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Abstract. We propose nonparametric asymptotic confidence intervals for the upper and
lower tail dependence coefficients. These latter are obtained from confidence bands estab-
lished for the copula function itself and based upon three kernel-type estimators. We show
the performance of these confidence intervals through a simulation study. We also apply
these results to financial data stemming from the CAC 40 stock index which reveals the
existence of extreme dependence between larger values of the opening and closing prices for
this index during the considered period.

Résumé. Ce papier présente des intervalles de confiance asymptotiques pour les coeffi-
cients de dépendance de queue inférieure et supérieure. Ces derniers sont obtenus de façon
nonparamétrique à partir de bandes de confiance presque sûres obtenues pour la fonction
copule elle même et basées sur des estimateurs à noyau. Nous montrons ensuite la perfor-
mance de ces intervalles de confiance à travers une étude de simulation. Une application
de ces résultats sur des données financières issues de l’indice boursier CAC 40 révèlent une
dépendance extrême entre les valeurs d’ouverture et de fermeture de cet indice durant la
période étudiée.
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1. Introduction

Copula is a mathematical tool which handles the dependence structure between two or sev-
eral random variables. It gives a more complete characterization of dependence than the
classical measures such as the linear correlation coefficient, Kendall’s tau and Spearman’s
rho. Formally, a d-copula, d ≥ 1 integer, is a function C : [0, 1]d → [0, 1] which is invari-
ant to strictly increasing transformations of the components. But it can also be seen as a
multivariate distribution function with uniform margins. That is, for d = 2 and 0 ≤ u, v ≤ 1,

C(u, v) = P(U ≤ u, V ≤ v), U, V ∼ U(0, 1).

Copula is a useful tool which can help to express many other association measures as shown
below, for example, in case of the tail dependence coefficient.
Let (X,Y ) be a couple of random variables defined on a probability space (Ω,A,P) with
marginal distributions F and G. Let F−1(u) = inf{x : F (x) ≥ u} and G−1(v) = inf{y :
G(y) ≥ v}, 0 ≤ u, v ≤ 1 denote the quantile functions associated with F and G, respectively.
The tail dependence measure of the joint distribution function of (X,Y ) is characterized by
two coefficients : the upper tail dependence coefficient

λU = lim
u→1−

P
(
X > F−1(u)/Y > G−1(u)

)
and the lower tail dependence coefficient

λL = lim
u→0+

P
(
X < F−1(u)/Y < G−1(u)

)
.

These two coefficients may be re-written (see e.g., Joe, 1997) in terms of the copula function
C(u, v). Precisely, one has

λU = lim
u→1−

1− 2u+ C(u, u)

1− u
and λL = lim

u→0+

C(u, u)

u
.

The concept of tail dependence may be understood as the conditional probability of observing
an extreme value for one variable given that the other being in an extreme state. One
can remark that the tail dependence coefficient, say λ, has the copula property which is
invariant under strictly increasing transformations of marginals. For λ = 0, the extremes are
asymptotically independent ; for λ = 1 the extremes are perfectly correlated and for 0 <
λ < 1, the extremes are asymptotically dependent. Note that the concept of tail dependence
can also be generalized in a multivariate framework (see, for instance Joe, 1997).
The tail dependence coefficient (TDC) is applied in many fields for evaluating the probability
of simultaneous occurence of extremes events.

For instance, in Insurance when we are concerned with concomittant sinistrality in two
branches of insurance. Given that a sinistre happens in one branch, one can employ the
TDC coefficient to determine the probability that another sinistre of same intensity occurs
on the other branch.

In Finance, when studying simultaneous losses of two assets, we may also apply the TDC
which measures the probability that one asset loses an amount greater than a quantile of
order u, given the other asset has already lost an amount greater than the same u-order
quantile of its distribution.
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The TDC may be interpreted in terms of Value-at-Risk (VaR), as the quantiles F−1(u) and
G−1(u) represent the VaR if their loss distributions are assumed to be positive. In this case
the TDC provides the probability that the two variables exceed their VaR at threshold u,
as u→ 1.

In Economy, inflation periods are often characterized by simultaneous increasing of different
product prices. Then, one can apply the TDC coefficient to estimate extremal dependence
between the prices of these products.
There are three main approaches to the estimation of tail dependence coefficients. The first
is parametric and is based on the hypothesis that the dependence structure of the variables
is represented by an Archimedian copula, combined with the result of Juri and Wuthrich
(2002) on this family of copula.

The second approach is based upon a factor model connecting the two variables by means
of a linear model with a noise. It is semiparametric (see, Malevergne and Sornette, 2004).

The third approach is nonparametric and has gained much importance. Making use of the
empirical copula function and a property of the logarithm function, Coles et al. (1999)
proposed an estimator for the upper tail dependence coefficient λU . By using the notion
of tail copula, Schmidt and Stadtmuller (2006) proposed estimators for both the upper
and lower tail coefficients λU and λL. Another nonparametric approach to estimate tail
dependence is that of Poon et al. (2004), who transformed the initial variables to Fréchet
variables according to Ledford and Tawn (1998).

Our aim in this paper is to contribute to this literature by providing asymptotic optimal
confidence intervals for the upper and lower tail dependence coefficients λU and λL. These
latter are obtained from confidence bands derived for the copula curve C(u, v) itself. We shall
deal with kernel estimators introduced in Chen and Huang (2007), Gijbels and Mielniczuk
(1990) and Fermanian et al. (2004), respectively called the local linear, the mirror-reflection
and the transformation estimators and defined in the next section.

The paper is organized as follows. In the next section, we establish asymptotic nonparametric
confidence intervals for λU and λL. Section 3 presents a simulation study with two Archi-
median copula families and then an application to test for extremal dependence between
financial data sets. The paper is ended by an Appendix, where some proofs are displayed.

2. Nonparametric confidence intervals

Let (X1, Y1), · · · , (Xn, Yn) be an independent and identically distributed sample of the ran-
dom vector (X,Y ) with joint distribution function H and marginals distributions F and G.
Denote by Hn, Fn and Gn the empirical distribution functions of H,F and G, respectively.
Nonparametric estimation of copulas has been largely investigated in the literature. In order
to test for independence, Deheuvels (1979) proposed the following estimator

Ĉn(u, v) =
1

n

n∑
i=1

I{Ûi ≤ u, V̂i ≤ v}, with Ûi = Fn(Xi), V̂i = Gn(Yi), (1)

which is asymptotically equivalent (up to a term O(n−1)) to the estimator directly based
on the Sklar’s Theorem given by

Cn(u, v) = Hn(F−1n (u), G−1n (v)), (2)
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where F−1n , G−1n are the empirical quantile functions for Fn and Gn.

Kernel smoothed versions estimators have also been introduced but they suffer from a bound-
ary bias due to the fact that a copula has its support on the compact set [0, 1]2. To overcome
the problem of boundary bias, Chen and Huang (2007) proposed a local linear kernel es-
timator and a simple mathematical correction that removes the bias at the corner (1, 1).
Their estimator is defined into two steps. First, they estimate the marginal distributions F
and G, respectively, by

F̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

b1n

)
and Ĝn(y) =

1

n

n∑
i=1

K

(
y − Yi
b2n

)
,

where K(x) =
∫ x
−∞ k(t)dt, with k(·) being a bounded symmetric kernel function supported

on [−1, 1] ; b1n and b2n are some smoothing parameters. Second, the pseudo-observations
Ûi = F̂n(Xi) and V̂i = Ĝn(Yi) are then used to estimate the copula C which gives the joint
distribution of the unobserved random variables F (Xi) and G(Yi). Considering a local linear
version of the kernel k(·) given by

ku,hn(t) =
k(t){a2(u, hn)− a1(u, hn)t}
a0(u, hn)a2(u, hn)− a21(u, hn)

I
{
u− 1

hn
< t <

u

hn

}
, (3)

where aj(u, hn) =
∫ u/h
(u−1)/hn t

jk(t)dt, j = 0, 1, 2, 0 < hn < 1 and u ∈ [0, 1], Chen and

Huang (2007) define their estimator as follows :

Ĉ(LL)
n (u, v) =

1

n

n∑
i=1

Ku,hn

(
u− Ûi
hn

)
Kv,hn

(
v − V̂i
hn

)
, (4)

where Ku,hn(x) =
∫ x
−∞ ku,hn(t)dt and Ûi = F̂n(Xi), V̂i = Ĝn(Yi).

In order to remove the boundary bias, Gijbels and Mielniczuk (1990) proposed another
method which generates eight copies of the original observations by reflecting them with
respect to the four edges and four corners of the unit square [0, 1]2. Their proposal called
the mirror-reflection estimator can be defined as

Ĉ(MR)
n (u, v) =

1

n

n∑
i=1

9∑
l=1

[
K

(
u− Û (l)

i

hn

)
−K

(
−Û (l)

i

hn

)]
×
[
K

(
v − V̂ (l)

i

hn

)
−K

(
−V̂ (l)

i

hn

)]
,

(5)
where {(

Û
(l)
i , V̂

(l)
i

)
, i = 1, ..., n, l = 1, ..., 9

}
={(

±Ûi,±V̂i
)
,
(
±Ûi, 2− V̂i

)
,
(

2− Ûi,±V̂i
)
,
(

2− Ûi, 2− V̂i
)
, i = 1, ..., n

}
To take care of the boundary bias, Omelka et al. (2009) introduced improved versions of the
estimators (4) and (5) by shrinking the bandwidth hn near the corners of the unit square.
They also proposed a modification of the estimator introduced in Fermanian et al. (2004)
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via a transformation φ (which may be a distribution function) satisfying certain conditions.
The formula they obtained, named the transformation estimator, is defined as

Ĉ(T )
n (u, v) =

1

n

n∑
i=1

K

(
φ−1(u)− φ−1(Û

(E)
i )

hn

)
K

(
φ−1(v)− φ−1(V̂

(E)
i )

hn

)
, (6)

where Û
(E)
i = n

n+1Fn(Xi) and V̂
(E)
i = n

n+1Gn(Yi).

Since the behavior of kernel-type estimators depends crucially on the bandwidth and that
the selection of the optimal bandwidth is problematic, we reconsider in this paper the latter
three estimators (4), (5) and (6) by letting the bandwidth h being a random variable which
may depend either on the observations or the location point (u, v). In the sequel, we denote

h = ĥn(u, v) for all fixed (u, v) ∈ [0, 1]2.

To simplify notation, let Ĉ
(.)
n,h represent each other of the above three estimators (4),

(5) and (6), where (.) designs (LL), (MR) or (T ). Our methodology for constructing
confidence bands for the copula function C is based on the classical decomposition

bias-variance of the difference Ĉ
(.)
n,h − C into two terms. By means of the modern em-

pirical process theory, we establish that when suitably normalized the first term, say

the deviation Ĉ
(.)
n,h − EĈ(.)

n,h, converges uniformly in probability to a positive constant
A(c), as n → ∞. Next, under smoothness assumptions on the copula C and regularity
conditions on the bandwidth h, we prove that as n → ∞ the second term, the so-called

bias EĈ(.)
n,h − C, converges uniformly in probability to 0, over (u, v) ∈ [0, 1]2, with the

same rate. The combination of these two facts allows us to define asymptotic optimal
simultaneous confidence bands for the copula curve C(u, v), over (u, v) ∈ [0, 1]2, from wich
we derive asymptotic confidence bounds for the upper and lower tail dependence coefficients.

Let (hn)n≥1 be a sequence of positive constants converging to 0, as n→∞, and b : [0, 1]2 7→
[0, 1] a real-valued function defined, for any given parameter α > 0, as

b(u, v) = max {min{uα, (1− u)α},min{vα, (1− v)α}} , (u, v) ∈ [0, 1]2. (7)

Let (bn)n≥1 be a sequence of positive constants satisfying :

bn → 0, (log n)−1 < bn < 1,
√
nb2n = o(

√
log log n/n). (8)

To establish our results, we need the following assumptions on the bandwidth h = ĥn(u, v) :

H1)

∀ε > 0, P

(
sup

(u,v)∈[0,1]2

∣∣∣∣∣ ĥn(u, v)

hn
− b(u, v)

∣∣∣∣∣ > ε

)
−→ 0, n→∞,

H2) For some c > 0,

P
(
c log n

n
≤ ĥn(u, v) ≤ bn, ∀ 0 ≤ u, v ≤ 1,

)
−→ 1, n→∞.

Now, we are ready to state our results which are set up in terms of the quantity

Ĉ
(·)
n,ĥn(u,v)

(u, v), representing each of the above three estimators by substituting (·) for

(LL), (MR) and (T ), respectively.
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Theorem 1. Suppose that the copula function C admits bounded second-order partial
derivatives on [0, 1]2 and that assumptions H.1) and H.2) hold. Then for any ε > 0, one has,
as n→∞,

P
(
C(u, v) ∈

[
Ĉ

(·)
n,ĥn(u,v)

(u, v)− En(ε), Ĉ
(·)
n,ĥn(u,v)

(u, v) + En(ε)
]
,∀ 0 ≤ u, v ≤ 1

)
−→ 1 (9)

and

P
(
C(u, v) ∈

[
Ĉ

(·)
n,ĥn(u,v)

(u, v)−∆n(ε), Ĉ
(·)
n,ĥn(u,v)

(u, v) + ∆n(ε)
]
,∀ 0 ≤ u, v ≤ 1

)
−→ 0,

(10)

where En(ε) = (1 + ε) 3
Rn
, ∆n(ε) = (1− ε) 3

Rn
, and Rn =

(
n

2 log logn

)1/2
.

Remark.

1) Assumption H.1) helps us to control the limiting behavior of the random bandwidth

ĥn(u, v) with a sequence of deterministic constants hn ↘ 0. The [0, 1]−valued function
b(u, v) allows to adjust down the value of bandwidth and to keep it close to zero near
the corners of the unit square. As our concern is in tail dependence, this enables us to
calculate the estimators near the corners (0,0) and (1,1) for evaluating the coefficients
λU and λL.

2) Assumption H.2) is necessary for applying Mason and Swanepoel’s (2010) result, from
which we derive a uniform in bandwidth LIL (law of the iterated logarithm) for the
deviations of the estimators.

Proof.

The proof of the Theorem 1 is obtained by combining the results stated in the two following
propositions. Their proofs are postponed to the Appendix. We also refer to Ba et al. (2015),
for details.

Proposition 1. For any sequence of positive constants (bn)n≥1 satisfying 0 < bn < 1, bn →
0, bn ≥ (log n)−1, and for some c > 0, we have for all 0 < ε < 1 and all large n,

P

{∣∣∣∣∣Rn sup
c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

|Ĉ(.)
n,h(u, v)− EĈ(.)

n,h(u, v)| −A(c)

∣∣∣∣∣ > ε

}
= o(1), (11)

where A(c) is a positive constant such that 0 < A(c) ≤ 3 and Rn =
(

n
2 log logn

)1/2
.

Proposition 2. Suppose that the copula function C(u, v) admits bounded second-order par-
tial derivatives on [0, 1]2. Then for any sequence of positive constants (bn)n≥1 satisfying
0 < bn < 1,

√
nb2n/

√
log log n = o(1), and for some c > 0, we have for all 0 < ε < 1 and all

large n,

P

{
Rn sup

c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

|EĈ(.)
n,h(u, v)− C(u, v)| > εA(c)

}
= o(1), (12)

where 0 ≤ A(c) ≤ 3.
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Proposition 1 implies that

sup
0≤u,v≤1

Rn
A(c)

∣∣∣Ĉ(.)

n,ĥn(u,v)
(u, v)− EĈ(.)

n,ĥn(u,v)
(u, v)

∣∣∣ P−→ 1, n→∞, (13)

and Proposition 2 yields

sup
0≤u,v≤1

Rn
A(c)

∣∣∣EĈ(.)

n,ĥn(u,v)
(u, v)− C(u, v)

∣∣∣ P−→ 0, n→∞. (14)

Recalling the definition of convergence in probability, we can infer from (14) that for all
ε > 0, δ > 0, there exists an integer N ∈ N such that for all n ≥ N ,

P
(
Rn
A(c)

∣∣∣EĈ(.)

n,ĥn(u,v)
(u, v)− C(u, v)

∣∣∣ > ε, ∀(u, v) ∈ [0, 1]2
)
> δ.

That is

P
(
EĈ(.)

n,ĥn(u,v)
(u, v)− εA(c)

Rn
≤ C(u, v) ≤ EĈ(.)

n,ĥn(u,v)
(u, v) + ε

A(c)

Rn
, ∀(u, v) ∈ [0, 1]2

)
> 1−δ.

(15)
On the other hand, we can deduce from (13) that for all (u, v) ∈ [0, 1]2,

EĈ(.)

n,ĥn(u,v)
(u, v) = Ĉ

(.)

n,ĥn(u,v)
(u, v)± (1 + oP(1))

A(c)

Rn
.

Now, we discuss two cases. First, if

EĈ(.)

n,ĥn(u,v)
(u, v) = Ĉ

(.)

n,ĥn(u,v)
(u, v)− (1 + op(1))

A(c)

Rn
,

then (15) is equivalent to

P
(
Ĉ

(.)

n,ĥn(u,v)
(u, v) − En(ε)− op(1)

A(c)

Rn
≤ C(u, v)

≤ Ĉ
(.)

n,ĥn(u,v)
(u, v)−∆n(ε)− op(1)

A(c)

Rn
, ∀(u, v) ∈ [0, 1]2

)
> 1− δ.

Thus, for any 0 < τ < 1 and for all large n, we can write

P
(
Ĉ

(.)

n,ĥn(u,v)
(u, v) − En(ε)− τ A(c)

Rn
≤ C(u, v)

≤ Ĉ
(.)

n,ĥn(u,v)
(u, v)−∆n(ε)− τ A(c)

Rn
, ∀(u, v) ∈ [0, 1]2

)
> 1− δ. (16)

Second, whenever

EĈ(.)

n,ĥn(u,v)
(u, v) = Ĉ

(.)

n,ĥn(u,v)
(u, v) + (1 + op(1))

A(c)

Rn
,
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then, as in the first case, we can infer from (15) that for any given 0 < τ < 1 and for n large
enough,

P
(
Ĉ

(.)

n,ĥn(u,v)
(u, v) + ∆n(ε) + τ

A(c)

Rn
≤ C(u, v)

≤ Ĉ
(.)

n,ĥn(u,v)
(u, v) + En(ε) + τ

A(c)

Rn
, ∀(u, v) ∈ [0, 1]2

)
> 1− δ. (17)

For both cases, letting τ tends to 0 in (16) and (17) yields,

P
(
Ĉ

(.)

n,ĥn(u,v)
(u, v)− En(ε) ≤ C(u, v) ≤ Ĉ(.)

n,ĥn(u,v)
(u, v)−∆n(ε), ∀(u, v) ∈ [0, 1]2

)
> 1− δ

(18)
or

P
(
Ĉ

(.)

n,ĥn(u,v)
(u, v) + ∆n(ε) ≤ C(u, v) ≤ Ĉ(.)

n,ĥn(u,v)
(u, v) + En(ε), ∀(u, v) ∈ [0, 1]2

)
> 1− δ.

(19)
Now, by observing that

Ĉ
(.)

n,ĥn(u,v)
(u, v)−∆n(ε) ≤ Ĉ(.)

n,ĥn(u,v)
(u, v) + ∆n(ε),

we conclude, for any ε > 0, δ > 0, that

P
(
C(u, v) ∈

[
Ĉ

(.)

n,ĥn(u,v)
(u, v)− En(ε), Ĉ

(.)

n,ĥn(u,v)
(u, v) + En(ε)

]
, ∀(u, v) ∈ [0, 1]2

)
> 1− δ

and

P
(
C(u, v) /∈

[
Ĉ

(.)

n,ĥn(u,v)
(u, v)−∆n(ε), Ĉ

(.)

n,ĥn(u,v)
(u, v) + ∆n(ε)

]
, ∀(u, v) ∈ [0, 1]2

)
< δ.

Thus, (9) and (10) hold. �

Remark. If (9) and (10) hold jointly for all 0 < ε < 1, then the intervals

A(·)
n (u, v), B(·)

n (u, v)] =

[
Ĉ

(·)
n,ĥn(u,v)

(u, v)− A(c)

Rn
, Ĉ

(·)
n,ĥn(u,v)

(u, v) +
A(c)

Rn

]
, 0 ≤ u, v ≤ 1,

(20)
define asymptotic simultaneous confidence bands for the copula function C(u, v). These
bands are asymptotically optimal in terms of coverage probability, which tends to 1, as
n → ∞. Taking (·) = (LL), (MR), (T ) gives confidence bands for the copula function C
based on the three estimators, respectively.

One can observe that the upper tail dependence coefficient λU may be written as

λU = 2− lim
u→1−

1− C(u, u)

1− u
.

Since the copula C(u, v) admits partial derivatives, then the diagonal function

δC : u 7→ C(u, u) is differentiable on ]0, 1[, and the quantity limu→1−
1−C(u,u)

1−u exists,

as well as the quantity lim
u→0+

C(u, u)

u
, which corresponds to λL, the lower tail dependence
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coefficient.

Now, we provide confidence bounds for the coefficients λU and λL. From (20), we can deduce,
for all large n and with probability tending to 1, that

Â(·)
n (u, u) ≤ C(u, u) ≤ B̂(·)

n (u, u), u ∈ [0, 1],

which yields

aUn := 2− lim
u→1−

1− Â(·)
n (u)

1− u
≤ λU ≤ 2− lim

u→1−

1− B̂(·)
n (u)

1− u
=: bUn (21)

and

aLn := lim
u→0+

Â
(·)
n (u)

u
≤ λL ≤ lim

u→0+

B̂
(·)
n (u)

u
:= bLn . (22)

To approximate the limit terms in (21) and (22), we make use of an intuitive approach
which consists of evaluating the above fractions over a finite number m of points in the
right-vicinity of 0 and the left-vicinity of 1 and to consider, for each fraction, the median of
the obtained series as an estimate of its limit. The resulting bounds, denoted by [aUn , bUn ] for
λU and [aLn , bLn ] for λL, provide nonparametric asymptotic confidence intervals for λU and
λL, respectively.

3. Applications

3.1. Simulation study

To evaluate the performance of our confidence intervals, we make experiments with two
Archimedian copula families : Clayton and Gumbel. The Clayton copula can be used to
determine the lower tail dependence of extreme events using the formula λL = 2−

1
θ . While

the Gumbel’s copula characterizes the upper tail extreme dependence, with the expression
λU = 2− 2

1
θ .

For each copula Cθ with parameter θ, we generate n couples of random observations
(ui, vi), i = 1, · · · , n, using the conditional sampling method and calculate the value of
the three estimators defined in Section 2 by integrating the Epanechnikov kernel, k(x) =

0.75(1 − x2)I(|x| ≤ 1). The variable bandwidth h = ĥn(u, v) is defined as h = hnb(u, v)
where the function b(u, v) is given by (7), with α = 1/2. It is shown that ( see, e.g., Chen
and Huang, 2007) the optimal bandwidth, while minimizing the mean square error of kernel
copula estimators, is of the form C0n

−1/3. So, we may choose the deterministic sequence
of bandwidths hn, as equal to 0.5n−1/3, for suitable calculations. Finally, we compute the
confidence intervals [aUn , b

U
n ] and [aLn , b

L
n ] for λU and λL, respectively. Although the constant

A(c) is not arbitrary, it should be defined in such a way that the resulting bounds do not
exceed 1 or are not less than 0. Since in these simulations, we arbitrarily fix the sample
size n, and then Rn, we must define 0 < A(c) < 3 to obtain adequate bounds. A suitable
value for obtaining adequate results may be A(c) = 0.16. In computing the bounds aUn , b

U
n

or aLn , b
L
n , we consider B = 1000 replications and report the mean values as estimates for

aUn , b
U
n or aLn , b

L
n . With a sample size of n = 100, we obtain the results in the tables below.
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In Table 1, we give the results for λL in case of Clayton family. For arbitrary values for the
parameter θ = 1, 3, 5, we observe that the confidence intervals contain the true value of the
lower tail dependence coefficient λL, showing the performance of the bounds.

Table 2 shows the results for the Gumbel’s case. Here, we also observe that our confidence
intervals contain the exact value of the upper tail dependence coefficient λU , for θ = 3, 5.
But the results are not successful for θ = 1. We do not have the explanation for this, but
we think that it may be depend on the fact that θ = 1 is the lower bound for the set of
parameter of the Gumbel’s copula.

In both cases, the experiments show that, for larger values of the parameter as θ = 10, the
confidence intervals fail to contain the true values of λL or λU . This might be caused by the
fact that when θ is large enough, the exact values of λL = 2−1/θ and λU = 2− 21/θ are too
close to 1.

θ = 1 θ = 3 θ = 5

Estimator aLn λL bLn aLn λL bLn aLn λL bLn
Local linear 0.24 0.25 0.52 0.45 0.79 0.89 0.48 0.87 0.94

Mirror-Reflection 0.20 0.50 0.67 0.41 0.79 0.88 0.47 0.87 0.97
Transformation 0.22 0.50 0.75 0.07 0.79 0.93 0.04 0.87 0.92

Table 1. Confidence intervals for λL in case of Clayton copula.

θ = 3 θ = 5

Estimator aUn λU bUn aUn λU bUn
Local linear 0.31 0.74 0.75 0.50 0.85 0.88

Mirror-reflection 0.48 0.74 0.85 0.53 0.85 0.89
Transformation 0.40 0.74 0.86 0.53 0.85 0.89

Table 2. Confidence intervals for λU in case of Gumbel’s copula.

3.2. Application to real data sets

We consider data from the stock index of CAC 40 quoted by Euronext (main financial
operator of Euro zone). The data consist of daily quotations for the opening price (X) and
the closing price (Y ), and are recorded during the period from 23/04/2015 to 02/01/2016.
This corresponds to 200 observations of the couple (X,Y ). Our goal is to test for the tail
dependence between the opening price and the closing price. Figure 1 exibits dependence on
the upper tail of the distribution of the couple (X,Y ). So, we are going to test this upper
tail dependence by providing confidence intervals for the coefficient λU , based on the three
studied estimators. The results are summarized in the following Table 3.
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Fig. 1. Scatter plot of the observed data, size n = 200.

Estimator aUn bUn
Local linear 0.73 0.85

Mirror-reflection 0.88 0.99
Transformation 0.84 0.92

Table 3. Estimation of λU by confidence intervals

We observe that the coefficient λU is strictly different from 0, for all the three estimators.
Thus, we can say that X and Y are asymptotically dependent on the upper tail level of their
joint distribution. This means that, there is an extremal dependence between large values
of opening prices and closing prices in the considered period.

Appendix

Proof of Proposition 1.

It results from a combination of a general theorem of Mason and Swanepoel (2010) for
proving the uniform in bandwidth consistency of kernel-type function estimators, and a law
of the iterated logarithm for Kiefer processes due to Wichura (1973).

Let φ : [0, 1] 7→ [0, 1] be an increasing transformation. For a bivariate kernel K(·, ·) and
0 < u, v < 1, define the estimator

Ĉ
(·)
n,h(u, v) =

1

n

n∑
i=1

K

(
φ−1(u)− φ−1(Ûi)

h
,
φ−1(v)− φ−1(V̂i)

h

)
(23)

and set

D̂
(·)
n,h(u, v) =: Ĉ

(·)
n,h(u, v)− EĈ(·)

n,h(u, v).

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



C.T. Seck, D. Ba and G.S. Lo, Afrika Statistika, Vol. 11(2), 2016, 1023–1039. Nonparametric
confidence intervals for tail dependence based on copulas. 1034

We call D̂
(·)
n,h(u, v) the deviation of the estimator Ĉ

(·)
n,h(u, v) from its expectation and we will

study its behavior by using general empirical process theory.

We remark that if the kernel K(·, ·) is multiplicative, i.e. K(x, y) = K(x)K(y), we obtain
directly the transformation estimator (6). If we set φ(t) = t, the identity function and employ
the local linear kernels Ku,h(·) and Kv,h(·), then we obtain the local linear kernel estimator
(4). For the mirror-reflection estimator (5), we consider the following decomposition due to
Omelka et al. (2009),

Ĉ(MR)
n (u, v) =

9∑
l=1

[Zn(l, u, v)− Zn(l, u, 0)− Zn(l, 0, v) + Zn(l, 0, 0)] , (24)

where

Zn(l, u, v) =
1

n

n∑
i=1

K

(
u− Û (l)

i

hn

)
K

(
v − V̂ (l)

i

hn

)
. (25)

Setting φ(t) = t and using a multiplicative kernel, one can see that each quantity Zn(l, u, v)
may be put in the form (23).

Now, let Hn, Fn and Gn be the empirical cumulative distribution functions of H, F and G,
respectively. Then the estimator based directly on Sklar’s Theorem is given by

Cn(u, v) = Hn(F−1n (u), G−1n (v)),

with F−1n (u) = inf{x : Fn(x) ≥ u} and G−1n (v) = inf{x : Fn(x) ≥ v}. The bivariate
empirical copula process is defined as

Cn(u, v) =
√
n[Cn(u, v)− C(u, v)], (u, v) ∈ [0, 1]2.

Introduce the following quantity.

C̃n(u, v) =
1

n

n∑
i=1

I{Ui ≤ u, Vi ≤ v}

which represents the uniform bivariate empirical distribution function based on a sample
(U1, V1), · · · , (Un, Vn) of i.i.d random variables uniformly distributed on [0, 1]2. Define the
following empirical process

C̃n(u, v) =
√
n[C̃n(u, v)− C(u, v)], (u, v) ∈ [0, 1]2.

Then, we can easily prove that that

C̃n(u, v) = Cn(u, v) +
1√
n
. (26)

For any given increasing transformation φ and (u, v) ∈ [0, 1]2, define

gn,h = Ĉ
(·)
n,h(u, v)− C̃n(u, v)

= 1
n

∑n
i=1

[
K
(
φ−1(u)−φ−1(Ûi)

h , φ
−1(v)−φ−1(V̂i)

h

)
− I{Ui ≤ u, Vi ≤ v}

]
= 1

n

∑n
i=1

[
K
(
φ−1(u)−φ−1(F̂noF

−1(Ui))
h , φ

−1(v)−φ−1(ĜnoG
−1(Vi))

h

)
− I{Ui ≤ u, Vi ≤ v}

]
=: 1

n

∑n
i=1 g(Ui, Vi, h),
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where g belongs to the class of measurable functions G defined as

G =

{
g : (s, t, h) 7→ g(s, t, h) = K

(
φ−1(u)−φ−1(ζ1,n(s))

h ,
φ−1(v)−φ−1(ζ2,n(t))

h

)
− I{s ≤ u, t ≤ v},

u, v ∈ [0, 1], 0 < h < 1 and ζ1,nζ2,n : [0, 1] 7→ [0, 1] nondecreasing.

}

Since EC̃n(u, v) = C(u, v), one can observe that

√
n|gn,h − Egn,h| = |

√
nD̂

(·)
n,h(u, v)− C̃n(u, v)|.

Introduce the following conditions on the class of functions G.

(G.i) There exists a finite constant κ > 0 such that

sup
0≤h≤1

sup
g∈G
‖g (·, ·, h)‖∞ = κ <∞.

(G.ii) There exists a constant C ′ > 0 such that for all h ∈ [0, 1],

sup
g∈G

E
[
g2 (U, V, h)

]
≤ C ′h.

(F.i) G satisfies the uniform entropy condition, i.e.,

∃C0 > 0, ν0 > 0 : N (ε,G) ≤ C0ε
−ν0 .

(F.ii) G is a pointwise measurable class, i.e there exists a countable sub-class G0 of G such
that for all g ∈ G, there exits (gm)m ⊂ G0 such that gm −→ g.

Proposition 3. Suppose that the copula function C has bounded first order partial deriva-
tives on (0, 1)2 and the transformation φ admits a bounded derivative φ′. Then assuming
(G.i), (G.ii), (F.i) and (F.ii), we have for some c > 0, 0 < h0 < 1, with probability one,

lim sup
n→∞

sup
c logn
n ≤h≤h0

sup
(u,v)∈(0,1)2

|
√
nD̂

(·)
n,h(u, v)− C̃n(u, v)|√

h(| log h| ∨ log log n)
= A(c),

where A(c) is a positive constant.

Corollary 1. Under the assumptions of Proposition 3, one has for any sequence of constants
0 < bn < 1, satisfying bn → 0, bn ≥ (log n)−1, with probability one,

sup
c logn
n ≤h≤bn

sup
(u,v)∈(0,1)2

|
√
nD̂

(·)
n,h(u, v)− C̃n(u, v)|
√

log log n
= O(

√
bn).

To avoid making the paper any longer again, we refer to Ba et al. (2015), Theorem 1, for
the proof of this Proposition 3 and its Corollary 1. Coming back to the proof of Proposition
1 , we have to show that

lim sup
n→∞

sup
c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

∣∣∣√nD̂(·)
n,h(u, v)

∣∣∣
√

2 log log n
≤ 3. (27)
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Towards this end, we make use of an approximation of the empirical copula process Cn by
a Kiefer process (see e.g., Zari, 2010, page 100). Let W(u, v, t) be a 3-parameters Wiener
process defined on [0, 1]2 × [0,∞). Then the Gaussian process K(u, v, t) = W(u, v, t) −
W(1, 1, t).uv is called a 3-parameters Kiefer process defined on [0, 1]2 × [0,∞).

By Theorem 3.2 of Zari (2010), for d = 2, there exists a sequence of Gaussian processes
{KC(u, v, n), u, v ∈ [0, 1], n > 0} such that

sup
(u,v)∈[0,1]2

∣∣√nCn(u, v)−K∗C(u, v, n)
∣∣ = O

(
n3/8(log n)3/2

)
,

where

K∗C(u, v, n) = KC(u, v, n)−KC(u, 1, n)
∂C(u, v)

∂u
−KC(1, v, n)

∂C(u, v)

∂v
.

This yields

lim sup
n→∞

sup
(u,v)∈[0,1]2

|Cn(u, v)|√
2 log log n

= lim sup
n→∞

sup
(u,v)∈[0,1]2

|K∗C(u, v, n)|√
2n log log n

. (28)

By the works of Wichura (1973) on the law of the iterated logarithm , for d = 2, one has
almost surely

lim sup
n→∞

sup
(u,v)∈[0,1]2

|K∗C(u, v, n)|√
2n log logn

≤ 3, (29)

which entails

lim sup
n→∞

sup
(u,v)∈[0,1]2

|Cn(u, v)|√
2 log log n

≤ 3.

Since Cn(u, v) and C̃n(u, v) are asymptotically equivalent in view of (26), one obtains

lim sup
n→∞

sup
(u,v)∈[0,1]2

∣∣∣C̃n(u, v)
∣∣∣

√
2 log log n

≤ 3.

Applying Corollary 1 and the fact that
√
bn → 0, we obtain Proposition 1 by taking the

equality to a constant A(c), with 0 < A(c) ≤ 3.�

Proof of Proposition 2.

First, observe that for all (u, v) ∈ [0, 1]2,

C(u, v) =

∫ 1

−1

∫ 1

−1
C(u, v)k(s)k(t)dsdt,

where k(·) is the Lebesgue-derivative of a function K(x) =
∫ x
−∞ k(s)ds.

Next, for a multiplicative kernel K(x, y) = K(x)K(y), we have

EĈ(·)
n,h(u, v) = E

[
K

(
φ−1(u)− φ−1(ζ1,n(Ui))

h

)
K

(
φ−1(v)− φ−1(ζ2,n(Vi))

h

)]
,
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where ζ1,n(Ui) = F̂n ◦ F−1(Ui) = Ûi and ζ2,n(Vi) = F̂n ◦ F−1(Vi) = V̂i. One can easily
prove that

EĈ(·)
n,h(u, v) =

∫ 1

−1

∫ 1

−1
C
(
ζ−11,n ◦ φ(φ−1(u)− sh), ζ−12,n ◦ φ(φ−1(v)− th)

)
k(s)k(t)dsdt.

So, the bias term

B
(·)
n,h(u, v) = EĈ(·)

n,h(u, v)− C(u, v)

=

∫ 1

−1

∫ 1

−1

[
C
(
ζ−11,n ◦ φ(φ−1(u)− sh), ζ−12,n ◦ φ(φ−1(v)− th)

)
− C(u, v)

]
k(s)k(t)dsdt.

The empirical kernel distributions F̂n and Ĝn are assumed to be asymptotically equivalent
to the classical empirical distribution functions Fn and Gn. Thus, from the Chung (1949)
law of the iterated logarithm, we can infer that for all u ∈ [0, 1], as n→∞,

ζ−11,n(u)− u = F ◦ F̂−1n (u)− F ◦ F−1(u) = O(n−1 log log n).

That is, ζ−11,n(u) is asymptotically equivalent to u. Same for ζ−12,n(u) = G ◦ Ĝ−1n (u). Hence,
for large enough n, we have

B
(·)
n,h(u, v) =

∫ 1

−1

∫ 1

−1

[
C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
− C(u, v)

]
k(s)k(t)dsdt.

By a Taylor expansion of 2-order, and taking account of the symmetry of the function k(·),
which implies that ∫ 1

−1
sk(s)ds = 0,

we get for all (u, v) ∈ [0, 1]2 and large enough n,

B
(·)
n,h(u, v) = h2

∫ 1

−1

∫ 1

−1

[
s2
∂2C(u, v)

∂u2
+ st

∂2C(u, v)

∂u∂v
+ s2

∂2C(u, v)

∂v2

]
k(s)k(t)dsdt

= h2
[∫ 1

−1
s2
∂2C(u, v)

∂u2
k(s)ds+

∫ 1

−1
t2
∂2C(u, v)

∂v2
k(t)dt

]
.

From this and the boundedness of the second-order derivatives of the copula C, we conclude
that

sup
c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

B
(T )
n,h(u, v) = O(b2n).

and (
n

2 log log n

)1/2

sup
c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

B
(T )
n,h(u, v) = O

( √
nb2n√

2 log log n

)
= o(1).� (30)
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Sklar, A., 1959. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statistic.
Univ. Paris, 8, 229-231.

van der Vaart, A.W. and Wellner, J. A., 1996. Weak Convergence and Empirical Processes.
Springer, New York.

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



C.T. Seck, D. Ba and G.S. Lo, Afrika Statistika, Vol. 11(2), 2016, 1023–1039. Nonparametric
confidence intervals for tail dependence based on copulas. 1039

Schmidt, R., Stadtmüller, U., 2006. Non parametric estimation of tail dependence. The
Scandinavian Journal of Statistics, 33, 307-335.

Wichura, M.J., 1973. Some Strassen-type laws of the iterated logarithm for multiparameter
stochastic processes with independent increments. The Annals of Probability, 1, 272-296.
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