(t) =

[
µ∗n(t)−

σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
log(1/h∗n)

(√
2 + ηn +

zα√
2 log(1/h∗n)

)
,

µ∗n(t) +
σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
log(1/h∗n)

(√
2 + ηn +

zα√
2 log(1/h∗n)

)]
.

The union (on t ∈ [ρ, 1−ρ]) of the confidence intervals I∗n(t) is a confidence band for µ with
asymptotic level 1− α, since the result (5) of Stadtmüller (1986) guarantees that

lim
n→∞

P (∀t ∈ [ρ, 1− ρ], µ(t) ∈ I∗n(t)) = 1− α.

Let us point out that the asymptotic level of each confidence interval I∗n(t) is clearly 1. More
precisely, the application of Corollary 3 (with (hn) = (h∗n) and (vn) = (

√
nh∗n/ log(1/h∗n)),

together with a continuity argument, ensures that, for all t ∈ [ρ, 1 − ρ], the logarithmic
asymptotic level of I∗n(t) equals 1 with speed log(1/h∗n). There is thus a big difference
between the confidence bands obtained by application of the MDP and those constructed
with the help of the asymptotic law of the normalized uniform errors: when MDP are used,
the confidence intervals whose union gives the confidence band, and the confidence band it-
self, share the same (logarithmic) asymptotic level, contrary to the case the result (5) is used.
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Now, let (un) be a positive sequence such that un → ∞ and nh∗5n [log(1/h∗n)]−1u4
n → 0, set

(hn) = (unh
∗
n) and, for t ∈ [ρ, 1− ρ],

In(t) =

[
µn(t)−

σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
log(1/h∗n)

(√
2 + ηn +

zα√
2 log(1/h∗n)

)
,

µn(t) +
σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
log(1/h∗n)

(√
2 + ηn +

zα√
2 log(1/h∗n)

)]
.

For each t ∈ [ρ, 1− ρ], In(t) is the translation of I∗n(t) from the quantity µn(t)− µ∗n(t). The
application of Corollaries 3 and 4, together with a continuity argument, ensures that the
confidence intervals In(t) and the confidence band defined as the union (for t ∈ [ρ, 1− ρ]) of
the intervals In(t) have a logarithmic asymptotic level equal to 1 with speed un log(1/h∗n).
In particular, this implies that, for η > 0 and n large enough,

exp (− [1 + η]un log(1/h∗n)) ≤ P (∃t ∈ [ρ, 1− ρ], µ(t) 6∈ In(t)) ≤ exp (− [1− η]un log(1/h∗n)) .

The application of MDP thus allows to get confidence bands, which have the same width as
those constructed by using the result (5) of Stadtmüller (1986), but whose asymptotic level
is better. Let us point out that it is preferable again to choose (un) going to infinity as fast
as possible (but such that nh∗5n [log(1/h∗n)]−1u4

n → 0), and thus to center the intervals In on
an estimator µn for which the result (5) does not hold. Let us finally note that the simplified
intervals

I ′n(t) =

[
µn(t)−

σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
2 log(1/h∗n) , µn(t) +

σ̂n
√
I(K2, t, h∗n)√
nh∗n

√
2 log(1/h∗n)

]
and the confidence band defined as the union (for t ∈ [ρ, 1− ρ]) of the intervals I ′n(t) have
the same logarithmic asymptotic level as the intervals In(t) (and the associated confidence
band).

3. Proofs

Throughout the proofs, we use the following notation. For any function G, we set

I(G) =

∫
R
G(s)ds,

‖G‖∞ = sup
t∈R
|G(t)|.

Moreover, if G is Lipschitz, we denote by ‖G‖L its Lipschitz norm.

3.1. Proof of Theorems 1 and 2

In order to prove Theorems 1 and 2, we need the following preliminary technical lemmas.

Lemma 1. Let G be an integrable Lipschitz function, and let (hn) and (ρn) satisfy the
conditions

lim
n→∞

nh2
n =∞, lim

n→∞
ρn = 0, and lim

n→∞

ρn
hn

=∞.
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Then, we have
lim
n→∞

sup
t∈[ρn,1−ρn]

|I(G, t, hn)− I(G)| = 0.

Lemma 2. Set

Λn,t(u) =
v2
n

nhn
logE

[
exp

(
nhnu(µn(t)− µ(t))

vn
√
I(K2, t, hn)

)]
1) Under the assumptions of Theorem 1, we have

lim
n→∞

Λn,t(u) =
u2σ2

2
.

2) Under the assumptions of Theorem 2, we have

lim
n→∞

sup
t∈[ρn,1−ρn]

∣∣∣∣Λn,t(u)− u2σ2

2

∣∣∣∣ = 0.

Lemmas 1 and 2 are established in Sections 3.1.1 and 3.1.2, respectively. Then, Theorems 1
and 2 are proved in Sections 3.1.3 and 3.1.4, respectively.

3.1.1. Proof of Lemma 1

Since ti = (i− 1)/n, i ∈ {1, . . . , n}, we have, by setting tn+1 = 1,∣∣∣∣I(G, t, hn)− 1

hn

∫ 1

0

G

(
t− s
hn

)
ds

∣∣∣∣ =
1

hn

∣∣∣∣∣
n∑
i=1

∫ ti+1

ti

[
G

(
t− ti
hn

)
−G

(
t− s
hn

)]
ds

∣∣∣∣∣
≤ ‖G‖L

h2
n

n∑
i=1

∫ ti+1

ti

(s− ti) ds

≤ ‖G‖L
2h2

n

n∑
i=1

(ti+1 − ti)2

≤ ‖G‖L
2nh2

n

.

Moreover, we note that∣∣∣∣ 1

hn

∫ 1

0

G

(
t− s
hn

)
ds−

∫
R
G(u)du

∣∣∣∣ =

∣∣∣∣∣
∫ t/hn

−(1−t)/hn

G(u)du−
∫
R
G(u)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∞
t/hn

G(u)du

∣∣∣∣∣+

∣∣∣∣∣
∫ −(1−t)/hn

−∞
G(u)du

∣∣∣∣∣ ,
so that

sup
t∈[ρn,1−ρn]

∣∣∣∣ 1

hn

∫ 1

0

G

(
t− s
hn

)
ds−

∫
R
G(u)du

∣∣∣∣ ≤ ∫ ∞
ρn/hn

|G(u)|du+

∫ −ρn/hn

−∞
|G(u)|du

→ 0 as n→∞.
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It follows that

sup
t∈[ρn,1−ρn]

|I(G, t, hn)− I(G)| ≤ sup
t∈[ρn,1−ρn]

∣∣∣∣I(G, t, hn)− 1

hn

∫ 1

0

G

(
t− s
hn

)
ds

∣∣∣∣
+ sup
t∈[ρn,1−ρn]

∣∣∣∣ 1

hn

∫ 1

0

G

(
t− s
hn

)
ds−

∫
R
G(u)du

∣∣∣∣
→ 0 as n→∞,

which gives Lemma 1.

3.1.2. Proof of Lemma 2

In order to give a unified proof for both parts of Lemma 2, we set

En =

{
{t} in the framework of Part 1 of Lemma 2,
[ρn, 1− ρn] in the framework of Part 2 of Lemma 2,

and we prove that

lim
n→∞

sup
t∈En

∣∣∣∣Λn,t(u)− u2σ2

2

∣∣∣∣ = 0.

We first note that

Λn,t(u) =
v2
n

nhn
logE

[
exp

(
nhnu [µn(t)− E(µn(t))]

vn
√
I(K2, t, hn)

)]

=
v2
n

nhn
logE

[
exp

(
u

vn
√
I(K2, t, hn)

n∑
i=1

[
YiK

(
t− ti
hn

)
− E

(
YiK

(
t− ti
hn

))])]

=
v2
n

nhn
logE

[
exp

(
u

vn
√
I(K2, t, hn)

n∑
i=1

εiK

(
t− ti
hn

))]

=
v2
n

nhn

n∑
i=1

logE

[
exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))]

=
v2
n

nhn

n∑
i=1

log

{
1 + E

[
exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))
− 1

]}
.

Now, for each i ∈ {1, . . . , n}, there exists ci,n between 1 and

E
[
exp

(
u

vn
√
I(K2,t,hn)

εiK
(
t−ti
hn

))]
such that

Λn,t(u) =
v2
n

nhn

n∑
i=1

{
E

[
exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))
− 1

]
+R

(1)
i,n,t(u)

}
where

R
(1)
i,n,t(u) =

−1

2c2i,n

{
E

[
exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))
− 1

]}2

.
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Since E(εi) = 0, we get

Λn,t(u) =
v2
n

nhn

n∑
i=1

{
E
[

u2

2v2
nI(K2, t, hn)

ε2
iK

2

(
t− ti
hn

)]
+R

(1)
i,n,t(u) +R

(2)
i,n,t(u)

}
where∣∣∣R(2)

i,n,t(u)
∣∣∣

≤ |u|3

6v3
n[I(K2, t, hn)]3/2

E

[
|εi|3K3

(
t− ti
hn

)
exp

(
u

vn
√
I(K2, t, hn)

|εi|‖K‖∞

)]
. (6)

It follows that

Λn,t(u) =
u2σ2

2I(K2, t, hn)

[
1

nhn

n∑
i=1

K2

(
t− ti
hn

)]
+

v2
n

nhn

n∑
i=1

[
R

(1)
i,n,t(u) +R

(2)
i,n,t(u)

]
=

u2σ2

2
+

v2
n

nhn

n∑
i=1

[
R

(1)
i,n,t(u) +R

(2)
i,n,t(u)

]
.

To conclude the proof of Lemma 2, it remains to show that, for j ∈ {1, 2},

lim
n→∞

sup
t∈En

v2
n

nhn

n∑
i=1

R
(j)
i,n,t(u) = 0. (7)

Let us first note that, by application of Lemma 1, we have

I(K2, t, hn) ≥ I(K2)− sup
t∈En

∣∣I(K2, t, hn)− I(K2)
∣∣

≥ I(K2)

2
for n large enough.

In the same way, we write that

I(K2, t, hn) ≤ I(K2) + sup
t∈En

∣∣I(K2, t, hn)− I(K2)
∣∣

≤ 2I(K2) for n large enough.

Let us now look at
∑n
i=1R

(1)
i,n,t(u). Let c denote a generic constant that may vary from line

to line. We have, for all i ∈ {1, . . . , n},

exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))
≥ exp

(
−|u|

vn
√
I(K2, t, hn)

|εi|‖K‖∞

)
,

and thus, by (A3), for n large enough,

1

c2i,n
≤ E

[
exp

(
2|u|

vn
√
I(K2, t, hn)

|εi|‖K‖∞

)]

≤ E

[
exp

(
2|u|

vn
√
I(K2)/2

|εi|‖K‖∞

)]
≤ c
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Moreover, we note that, since E(εi) = 0,∣∣∣∣∣E
[

exp

(
u

vn
√
I(K2, t, hn)

εiK

(
t− ti
hn

))
− 1

]∣∣∣∣∣
≤ E

[
u2ε2

i

2v2
nI(K2, t, hn)

K2

(
t− ti
hn

)
exp

(
|u|

vn
√
I(K2, t, hn)

|εi|‖K‖∞

)]

≤ u2

2v2
nI(K2, t, hn)

K2

(
t− ti
hn

)
E

[
ε2
i exp

(
|u|

vn
√
I(K2, t, hn)

|εi|‖K‖∞

)]

≤ u2

v2
nI(K2)

K2

(
t− ti
hn

)
E

[
ε2
i exp

(
|u|

vn
√
I(K2)/2

|εi|‖K‖∞

)]

≤ c

v2
n

K2

(
t− ti
hn

)
.

We thus deduce that, for n large enough, and for each i ∈ {1, . . . , n},∣∣∣R(1)
i,n,t(u)

∣∣∣ ≤ c

v4
n

K4

(
t− ti
hn

)
.

It follows that, for n large enough,∣∣∣∣∣ v2
n

nhn

n∑
i=1

R
(1)
i,n,t(u)

∣∣∣∣∣ ≤ c

v2
nnhn

n∑
i=1

K4

(
t− ti
hn

)
≤ c

v2
n

[
I(K4) + sup

t∈En

{
I(K4, t, hn)− I(K4)

}]
.

Since vn →∞, the application of Lemma 1 then ensures that

lim
n→∞

sup
t∈En

∣∣∣∣∣ v2
n

nhn

n∑
i=1

R
(1)
i,n,t(u)

∣∣∣∣∣ = 0,

so that (7) holds for j = 1. Let us finally look at
∑n
i=1R

(2)
i,n,t(u). In view of the upper bound

(6), we clearly have, for n sufficiently large,∣∣∣∣∣ v2
n

nhn

n∑
i=1

R
(2)
i,n,t(u)

∣∣∣∣∣ ≤ c

vnnhn

n∑
i=1

K3

(
t− ti
hn

)
≤ c

vn

[
I(K3) + sup

t∈En

{
I(K3, t, hn)− I(K3)

}]
.

The application of Lemma 1 then ensures that

lim
n→∞

sup
t∈En

∣∣∣∣∣ v2
n

nhn

n∑
i=1

R
(2)
i,n,t(u)

∣∣∣∣∣ = 0,

which proves (7) in the case j = 2, and concludes the proof of Lemma 2.
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3.1.3. Proof of Theorem 1

In view of the first part of Lemma 2, Theorem 1 is a straightforward consequence of the
application of Gärtner-Ellis’ Theorem (see Dembo and Zeitouni (1998)).

3.1.4. Proof of Theorem 2

We first prove the following lemma.

Lemma 3. Under the assumptions of Theorem 2, we have, for any δ > 0,

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E(µn(t))|√

I(K2, t, hn)
≥ δ

]
≤ −δ

2

2σ2
.

Then, we give the body of the proof of Theorem 2.

Proof of Lemma 3 For all u > 0, we have, by application of Chebyshev’s inequality,

P

[
vn(µn(t)− E[µn(t)])√

I(K2, t, hn)
≥ δ

]
= P

[
exp

(
nhnu(µn(t)− E[µn(t)])

vn
√
I(K2, t, hn)

)
≥ exp

(
nhnuδ

v2
n

)]

≤ exp

[
−nhnuδ

v2
n

]
E

(
exp

[
nhnu(µn(t)− E[µn(t)])

vn
√
I(K2, t, hn)

])

≤ exp

[
−nhnuδ

v2
n

]
exp

[
nhn
v2
n

Λn,t(u)

]
,

so that

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn(µn(t)− E[µn(t)])√

I(K2, t, hn)
≥ δ

]
≤ −uδ + sup

t∈[ρn,1−ρn]

Λn,t(u)

≤ −uδ +
u2σ2

2
+ sup
t∈[ρn,1−ρn]

∣∣∣∣Λn,t(u)− u2σ2

2

∣∣∣∣ .
The application of the second part of Lemma 2 then ensures that, for all u > 0,

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn(µn(t)− E[µn(t)])√

I(K2, t, hn)
≥ δ

]
≤ −uδ +

u2σ2

2
.

It follows that

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn(µn(t)− E[µn(t)])√

I(K2, t, hn)
≥ δ

]
≤ inf

u>0

(
−uδ +

u2σ2

2

)
≤ −δ

2

2σ2
.
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In the same way, we prove that, for all u > 0,

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn(E[µn(t)]− µn(t))√

I(K2, t, hn)
≥ δ

]
≤ −uδ + sup

t∈[ρn,1−ρn]

Λn,t(−u),

from which we deduce that

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn(E[µn(t)]− µn(t))√

I(K2, t, hn)
≥ δ

]
≤ −δ

2

2σ2
.

Finally, noting that

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ

]
≤

2 max

{
P

[
vn(µn(t)− E[µn(t)])√

I(K2, t, hn)
≥ δ

]
, P

[
vn(E[µn(t)]− µn(t))√

I(K2, t, hn)
≥ δ

]}
,

we obtain

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ

]
≤ −δ

2

2σ2
.

Proof of Theorem 2 Set Rn = v−1
n h3

n, and let N(n) be the integer part of R−1
n . There exist

N(n) points of ]0, 1[, x
(n)
1 , x

(n)
2 , . . . , x

(n)
N(n), such that

]0, 1[⊂ ∪N(n)
j=1 B

(j)
n where B(j)

n =
{
t ∈ [0, 1],

∣∣∣t− x(n)
j

∣∣∣ ≤ Rn} .
We have

P

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
≤

N(n)∑
j=1

P

[
sup

t∈B(j)
n ∩[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]

≤ N(n) max
1≤j≤N(n)

P

[
sup

t∈B(j)
n ∩[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
.

Now, for all j ∈ {1, . . . , N(n)} and all t ∈ B(j)
n ∩ [ρn, 1− ρn], we have:

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≤
vn|µn(t)− µn(x

(n)
j )|√

I(K2, t, hn)
+
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)

+
vn|E[µn(x

(n)
j )]− E[µn(t)]|√

I(K2, t, hn)
.
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Set η ∈]0, δ[. Since K is Lipschitz, we have, for all n large enough and all j ∈ {1, . . . , N(n)},

vn|E[µn(x
(n)
j )]− E[µn(t)]|√

I(K2, t, hn)
≤ vn

nhn
√
I(K2, t, hn)

n∑
i=1

|µ(ti)|

∣∣∣∣∣K
(
t− ti
hn

)
−K

(
x

(n)
j − ti
hn

)∣∣∣∣∣
≤

vn

(
supt∈]0,1[ |µ(t)|

)
‖K‖L

h2
n

√
I(K2, t, hn)

∣∣∣x(n)
j − t

∣∣∣
≤

vn

(
supt∈]0,1[ |µ(t)|

)
‖K‖LRn

h2
n

√
I(K2)/2

≤ η

4
.

Moreover, we note that, for all n large enough and all j ∈ {1, . . . , N(n)}, ‖K‖L ≤ 1/
√
hn,

and

vn|µn(t)− µn(x
(n)
j )|√

I(K2, t, hn)
≤ vn

nhn
√
I(K2, t, hn)

∣∣∣∣∣
n∑
i=1

Yi

[
K

(
t− ti
hn

)
−K

(
x

(n)
j − ti
hn

)]∣∣∣∣∣
≤ vn

nhn
√
I(K2, t, hn)

n∑
i=1

|Yi|‖K‖L

∣∣∣∣∣ t− x
(n)
j

hn

∣∣∣∣∣
≤ vn‖K‖LRn

nh2
n

√
I(K2, t, hn)

(
n∑
i=1

[|µ(ti)|+ |εi|]

)

≤
vn‖K‖LRn

(
supt∈]0,1[ |µ(t)|

)
h2
n

√
I(K2)/2

+
vn‖K‖LRn

nh2
n

√
I(K2)/2

n∑
i=1

|εi|

≤ η

4
+

√
hn
n

n∑
i=1

|εi|

We then deduce that, for all n large enough, all j ∈ {1, . . . , N(n)}, and all t ∈ B(j)
n ∩ [ρn, 1−

ρn], we have

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≤
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)
+
η

2
+

√
hn
n

n∑
i=1

|εi|,
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so that, for all j ∈ {1, . . . , N(n)},

P

[
sup

t∈B(j)
n ∩[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]

≤ P

[
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)
+

√
hn
n

n∑
i=1

|εi| ≥ δ −
η

2

]

≤ P

[
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)
+

√
hn
n

n∑
i=1

|εi| ≥ δ −
η

2
and

√
hn
n

n∑
i=1

|εi| <
η

2

]

+ P

[√
hn
n

n∑
i=1

|εi| ≥
η

2

]

≤ P

[
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)
≥ δ − η

]
+ P

[√
hn
n

n∑
i=1

|εi| ≥
η

2

]
.

Now,

P

[√
hn
n

n∑
i=1

|εi| ≥
η

2

]
= P

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥
η

2
√
hn
−Mn

]

where Mn = 1
n

∑n
i=1 E(|εi|). Since the εi share the same variance σ2, we have Mn ≤ σ. It

follows that, for n large enough, η
2
√
hn
−Mn > η, and thus

P

[√
hn
n

n∑
i=1

|εi| ≥
η

2

]
≤ P

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]
.

It follows that, for n large enough,

P

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]

≤ N(n)

{
max

1≤j≤N(n)
P

[
vn|µn(x

(n)
j )− E[µn(x

(n)
j )]|√

I(K2, t, hn)
≥ δ − η

]
+ P

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]}

≤ N(n)

{
sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ − η

]
+ P

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]}

≤ 2N(n) max

{
sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ − η

]
, P

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]}
.
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Thus,

v2
n

nhn
logP

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]

≤ v2
n

nhn

[
log[2N(n)] + max

{
log sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ − η

]
,

logP

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]}]
.

Now, we have:
•

lim
n→∞

v2
n

nhn
log[2N(n)] = lim

n→∞

v2
n

nhn
[log vn + log(1/hn)] = 0.

• By application of Lemma 3,

lim sup
n→∞

v2
n

nhn
log sup

t∈[ρn,1−ρn]

P

[
vn|µn(t)− E[µn(t)]|√

I(K2, t, hn)
≥ δ − η

]
≤ −(δ − η)2

2σ2
.

• By application of Theorem 2.7 of Petrov (1995) to the random variables |εi| − E(|εi|),

lim
n→∞

v2
n

nhn
logP

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]
= lim
n→∞

v2
n

hn

{
1

n
logP

[
1

n

n∑
i=1

(|εi| − E(|εi|)) ≥ η

]}
= −∞.

We thus deduce that, for any η ∈]0, δ[,

lim sup
n→∞

v2
n

nhn
logP

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
≤ −(δ − η)2

2σ2
.

Since η > 0 can be chosen arbitrarily small, it follows that

lim sup
n→∞

v2
n

nhn
logP

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
≤ −δ

2

2σ2
. (8)

Now, set t0 ∈ ∩n≥1[ρn, 1− ρn]. We clearly have

P

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
≥ P

[
vn|µn(t0)− E[µn(t0)]|√

I(K2, t0, hn)
≥ δ

]
,

so that the application of Theorem 1 ensures that

lim inf
n→∞

v2
n

nhn
logP

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
≥ −δ

2

2σ2
. (9)

The combination of (8) and (9) gives

lim
n→∞

v2
n

nhn
logP

[
sup

t∈[ρn,1−ρn]

vn|µn(t)− E[µn(t)]|√
I(K2, t, hn)

≥ δ

]
= −J(δ).
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Since the sequence

(
supt∈[ρn,1−ρn]

vn|µn(t)−E[µn(t)]|√
I(K2,t,hn)

)
is positive and since J is continuous

on [0,+∞[, increasing, and goes to ∞ as δ→∞, the application of Lemma 5 in Worms

(2001) ensures that

(
supt∈[ρn,1−ρn]

vn|µn(t)−E[µn(t)]|√
I(K2,t,hn)

)
satisfies a LDP with speed (nhn/v

2
n)

and good rate function J on R+.

3.2. Proof of Corollaries 1 and 2

Corollary 1 (respectively Corollary 2) is a straightforward consequence of Theorem 1 (re-
spectively Theorem 2) together with the following lemma.

Lemma 4. 1) Under the assumptions of Corollary 1, we have, ∀t ∈]0, 1[,

lim
n→∞

vn |E(µn(t))− µ(t)| = 0.

2) Under the assumptions of Corollary 2, we have

lim
n→∞

sup
t∈[ρn,1−ρn]

vn |E(µn(t))− µ(t)| = 0.

In order to give an unified proof for both parts of Lemma 4, we set again

En =

{
{t} in the framework of Part 1 of Lemma 4,
[ρn, 1− ρn] in the framework of Part 2 of Lemma 4,

and we prove that
lim
n→∞

sup
t∈En

vn |E(µn(t))− µ(t)| = 0.

Let c denote a generic constant that may vary from line to line. We first note that, ∀t ∈ En,∣∣∣∣E(µn(t))− 1

hn

∫ 1

0

µ(s)K

(
t− s
hn

)
ds

∣∣∣∣
=

∣∣∣∣∣ 1

nhn

n∑
i=1

µ (ti)K

(
t− ti
hn

)
− 1

hn

∫ 1

0

µ(s)K

(
t− s
hn

)
ds

∣∣∣∣∣
≤ 1

hn

n∑
i=1

∫ ti+1

ti

∣∣∣∣µ (ti)K

(
t− ti
hn

)
− µ(s)K

(
t− s
hn

)∣∣∣∣ ds
≤ 1

hn

n∑
i=1

{∫ ti+1

ti

|µ (ti)− µ(s)|K
(
t− ti
hn

)
ds+

∫ ti+1

ti

|µ(s)|
∣∣∣∣K ( t− tihn

)
−K

(
t− s
hn

)∣∣∣∣ ds}

≤ ‖K‖∞
hn

n∑
i=1

∫ ti+1

ti

‖µ‖L (s− ti) ds+

(
supt∈]0,1[ |µ(t)|

)
h2
n

n∑
i=1

∫ ti+1

ti

‖K‖L (s− ti) ds

≤ ‖K‖∞‖µ‖L
2nhn

+

(
supt∈]0,1[ |µ(t)|

)
‖K‖L

2nh2
n

≤ c

nh2
n

.
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Now, in the framework of the first part of Lemma 4, we introduce a sequence (ρn) such that

lim
n→∞

ρn = 0 and ρn ≥ h(m−3)/(m−1)
n for all n

(where m is defined in (A1) ii)). We then have

lim
n→∞

ρn
hn

=∞, and t ∈ [ρn, 1− ρn] for all n large enough.

We deduce that, for n large enough and ∀t ∈ En,∣∣∣∣ 1

hn

∫ 1

0

µ(s)K

(
t− s
hn

)
ds− µ(t)

∣∣∣∣
=

∣∣∣∣∣
∫ t/hn

(t−1)/hn

µ(t− hnu)K(u)du−
∫
R
µ(t)K(u)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du

∣∣∣∣∣+

(
sup
t∈]0,1[

|µ(t)|

)∣∣∣∣∣
∫ (t−1)/hn

−∞
K(u)du+

∫ ∞
t/hn

K(u)du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du

∣∣∣∣∣+

(
sup
t∈]0,1[

|µ(t)|

)∫
|u|>ρn/hn

K(u)du.

Since limu→∞ |u|mK(u)du = 0 and limn→∞ ρn/hn = ∞, we have, for n large enough and
∀t ∈ En, ∫

|u|>ρn/hn

K(u)du ≤
∫
|u|>ρn/hn

|u|−mdu

≤ c

(
ρn
hn

)1−m

≤ ch2
n since ρn ≥ h(m−3)/(m−1)

n .

It follows that, for n large enough and ∀t ∈ En,

|E(µn(t))− µ(t)| ≤

∣∣∣∣∣
∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du

∣∣∣∣∣+ c

[
1

nh2
n

+ h2
n

]
.

Now, since
∫ t/hn

(t−1)/hn
uK(u)du = −

∫
u6∈[ t−1

hn
, t
hn

] uK(u)du and since µ is twice differentiable

at t, we have∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du

= h2
n

∫
R
u2

[
µ(t− hnu)− µ(t) + hnuµ

′(t)

h2
nu

2
1l[ t−1

hn
, t
hn

]

]
K(u)du

+ hnµ
′(t)

∫
u6∈[ t−1

hn
, t
hn

]
uK(u)du. (10)
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It is straightforward that the second right-handed term is O(h4
n). For the first right-handed

term, we note that, for any u 6= 0,

lim
n→∞

[
µ(t− hnu)− µ(t) + hnuµ

′(t)

h2
nu

2
1l[ t−1

hn
, t
hn

]

]
=
µ′′(t)

2
. (11)

In the framework of the first part of Lemma 4, it can easily be seen that the bracketed term
in (11) is bounded for each t by a constant independent of hn and u. It follows that, by
Lebesgue’s Theorem,

lim
n→∞

1

h2
n

∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du =
µ′′(t)

2

∫
R
u2K(u)du.

In the framework of the second part of Lemma 4, we note that, in view of Taylor expansion,

the bracketed term in (11) is uniformly bounded by
(

supt∈]0,1[ |µ′′(t)|
)

, and thus

lim sup
n→∞

1

h2
n

sup
t∈[ρn,1−ρn]

∣∣∣∣∣
∫ t/hn

(t−1)/hn

[µ(t− hnu)− µ(t)]K(u)du

∣∣∣∣∣ < +∞.

In both cases, we finally obtain

sup
t∈En

vn |E(µn(t))− µ(t)| ≤ cvn
(
h2
n +

1

nh2
n

)
.

Since vnh
2
n → 0 and vn/(nh

2
n)→ 0, Lemma 4 follows.

Remark: If the support of K is bounded, then, the integrals
∫
|u|>ρn/hn

K(u)du and∫
|u|>ρn/hn

|u|K(u)du vanish for n large enough, so that, for n sufficiently large,

sup
t∈En
|E(µn(t))− µ(t)| ≤ cte

[
1

nh2
n

+ h2
n

]
without any additional condition on ρn.

3.3. Proof of Propositions 1 and 2, and of Corollaries 3 and 4

We first show how the logarithmic asymptotic levels given in the first parts of Propositions
1 and 2 (and of Corollaries 3 and 4) are deduced from the MDP stated in Corollaries 1
and 2. Then, we establish the almost sure parts of our results stated in the second parts of
Propositions 1 and 2 (and of Corollaries 3 and 4).

3.3.1. Logarithmic asymptotic levels

We need the following preliminary lemma.

Lemma 5. Assume (A′3) holds. Then, for all δ > 0, there exists c(δ) > 0 such that

lim sup
n→∞

1

n
logP

(∣∣σ̂2
n − σ2

∣∣ ≥ δ) ≤ −c(δ).
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Proof of Lemma 5

For i ∈ {2, . . . , n− 1}, set

Ui =
2

3

(
1

2
Yi−1 +

1

2
Yi+1 − Yi

)2

− E

[
2

3

(
1

2
Yi−1 +

1

2
Yi+1 − Yi

)2
]
.

We have

P
(∣∣σ̂2

n − E(σ̂2
n)
∣∣ ≥ δ) ≤ P1 + P2 + P3

with

P1 = P


1

n− 2

∣∣∣∣∣∣∣∣∣∣∣
∑

j=2+3i

0≤i≤(n−4)/3

Uj

∣∣∣∣∣∣∣∣∣∣∣
≥ δ

3



P2 = P


1

n− 2

∣∣∣∣∣∣∣∣∣∣∣
∑

j=3+3i

0≤i≤(n−5)/3

Uj

∣∣∣∣∣∣∣∣∣∣∣
≥ δ

3



P3 = P


1

n− 2

∣∣∣∣∣∣∣∣∣∣∣
∑

j=4+3i

0≤i≤(n−6)/3

Uj

∣∣∣∣∣∣∣∣∣∣∣
≥ δ

3

 .

In view of Assumption (A′3) and Lemma 2.2 of Petrov (1995), easy computations ensure
the existence of γ > 0 and T > 0 such that, for all i ∈ {2, . . . , n− 1} and for all t ∈ [−T, T ],
E(exp(tUi)) < exp(gt2). Since the random variables that appear in the sum of Pk (k ∈
{1, 2, 3}) are independent, Theorem 2.7 of Petrov (1995) applies and ensures that

Pk ≤ 2 max

{
exp

(
−δ2(n− 2)2

9nγ

)
, exp

(
−Tδ(n− 2)

6

)}
.

It follows that

lim sup
n→∞

1

n
logP

(∣∣σ̂2
n − E(σ̂2

n)
∣∣ ≥ δ) ≤ lim sup

n→∞

1

n

[
log 3 + log

(
max

1≤k≤3
Pk
)]

≤ max

{
−δ2

9γ
,
−Tδ

6

}
.

Setting c(δ) = min
{
δ2/(9γ) , T δ/6

}
, we get

lim sup
n→∞

1

n
logP

(∣∣σ̂2
n − E(σ̂2

n)
∣∣ ≥ δ) ≤ −c(δ).

Since σ̂2
n is asymptotically unbiased, Lemma 5 follows.

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



A. Mokkadem and M. Pelletier, Afrika Statistika, Vol. 11(2), 2016, pages 995–1021. Moderate
deviations principles for the kernel estimator of nonrandom regression functions. 1017

Proof of the first part of Propositions 1 and 2, and of Corollaries 3 and 4

In order to give a unified proof of Propositions 1 and 2, and of Corollaries 3 and 4, we
introduce the following notations.

En =

{
{t} in the framework of Proposition 1 and of Corollary 3
[ρn, 1− ρn] in the framework of Proposition 2 and of Corollary 4

(12)

An(t) =

{
I(K2, t, hn) in the framework of Propositions 1 and 2
I(K2, t, h∗n) or I(K2) in the framework of Corollaries 3 and 4

(13)

With these notations, the first part of Propositions 1 and 2, and of Corollaries 3 and 4 can
be rewritten as

lim
n→∞

v2
n

nhn
logP

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
, µn(t) + δ

σ̂n
√
An(t)

vn

])
= −δ

2

2
.

(14)

Set δ > 0 and η ∈]0, 1[. We have

P

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
, µn(t) + δ

σ̂n
√
An(t)

vn

])

= P

[
sup
t∈En

vn|µn(t)− µ(t)|√
An(t)

> δσ̂n

]

≤ P

[
sup
t∈En

vn|µn(t)− µ(t)|√
An(t)

≥ δσ̂n and σ̂2
n ≥ (1− η)σ2

]
+ P

[
σ̂2
n < (1− η)σ2

]
≤ P

[
sup
t∈En

vn|µn(t)− µ(t)|
σ
√
An(t)

≥ δ
√

1− η

]
+ P

[
σ̂2
n − σ2 < −ησ2

]
≤ P

[(
sup
t∈En

√
I(K2, t, hn)√
An(t)

)(
sup
t∈En

vn|µn(t)− µ(t)|
σ
√
I(K2, t, hn)

)
≥ δ
√

1− η

]
+ P

[
|σ̂2
n − σ2| > ησ2

]
.

For n sufficiently large, we have

sup
t∈En

√
I(K2, t, hn)√
An(t)

≤
√

1 + η,

(this is obvious in the framework of Propositions 1 and 2, and a consequence of Lemma 1
in the framework of Corollaries 3 and 4). It follows that, for n large enough,

P

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
, µn(t) + δ

σ̂n
√
An(t)

vn

])

≤ P

[
sup
t∈En

vn|µn(t)− µ(t)|
σ
√
I(K2, t, hn)

≥ δ
√

1− η√
1 + η

]
+ P

[
|σ̂2
n − σ2| > ησ2

]
,

≤ 2 max

{
P

[
sup
t∈En

vn|µn(t)− µ(t)|
σ
√
I(K2, t, hn)

≥ δ
√

1− η√
1 + η

]
, P
[
|σ̂2
n − σ2| > ησ2

]}
.
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Now, the application of Corollary 1 (respectively of Corollary 2) in the framework of Propo-
sition 1 and Corollary 3 (respectively of Proposition 2 and Corollary 4) ensures that

lim
n→∞

v2
n

nhn
logP

[
sup
t∈En

vn|µn(t)− µ(t)|
σ
√
I(K2, t, hn)

≥ δ
√

1− η√
1 + η

]
=
−δ2(1− η)

2(1 + η)
.

The application of Lemma 5 giving

lim sup
n→∞

v2
n

nhn
logP

[
|σ̂2
n − σ2| > ησ2

]
≤
(

lim sup
n→∞

v2
n

hn

)[
−c(ησ2)

]
= −∞,

we deduce that

lim sup
n→∞

v2
n

nhn
logP

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
,

µn(t) + δ
σ̂n
√
An(t)

vn

])
≤ −δ

2(1− η)

2(1 + η)
.

Since η ∈]0, 1[ can be chosen arbitrarily small, we obtain

lim sup
n→∞

v2
n

nhn
logP

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
,

µn(t) + δ
σ̂n
√
An(t)

vn

])
≤ −δ

2

2
. (15)

On the other hand, set t0 ∈ ∩n≥1En. For n large enough, we have I(K2, t0, hn)/An(t0) >
(1− η), and thus

P

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
, µn(t) + δ

σ̂n
√
An(t)

vn

])

= P

[
sup
t∈En

vn|µn(t)− µ(t)|√
An(t)

> δσ̂n

]

≥ P

[
vn|µn(t0)− µ(t0)|√

An(t0)
> δσ̂n

]

≥ P

[
vn|µn(t0)− µ(t0)|√

I(K2, t0, hn)
>

δσ

1− η
and σ2 > (1− η)σ̂2

n

]

≥ P

[
vn|µn(t0)− µ(t0)|
σ
√
I(K2, t0, hn)

>
δ

1− η

]
− P

[
σ2 ≤ (1− η)σ̂2

n

]
≥ P

[
vn|µn(t0)− µ(t0)|
σ
√
I(K2, t0, hn)

>
δ

1− η

]
− P

[
|σ̂2
n − σ2| ≥ ησ2

1− η

]
.
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Now, the application of Corollary 1 ensures that

lim
n→∞

v2
n

nhn
logP

[
vn|µn(t0)− µ(t0)|
σ
√
I(K2, t0, hn)

>
δ

1− η

]
=

−δ2

2(1− η)2
. (16)

Since, in view of Lemma 5, we have

lim sup
n→∞

1

n
logP

[
|σ̂2
n − σ2| ≥ ησ2

1− η

]
≤ −c

(
ησ2

1− η

)
,

we deduce from (16) that

lim
n→∞

P
[
|σ̂2
n − σ2| ≥ ησ2

1−η

]
P
[
vn|µn(t0)−µ(t0)|
σ
√
I(K2,t0,hn)

> δ
1−η

] = 0,

so that, for sufficiently large n, we obtain

P

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
, µn(t) + δ

σ̂n
√
An(t)

vn

])

≥ 1

2
P

[
vn|µn(t0)− µ(t0)|
σ
√
I(K2, t0, hn)

>
δ

1− η

]
.

Applying (16) again, we get

lim inf
n→∞

v2
n

nhn
logP

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
,

µn(t) + δ
σ̂n
√
An(t)

vn

])
≥ −δ2

2(1− η)2
,

and thus, since η ∈]0, 1[ can be chosen arbitrarily small,

lim inf
n→∞

v2
n

nhn
logP

(
∃t ∈ En, µ(t) 6∈

[
µn(t)− δ

σ̂n
√
An(t)

vn
,

µn(t) + δ
σ̂n
√
An(t)

vn

])
≥ −δ

2

2
. (17)

Property (14), and thus the first part of Propositions 1 and 2, and of Corollaries 3 and 4,
are then a straightforward combination of (15) and (17).

3.3.2. Asymptotic almost sure confidence regions

Set

Dn =

{
g : [0, 1]→ R, |g(t)− µn(t)| ≤ δ

σ̂n
√
An(t)

vn
∀t ∈ En

}
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where En and An(t) are defined in (12) and (13) respectively. The application of (14) ensures
that the logarithmic asymptotic level of {Dn} is δ2/2 with speed nhn/v

2
n. Set γ ∈]0, δ2/2[.

In view of Proposition 1.3 in Mokkadem and Pelletier (2006), if∑
exp

(
−γ nhn

v2
n

)
<∞, (18)

then {Dn} is an asymptotic almost sure sequence of confidence regions. To prove (18), we
use the conditions

vnh
2
n → 0, and

nhn
v2
n log(1/hn)

→∞ (19)

(the first one is in the statement of Propositions 1 and 2, the second one is the additional
condition in Proposition 1, and stands in Conditions (3) required in Proposition 2). Set
η ∈]0, 1/5[. On the one hand, the first condition in (19) ensures that nhnv

−2
n [nh5

n]−1→∞,
and thus, for n large enough,

exp

(
−γ nhn

v2
n

)
≤ exp

(
−γnh5

n

)
≤ exp

(
−γn1−5η

)
if hn ≥ n−η. (20)

On the other hand, the second condition in (19) guarantees that, for n large enough,
nhnv

−2
n ≥ [2/(ηγ)] log(1/hn), and thus

exp

(
−γ nhn

v2
n

)
≤ exp

(
−2

η
log(1/hn)

)
≤ n−2 if hn ≤ n−η. (21)

The combination of (20) and (21) gives (18), which concludes the proof of Propositions 1
and 2, and of Corollaries 3 and 4.
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