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Abstract. In this work, robust Bayesian estimation of the generalized Pareto distribution
is proposed. The methodology is presented in terms of oscillation of posterior risks of the
Bayesian estimators. By using a Monte Carlo simulation study, we show that, under a
suitable generalized loss function, we can obtain a robust Bayesian estimator of the model.

Résumé. Dans ce travail, nous présentons une analyse de robustesse Bayesienne des estima-
teurs des paramètres d’un modèle de Pareto généralisé en termes d’oscillation des risques a
posteriori. En utilisant une étude exhaustive de Monte Carlo, nous prouvons que, moyennant
une fonction perte généralisée adéquate, on peut construire un estimateur Bayesien robuste
du modèle.
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1. Introduction

In the extreme value theory, the Generalized Pareto Distribution (GPD) play an important
role, especially in practical situations. In fact, applications of the GPD to areas such as
insurance, reliability, finance, meteorology and environment are widely spread out in the
literature. The GPD was first explicitly introduced by Pickands (1975) in the extreme value
framework.

Arnold and Press (1989) may be considered as the pioneers in using Bayesian techniques for
parameter estimation in the extreme value context. They recommend (when appropriate)
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the use of conjugate prior distributions for the parameters at hand. However, one can notice
that very few number of authors treated the topic of the Bayesian estimation of GPD. That’s
why, until now, one can say that the number of applications developed in the extreme value
context is still relatively modest.

The great majority of the existing approaches dealing with Bayesian procedures are focused
on the estimation of the parameters of Pareto distribution. De Zea Bermudez and Turkmann
(2003) suggested a method for estimating the parameters of GPD, that uses the Pareto and
the gamma distributions as priors for the parameters. Diebolt et al. (2005) addressed this
issue by making use of the quasi-conjugate distributions approach. A nice review on robust
estimation of GPD parameters by means of the Bayesian methodology may be found in De
Zea Bermudez and Kotz (2010).

Robust Bayesian Analysis (Berger et al., 2000) is concerned with the sensitivity of Bayesian
analysis results to the inputs for the analysis. In Robust Bayesian analysis a prior is assumed
to belong to a family of distributions, instead of being specified definitely and this leads to
a collection of Bayes actions. There are many approaches in Bayesian robustness context,
see, e.g., Micheas (2006).

In this work, we propose to use a suitable generalized loss function to perform robustness and
sensitivity analysis of the Bayesian estimators according to the methodology proposed by
Mȩczarski and Zieliński (1991) . The paper is outlined as follows. The second section presents
the genesis of the model. The Bayesian robustness analysis of this model is preformed in
the third section. In this part of the paper, Bayesian stability of the two parameters of the
model is studied under a generalized quadratic loss function. The last section is devoted to an
exhaustive simulation study where the performance of the Bayesian estimators is analyzed.

2. Genesis of the model

Consider (X1, X2, ..., Xn) a random sample from GPD(α, β) with density

f(x, α, β) =
α

β

(
1 +

x

β

)−α−1
x ≥ 0, with α > 0 and β > 0. (1)

The likelihood function based on the observation x = {x1, x2, ..., xn} is

L(x, α, β) =

(
α

β

)n
exp

{
−(α+ 1)

n∑
i=0

ln

(
1 +

xi
β

)}
(2)

Assume that π0(α, β) is the prior of the parameters (α, β). Then, using the Bayes rule, we
get the corresponding posterior distribution

π(α, β|x) =
L(x;α, β).π0(α, β)∫ +∞

0

∫ +∞
0

L(x;α, β).π0(α, β)dα dβ

Generally, there is no tractable expression of this posterior density and then, the computation
of the Bayesian estimators can be done using Monte Carlo procedures only. In the following,
we will perform robust Bayesian analysis of this estimation using the procedure proposed
by Mȩczarski and Zieliński (1991). This method is detailed in the next section.
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3. Bayesian robustness

3.1. Basic quadratic loss function

3.1.1. Bayesian stability for α

Consider the following priors for α and β respectively,

α ∼ Gamma(a0, b0), a0 > 0, b0 > 0 and β ∼ non informative.

Then, the priors densities of α and β are as follows:

π0(α) =
ba00 α

a0−1e−αb0

Γ(a0)
(3)

π1(β) =
1

β
, β > 0. (4)

The joint posterior distribution of the parameters α and β is given through Bayes theorem
by:

π(α, β | x) =
π0(α)π1(β)L(x, α, β)∫∞

0

∫∞
0
π0(α)π1(β)L(x, α, β) dα dβ

which is usually expressed in a simpler way as:

π(α, β | x) ∝ π0(α)π1(β)L(x, α, β)

Then

π(α, β | x) ∝ αn+a0−1β−n exp

{
−αb

0
− (α+ 1)

n∑
i=0

ln

(
1 +

xi
β

)}
(5)

However, the marginal posterior distributions of the parameters α and β do not correspond to
known distributions. To this purpose, we use Markov chain Monte Carlo (MCMC) methods,
especially, Metropolis-Hastings algorithm within a Gibbs sampling (Gilks et al , 1986) in
order to obtain samples from the marginal distributions of the parameters.

Gibbs sampling with Metropolis-Hastings step

First, we propose to derive the conditional distributions for each parameter. Then, we obtain
the following densities

π(α | β, x) ∝ αn+a0−1 exp

{
−α

(
b
0
−

n∑
i=0

ln

(
1 +

xi
β

))}
and

π(β | α, x) ∝ β−n exp

{
−(α+ 1)

n∑
i=0

ln

(
1 +

xi
β

)}
One can notice that the conditional distribution

α | β ∼ Gamma

(
n+ a0, b0 −

n∑
i=0

ln

(
1 +

xi
β

))
However, β | α is not known. That’s why, in this case, we will use the method of Metropolis-
Hastings. Finally, the algorithm is as follows
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– get the initial value (α(1), β(1))
(1) set an initial value β(1)

(2) generate α(1) | β(1) from Gamma

(
n+ a0, b0 +

n∑
i=1

ln

(
1 +

xi
β(1)

))
– For k = 2, ..., N get the couples (α(2), β(2)), ..., (α(N), β(N))

(1) generate β(k) | α(k−1) with Metropolis-Hastings algorithm

– pick a proposal density q(y) = ye−
2
β y and generate y ∼ Gamma(2; 2

β )

– compute ρ = min(1, r) where

r =
π(y | α(k−1))q(β(k−1))

π(β(k−1) | α(k−1))q(y)

take β(k) = y with probabiliy ρ and β(k) = β(k−1) else

(2) generate α(k) | β(k) from Gamma

(
n+ a0, b0 +

n∑
i=1

ln

(
1 +

xi
β(k)

))
When the Gibbs sampler achieves approximatively its stationary regime, the sample αN =
(α(1), ..., α(N)) is saved. It is used to compute the Bayesian estimator α̂ of α. Under the
quadratic loss function, we calculate the mean. Recall that our estimator depends on a0 and
b0. So, we note α̂(a0, b0) = mean(αN ).

In order to perform the stability Bayesian analysis on α, suppose that the prior is not exactly
specifed. So, following the methodology of Mȩczarski and Zieliński (1991), we keep the value
b0 fixed and consider the parameter a1 ≤ a ≤ a2 instead of a0 with a1 and a2 fixed. Then,
we obtain the posteriors risk PR(a) for α when a varies from a1 until a2,

PR(a) = E
[
(α− α̂(a0 , b0))2 | x

]
= E

[
α2 | x; a, b0

]
+ α̂2(a0 , b0)− 2α̂(a0 , b0)E [α | x; a, b0]

(6)
Where

E
[
α2 | x; a, b0

]
=

∫ ∞
0

α2π
0
(α/x; a, b0) dα

E [α | x; a, b0] =

∫ ∞
0

απ0(α/x; a, b0) dα

and the corresponding oscillation of the posterior risk of the Bayesian estimator of α denoted
R1

R1 = | max
a1≤a≤a2

PR(a)− min
a1≤a≤a2

PR(a)| (7)

3.1.2. Bayesian stability for β

Now, we use a noninformative prior for α and Gamma(u0, v0) prior for β. The density priors
of α and β are respectively

π0(α) =
1

α
; α > 0. (8)

π1(β) =
vu0
0 βu0−1e−βv0

Γ(u0)
(9)
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The joint posterior distribution of the parameters α and β is given by

π(α, β | x) ∝ αn−1βu0−n−1 exp

{
−βv0 − (α+ 1)

n∑
i=0

ln

(
1 +

xi
β

)}
(10)

Here, again, to obtain the marginal distributions of the parameters, we use the Gibbs sam-
pling with Metropolis-Hastings’s step and follow the algorithm quoted above but with dif-
ferent parameters of marginal distributions. Then,

π(α | β, x) ∝ αn−1 exp

{
−α

n∑
i=0

ln

(
1 +

xi
β

)}
∼ Gamma

(
n,

n∑
i=0

ln

(
1 +

xi
β

))

and

π(β | α, x) ∝ βu0−n−1 exp

{
−βv0 − (α+ 1)

n∑
i=0

ln

(
1 +

xi
β

)}
is not known

Following again the methodology of Mȩczarski and Zieliński (1991) to perform the stability
Bayesian analysis on β, we keep the value v0 fixed and consider the parameter u1 ≤ u ≤ u2
with u1 and u2 fixed. Then, we obtain the posteriors risk PR(u) for β when u varies from
u1 until u2

PR(u) = E
[
(β − β̂(u0, v0))2 | x

]
= E

[
β2 | x;u, v0

]
+ β̂2(u0, v0)− 2β̂(u0, v0)E [β | x;u, v0]

(11)
where

E
[
β2 | x;u, v0

]
=

∫ ∞
0

β2π0(β/x;u, v0) dβ

E [β | x;u, v0] =

∫ ∞
0

απ
0
(α/x;u, v0) dβ

and the corresponding oscillation of the posterior risk of the Bayesian estimator of β denoted
R2

R2 = | max
u1≤u≤u2

PR(u)− min
u1≤u≤u2

PR(u)| (12)

3.2. Generalized quadratic loss function

Now, we propose to use the same idea of Larbi and Fellag (2016) and consider generalized
quadratic loss function of the form L(d; t) = tk(d − t)2 where d is a Bayesian estimator, t
is to be estimated and k ∈ Z is the parameter of the generalized loss function. Notice that,
the basic quadratic loss function is derived for k = 0.

Now, the oscillation of the PR’s depends on k for both α and β. Our aim is to check if there
exist values of k 6= 0 such that the oscillation is smaller than we use basic quadratic loss
function (k = 0).
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3.2.1. Bayesian stability for α

Under the generalized loss function, the Bayesian estimator of α is

α̂(a0, b0, k) =
E[αk+1 | x]

E[αk | x]
, k ∈ Z. (13)

The posterior risk for the estimator of α is then

PR(a, k) = E[αk+2 | x; a, b0]− 2α̂(a0, b0, k)E[αk+1 | x; a, b0] + E[αk | x; a, b0]α̂(a0, b0, k)2.
(14)

and the oscillation of the posterior risk of α is given by the following formula

R1(k) = | max
a1≤a≤a2

PR(a, k)− min
a1≤a≤a2

PR(a, k)| (15)

3.2.2. Bayesian stability for β

The Bayesian estimator of β is

β̂(u0, v0, k) =
E[βk+1 | x]

E[βk | x]
, k ∈ Z. (16)

The posterior risk of the estimator of β is given by

PR(a, k) = E[βk+2 | x;u, v0]− 2β̂(u0, v0, k)E[βk+1 | x;u, v0] + E[βk | x;u, v0]β̂(u0, v0, k)2

(17)
and the oscillation of the posterior risk of α is

R2(k) = | max
u1≤u≤u2

PR(u, k)− min
u1≤u≤u2

PR(u, k)| (18)

The formulas of the estimator, posterior risk and the oscillation are to be approximated
numerically in the two cases using MCMC methods.

4. Monte Carlo study

4.1. Bayesian stability for α

First of all, let us propose an example in order to verify if the stationary distribution of the
Gibbs algorithm is satisfactory.

4.1.1. Example

Consider a sample with size n = 50 of a GPD(0.4, 20) with a0 = 0.8 and b0 = 9. We perform
1000 iterations with initial value B[1] = 50. Figure 1 presents the values of α and its mean
in each iteration.
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Fig. 1. Variation of the values of α. right: using the mean ; left : using Gibbs sampling

Notice that the values of α vary in a reasonable interval around the true value. Also, we
remark that the mean stabilizes very quickly at a number close to the true value. So, we can
say that the stationary distribution is approximately achieved. Now, consider three samples
where n = 10, 30, 50 with a0 = 0.8 and b0 = 9 fixed. Table 1 presents the Bayesian estimators
of α and their posterior risks for some values of α and β.
Now, let us study the stability of the Bayesian estimators of α. For this, we vary a in the
interval 0.5 ≤ a ≤ 1.5 and keep b0 = 9 fixed. The Table 2 gives the oscillation of the posterior
risk.

Now, let us study the stability of the Bayesian estimators of α under the generalized
quadratic loss given above, when k varies. Since the results are invariant with β, we fix
it equal to one, without loss of generality. Then, we restrict the simulation study to α in
{0.2, 0.4, 0.6, 1}. Also, we fix the values a0 = 0.8 and b0 = 9 for the three samples with
n = 10, 30, 50.

Figure 2, 3 and 4 present the oscillations of the posterior risks for different values of k. We
notice that the values of the estimator of α are far from the true value for large values of
α (see Table 1). Also, one can notice that the oscillation decreases when n increases unless
when α is high (see Table 2). We can add that the oscillations are smaller when α is close
to zero, and they are invariant with respect to β. Under the generalized quadratic loss
function, we remark that
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α β
n

10 30 50

0.2

0.2 0.1547(0.0025) 0.2410(0.0028) 0.2333(0.0015)
1 0.1986(0.0041) 0.2005(0.0017) 0.2008 (0.0012)
5 0.1376 (0.0020) 0.2073 (0.0018) 0.2869(0.0025)
20 0.3036 (0.0113) 0.1853 (0.0017) 0.2052 (0.0012)

0.4

0.2 0.4300(0.0265) 0.3032 (0.0044) 0.3264 (0.0035)
1 0.3327(0.0139) 0.5600(0.0190) 0.4596(0.0074)
5 0.3505 (0.0146) 0.4344 (0.0115) 0.4715 (0.0089)
20 0.3876(0.0189) 0.2611(0.0034) 0.4063 (0.0056)

1

0.2 0.4792 (0.0325) 0.5974 (0.0303) 0.6318 (0.0182)
1 0.4855(0.0317) 0.7772 (0.0466) 0.7245 (0.0264)
5 0.4099 (0.0249) 0.5528 (0.0198) 0.6288 (0.0165)
20 0.5611 (0.0463) 0.5718 (0.0217) 0.5940 (0.0146)

20

0.2 1.1850 (0.1388) 3.4193( 0.3725) 5.6590(0.6387)
1 1.2088(0.1401) 1.2099(0.1030) 1.2388(0.1325)
5 0.8152(0.0879) 0.9236(0.1358) 1.2553(0.3469)
20 0.6521(0.0571) 1.0499(0.0787) 1.7520(0.1229)

Table 1. Estimators of α with PR’s in brackets for n = 10, 30, 50 when a0 = 0.8 ; b0 = 9.

α β
n

10 30 50

0.2

0.2 0.0015 0.0013 0.0006
1 0.0022 0.0013 0.0001
5 0.0013 0.0003 0.0003
20 0.0048 0.0006 0.00008

0.4

0.2 0.0267 0.0005 0.0004
1 0.0094 0.0088 0.0010
5 0.0242 0.0081 0.0034
20 0.0146 0.0003 0.0006

1

0.2 0.0087 0.0058 0.0031
1 0.0150 0.0070 0.0040
5 0.0033 0.0026 0.0024
20 0.0167 0.0026 0.0019

20

0.2 0.0333 0.0864 0.1383
1 0.0355 0.3669 0.3928
5 0.1754 0.4066 0.3588
20 0.0599 0.2178 0.5529

Table 2. Oscillation of PR’s of estimators of of α for n = 10, 30, 50 when a0 = 0.8 ; b0 = 9.

(i). For α = 0.2, the oscillation decreases when k increases for n = 10, 30, 50 (see Figure 2).
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Fig. 2. Variation of the oscillation of the PR’s with k for α when n = 10; 30; 50; α = 0.2

(ii). For α = 0.4, the oscillation values decreases until a particular value k0 and then grows
for n = 10; 30; 50 (see Figure 3).

Fig. 3. Variation of the oscillation of the PR’s with k for α when n = 10; 30; 50; α = 0.4

(iii). For α = 1, the oscillation grows when k increases for n = 30, 50, and decreases until
some value k1 and then grows (see Figure 4).

Then, one can conclude that that for all the studied values of α, we can improve the robust
Bayesian estimation of α. The best situation is obtained when α is small and k enough high.

4.2. Bayesian stability of β

First, as in the previous subsection, let us verify if the stationary distribution of the Gibbs
algorithm is approximately achieved in this case. Then, we consider the following example.
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Fig. 4. Variation of the oscillation of the PR’s with k for α when n = 10; 30; 50; α = 1

4.2.1. Example

Consider a sample with size n = 50 of a GPD(5, 0.2) with u0 = 0.4 and v0 = 5. Since the
conditional distribution β | α is unknown, we perform 10000 iterations with initial value
B[1] = 0.1. The obtained values of β and its mean in each iteration are presented in Figure
5

Fig. 5. Variation of values of β . Right: with his mean; Left: with Gibbs sampling
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β α
n

10 30 50

0.2

0.2 0.1595(0.0212) 0.1087(0.0050) 0.2924(0.0251)
1 0.0931(0.0089) 0.2009(0.0150) 0.1030(0.0020)
5 0.16022(0.0197) 0.1500(0.0273) 0.2220(0.0286)
10 0.1805(0.0264) 0.2128(0.0319) 0.3617(0.0965)

0.4

0.2 0.1431(0.0207) 0.1958 (0.0223) 0.2927(0.0207)
1 0.2917(0.0382) 0.2730 (0.0212) 0.2961(0.0202)
5 0.1344(0.0222) 0.2813(0.0337) 0.3928(0.0474)
10 0.2220(0.0316) 0.2288(0.0327) 0.2640(0.0230)

1

0.2 0.2879(0.0489) 0.4670(0.0748) 0.6505(0.0671)
1 0.2321 (0.0334) 0.4716(0.0506) 0.6565(0.0565)
5 0.1967(0.0354) 0.3122(0.0344) 0.5075( 0.0589)
10 0.2690(0.0417) 0.2775(0.0296) 0.4035(0.0471)

20

0.2 0.3439(0.0929) 0.6078(0.0838) 1.0438(0.1725)
1 0.5533(0.0745) 1.3863(0.0312) 1.8561(0.4235)
5 0.4125(0.0934) 1.0965(0.2054) 1.5682(0.2850)
10 0.3291(0.0429) 0.8566(0.1948) 1.3402(0.2297)

Table 3. Estimators of β with PR’s in brackets for n = 10, 30, 50 when u0 = 0.4 ; v0 = 5.

We notice that the values of β vary in a reasonable interval around the true value. Also, we
remark that the mean stabilizes very quickly at a number close to the true value. So, we can
say that the stationary distribution is approximately achieved. We consider three samples
with n = 10, 30, 50, for u0 = 0.4 and v0 = 5 fixed. We calculate the Bayesian estimators of
β and their posterior risks for some values of α and β. The results obtained are in Table 3.

Now, in order to study the stability of the Bayesian estimators of β, we vary u in the interval
0.5 ≤ u ≤ 1.5 and keep v0 = 5 fixed. The oscillations of the posterior risk, are given in Table
4.
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β α
n

10 30 50

0.2

0.2 0.0693 0.0053 0.0267
1 0.0253 0.0269 0.0027
5 0.2663 0.4172 0.3577
10 0.1669 0.2545 0.1618

0.4

0.2 0.0556 0.0370 0.0154
1 0.0675 0.0201 0.0155
5 0.0683 0.0606 0.1287
10 0.0752 0.1171 0.1121

1

0.2 0.0725 0.0683 0.0340
1 0.0628 0.0365 0.0306
5 0.0854 0.0547 0.0842
10 0.0654 0.0663 0.0725

20

0.2 0.3024 0.4366 0.3037
1 0.2316 0.8071 0.8361
5 0.5273 0.2700 0.2904
10 0.3219 0.3920 0.2493

Table 4. Oscillation of PR’s of estimators of β for n = 10, 30, 50 when u0 = 0.4 ; v0 = 5

Now, let us study the stability of the Bayesian estimators of β under the generalized
quadratic loss given above, when k varies. Since the results are invariant with α, we
fix α = 1 without loss of generality. Then, we restrict the simulation study to β ∈
{0.08, 0.1, 0.4, 0.6, 0.8}. Also, we fix the values u0 = 0.4 and v0 = 5 for the three samples
with n = 10, 30, 50.

Figure 6 and 7 present oscillations of the posterior risks for different values of k. We notice
that the values of the estimator of β are far from the true value for large values of β (see
Table 3). Also, one can notice that the oscillations are smaller when β is close to zero,and
they are invariant with respect to α (see Table 4). Under the generalized quadratic loss
function, we remark that

(i). For β small, the oscillation decreases when k increases for n = 10, 30, 50 (see Figure 6).
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Fig. 6. Variation of the oscillation of the PR’s with k for β when n = 10; 30; 50; β = 0.08

(ii). For β higher, the oscillation values grows when k increases for n = 10; 30; 50 (see Figure
7).

Fig. 7. Variation of the oscillation of the PR’s with k for β when n = 10; 30; 50; β = 0.4

Then, we can say that it is possible to improve the robust Bayesian estimation of β when
its values are very small.

5. Conclusion

In this work, robustness and sensitivity analysis of the Bayesian estimators of a generalized
Pareto model is performed according to a specific methodology. Two parameters are
considered an the robustness is studied in terms of oscillation of the posterior risk. Then,
using an exhaustive Monte Carlo procedure, we proved that, under a suitable generalized
loss function, robust estimators can be obtained for the parameters when they are not high.
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