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Abstract. We study the relaxed optimal stochastic control problem for systems governed
by stochastic differential equations (SDEs), driven by an orthogonal continuous martingale
measure, where the control is allowed to enter both the drift and diffusion coefficient. The
set of admissible controls is a set of measure-valued processes. Necessary conditions for
optimality for these systems in the form of a maximum principle are established by means
of spike variation techniques. Our result extends Peng’s maximum principle to the class of
measure valued controls.

Résumé. Nous étudions les problèmes de contrôle stochastique relaxés pour des systèmes
gouvernés par des équations différentielles stochastiques (EDSs), dirigées par des mesures
martingales orthogonales continues, avec un drift et un coefficient de diffusion contrôlé.
L’ensemble des contrôles admissibles est constitué de processus à valeurs mesures. On établit
des conditions nécessaires d’optimalité en utilisant des preturbations fortes. Notre résultat
généralise le principe du maximum de Peng pour la classe de contrôles à valeurs mesures.
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1. Introduction

We are interested by optimality necessary conditions for control problems of systems satis-
fying the stochastic differential equation

dx (t) = b (t, x (t) , u (t)) dt+ σ (t, x (t) , u (t)) dBt, x(0) = x (1)
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on some filtered probability space (Ω,F , (Ft)t, P ), where b and σ are deterministic functions,
(Bt, t ≥ 0) is a Brownian motion, x is the initial state and u (t) stands for the control variable.
Our control problem consists in minimizing a cost functional of the form

J(u) = E

[∫ 1

0

h (t, x (t) , u (t)) dt+ g(x (1))

]
, (2)

over the class U of admissible controls, that is adapted processes, with values in some compact
metric space A, called the action space. A control u∗ is called optimal if it satisfies

J(u∗) = inf {J(u), u ∈ U} .

If, moreover, u∗ is in U , it is called strict. Existence of such a strict control or an opti-
mal control in U follows from the convexity of the image of the action space by the map(
b(t, x, .), σ2(t, x, .), h(t, x, .)

)
, called the Filipov-type convexity condition, see Becker and

Mandrekar (1969); El Karoui et al. (1987); Fleming (1976); Haussmann (1986); Kushner
(1975). Without this convexity condition an optimal control does not necessarily exist in
U , this set is not equipped with a compact topology. The idea is then to introduce a larger
class R of control processes, in which the controller chooses at time t a probability measure
qt(da) on the control set U , rather than an element ut ∈ U . These are called relaxed controls
and have a richer topological structure, for which the control problem becomes solvable and
the SDE will have the form

dx (t) =

∫
A

b (t, x (t) , a) qt(da)dt+

∫
A

σ (t, x (t) , a)M (da, dt) , x(0) = x,

where M(da, dt) is an orthogonal continuous martingale measure, whose intensity is the
relaxed control qt(da)dt. The corresponding cost is given by

J(q) = E

[∫ 1

0

∫
A

h (t, x (t) , a) qt(da)dt+ g(x (1))

]
.

The relaxed control problem finds its interest in two essential points. The first is that an
optimal solution exists. Fleming (1976) derived an existence result of an optimal relaxed
control for systems with uncontrolled diffusion coefficient. The existence of an optimal solu-
tion, where the drift and the diffusion coefficients depend explicitly on the relaxed control
variable, has been solved by El Karoui et al. (1987), see also Haussmann (1986); Haussmann
and Lepeltier (1990). The relaxed optimal control in this general case is shown to be Marko-
vian. See also Bahlali et al. (2006) for an alternative proof of the existence of an optimal
relaxed control based on Skorokhod selection theorem. The second advantage of the use of
relaxed controls is that it is a generalization of the strict control problem, in the sense that
both control problems have the same value function. Indeed, if qt(da) = δut(da) is a Dirac
measure charging ut for each t, we get a strict control as a particular case of the relaxed
one.

Motivated by the existence of an optimal relaxed control, various versions of the stochastic
maximum principle have been proved. The first result in this direction has been established
in Mezerdi and Bahlali (2002), where a stochastic maximum principle for relaxed controls,
in the case of uncontrolled diffusion coefficient has been given by using the first order adjoint
process (see also Bahlali et al., 2007 the extension to singular control problems). The case of
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a controlled diffusion coefficient has been treated in Bahlali et al. (2006), by using Ekeland’s
variational principle and an approximation scheme, by using the first and second order
adjoint processes. Let us point out that a different relaxation has been used in Bahlali
(2008); Ahmed and Charalambous (2013), where the drift and diffusion coefficient have been
replaced by their relaxed counterparts. Their relaxed state process is linear in the control
variable and is different from ours, in the sense that in our case we relax the infinitesimal
generator instead of relaxing directly the state process.

The aim of the present paper is to obtain a Peng-type general stochastic maximum principle
for relaxed controls, using directly the spike perturbation. Our method differs from the one
used in Bahlali et al. (2006), in the sense that we don’t use neither the approximation
procedure nor Ekeland’s variational principle. We use a spike variation method directly on
the relaxed optimal control. Then, we derive the variational equation from the state equation
and the variational inequality from the inequality

J
(
qθ
)
− J (q) ≥ 0.

As for strict controls, the first order expansion of J
(
qθ
)

is not sufficient to obtain a necessary
optimality condition.One has to consider the second-order terms (with respect to the state)
in the expansion of J

(
qθ
)
− J (q). Although the second-order terms are quadratic with

respect to the state variable, a so called second-order variational equation and second-order
variational inequality are introduced. By using a suitable predictable representation theorem
for martingale measures Overbeck (1995), we obtain the corresponding first and second-order
adjoint equations, which are linear backward stochastic differential equations driven by the
optimal martingale measure. This could be seen as one of the novelties of this paper.

Our paper is organized as follows. In section 2, first we give some properties of a class of
orthogonal martingale measures, formulate the strict and relaxed control problems. In section
3, we obtain a maximum principle of the Pontriagin type for relaxed controls, extending the
well known Peng stochastic maximum principle to the class of measure-valued controls.

2. Formulation of the relaxed control problem

2.1. Martingale measures

We start with the definition of a martingale measure introduced by Walsh (1986).

Definition 1. Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space and (E, E) a Lusin space.
{Mt (A) , t = 0, A ∈ E} is a Ft−martingale measure if and only if:

1) M0 = 0, ∀A ∈ E ;

2) {Mt (A) , t = 0} is a Ft-martingale, ∀A ∈ E ;

3) ∀t > 0,Mt(.) is a L2-valued σ-finite measure in the following sense: there exists a
non-decreasing sequence {En} of E with ∪nEn = E such that

a) for every t > 0, sup
A∈En

E
[
M (A, t)

2
]
<∞, En = B (En)

b) for every t > 0, E
[
M (Aj , t)

2
]
→ 0 for all sequence Aj of En decreasing to ∅.
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For A,B ∈ E , there exists a unique predictable process 〈M(A),M(B)〉t, such that

M(A, t)M(B, t)− 〈M(A),M(B)〉t is a martingale.

A martingale measure M is called orthogonal if M(A, t).M(B, t) is a martingale for A,B ∈ E ,
A ∩B = ∅.

If M is an orthogonal martingale measure, one can prove the existence of random σ-finite
positive measure υ(ds, dx) on R× E, Ft-predictable, such that for each A of A the process
(υ ((0, t]×A))t is predictable and satisfies

∀A ∈ E ,∀t > 0, υ ((0, t]×A) = 〈M(A)〉t P − a.s.

υ can be decomposed as follows υ(dt, da) = qt(da)dkt, where kt is a random predictable
increasing process and (qt(da))t≥0 is a predictable family of random σ-finite measure.

We refer to Walsh (1986) and El Karoui and Méléard (1990) for more details and a complete
construction of the stochastic integral with respect to orthogonal martingale measures.

2.2. The strict control problem

The systems we wish to control are driven by d-dimensional stochastic differential equations
of diffusion type

dx (t) = b (t, x (t) , u (t)) dt+ σ (t, x (t) , u (t)) dBt, x (0) = a, (3)

where (Bt) is a d−dimensional Brownian motion defined on the filtered probability space
(Ω,F , (Ft)t≥0, P ).

For each t ∈ [0, 1], the control u is a measurable Ft-adapted process with values in the action
space A, which is a compact metric space.

The infinitesimal generator L corresponding to equation (3), acting on functions f in
C2
b (Rd,R), is

Lf(t, x, u) =
1

2

∑
i,j

(
aij

∂2f

∂xi∂xj

)
(t, x, u) +

∑
j

(
bj
∂f

∂xj

)
(t, x, u)

where aij (t, x, u) denotes the generic term of the symmetric matrix σσ∗ (t, x, u). Let U
denotes the class of admissible controls, that is Ft-adapted processes with values in the
action space A.

The function to be minimized over such controls is

J(u) = E

[∫ 1

0

h (t, x (t) , u (t)) dt+ g(x (1))

]
. (4)

(H1)We assume that the coefficients of the control problem satisfy the following hypoth-
esis:

b : R+ × Rd ×A → Rd,
σ : R+ × Rd ×A →Md×k (R) ,

h : R+ × Rd ×A → R,
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are bounded measurable in (t, x, a).
(H2)b, σ, h are twice continuously differentiable functions in x with bounded first and

second derivatives.
(H3) g : Rd → R is bounded and twice continuously differentiable with bounded first

and second order derivatives.

Under the assumptions above, the controlled equation admits a unique strong solution such
that for every p ≥ 1, E

[
sup0≤t≤T |xt|

p]
< M(p).

Definition 2. A strict control is the term α = (Ω,F , (Ft)t≥0, P, u (t) , x (t) , a) such that
(1) a ∈ Rd is the initial data;
(2) (Ω,F , (Ft)t≥0, P ) is a probability space equipped with a filtration (Ft)t≥0 satisfying

the usual conditions;
(3) u (t) is an A-valued process, progressively measurable with respect to (Ft);
(4) (x (t)) is Rd-valued, Ft-adapted, with continuous paths, such that

f(x (t))− f(a)−
∫ t

0

Lf (s, x (s) , u (s)) ds is a P −martingale,

for every f ∈ C2
b , where L is the infinitesimal generator of the diffusion (x (t)).

The associated controls are called weak controls because of the possible change of the prob-
ability space and the Brownian motion with u (t). When path-wise uniqueness holds for the
controlled equation it is showed in El Karoui et al. (1987), that the weak and strong control
problems are equivalent in the sense that they have the same value functions.

2.3. The relaxed control problem

The strict control problem as defined in the last section may fail to have an optimal solution,
as shown in the following simple example, taken from deterministic control theory.

Example 1. Minimize the cost function

J(u) =

∫ T

0

xu(t)2dt

over the set Uad of open loop controls, that is, measurable functions u : [0, T ]→ {−1, 1} .

Let xu(t) denote the solution of

dxu (t) = udt, x(0) = 0.

We have infu∈U J(u) = 0. Indeed consider the following sequence of controls

un (t) = (−1)
k

; if
k

n
≤ t ≤ k + 1

n
, 0 ≤ k ≤ n− 1.

Then clearly |xun(t)| ≤ 1/n and |J(un)| ≤ T/n2 which implies that infu∈U J(u) = 0. There
is however no control u such that J(u) = 0.
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If this would have been the case, then for every t, xu (t) = 0. This in turn would imply that
u (t) = 0, which is impossible. The problem is that the sequence (un) has no limit in the
space of strict controls. This limit, if it exists, will be the natural candidate for optimality.
If we identify un (t) with the Dirac measure δun(t) (da) and set qn (dt, da) = δun(t) (da) dt, we
get a measure on [0, 1]×A. Then (qn (dt, da))n converges weakly to (1/2) dt [δ−1 + δ1] (da).
This suggests that the set U of strict controls is too narrow and should be embedded into
a wider class with a richer topological structure, for which the control problem becomes
solvable. The idea of relaxed control is to replace the A-valued process (u (t)) with P (A)-
valued process (qt), where P (A) is the space of probability measures equipped with the
topology of weak convergence.

In this section, we introduce relaxed controls of SDE as solutions of a martingale problem
for a diffusion process whose infinitesimal generator is integrated against the random mea-
sures defined over the action space of all controls. Let V be the set of Radon measures on
[0, 1]×A whose projections on [0, 1] coincide with the Lebesgue measure dt. Equipped with
the topology of stable convergence of measures, V is a compact metrizable space. Stable
convergence is required for bounded measurable functions h(t, a) such that for each fixed
t ∈ [0, 1], h(t, .) is continuous.

Definition 3. A relaxed control is the term q = (Ω,F ,Ft, P,Bt, qt, x (t) , a) such that
(1) (Ω,F ,Ft, P ) is a filtered probability space satisfying the usual conditions;
(2) (qt) is an P (A)-valued process, progressively measurable with respect to (Ft); and

such for that for each t, 1(0,1].q is Ft-measurable;

(3) (x (t)) is Rd-valued, Ft-adapted, with continuous paths, such that x(0) = % and

f(x (t))−f(a)−
∫ t

0

∫
A

Lf (s, x (s) , a) qs(w, da)ds is a P -martingale, for each f ∈ C2
b (Rd,R).

(5)

We denote by R the collection of all relaxed controls.

By a slight abuse of notation, we will often denote a relaxed control by q instead of specifying
all the components.

The cost function associated to a relaxed control q is defined as

J(u) = E

[∫ 1

0

∫
A

h (t, x (t) , a) qt(da)dt+ g(x (1))

]
.

The set U of strict controls is embedded into the set R of relaxed controls by the mapping

Ψ : u ∈ U →Ψ(u) (dt, da) = dtδu(t) (da) ∈ R;

where δu is the Dirac measure at a single point u. In fact the next lemma, known as the
chattering lemma, tells us that any relaxed control is weak limit of sequence of strict controls.

Lemma 1. (Chattering lemma) Let (qt) be a predictable with values in the space of prob-
ability measure on A. Then there exists a sequence of predictable processes (un (t)) with
values in A such that the sequence of random measures

(
δun(t) (da) dt

)
converge weakly to

qt (da) dt, P − a.s.
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In the next example, through considering the action space A to be a finite set of points, hence
reducing the problem to controlling a finite-dimensional diffusion process, we will identify
the appropriate class of martingale measures that drives the stochastic representation of the
coordinate process associated with the solution to the martingale problem (5).

Example 2. Let A = {a1, a2, ..., an}, then every relaxed control dtqt (da) will be a convex
combination of the Dirac measures dtqt (da) =

∑n
i=1 αi(t)dtδai (da) , where for each i, αi(t)

is a real-valued process such that 0 ≤ αi(t) ≤ 1 and
∑n
i=1 αi(t) = 1. It is shown that the

solution of the (relaxed) martingale problem (5) is the law of the solution of the following
SDE (see Bahlali, 2008)

dx(t) =

d∑
i=1

b(t, x(t), ui(t))αi(t)dt+

d∑
i=1

σ(t, x(t), ui(t))αi(t)
1/2dBit, x(0) = a (6)

where the Bi’s are d-dimensional Brownian motions on an extension of the initial probability
space. The process M defined by

M (A× [0, t]) =

d∑
i=1

∫ t

0

αi(s)
1/2δui(s)(A)dBis,

is in fact a strongly orthogonal continuous martingale measure (El Karoui and Méléard,
1990; Walsh, 1986) with intensity qt(da)dt =

∑
αi(t)δui(t) (da) dt. Thus, the SDE (6) can

be expressed in terms of M and q as follows

dx(t) =

∫
A

b(t, x(t), a)qt(da)dt+

∫
A

σ(t, x(t), a)M(da, dt).

The following theorem due to El Karoui and Méléard (1990) gives a pathwise representation
of the solution of the martingale problem (5) in terms of strongly orthogonal continuous
martingale measure whose intensity are our relaxed control.

Theorem 1. (1) Let P be the solution of the martingale problem (5). Then P is the law
of a d-dimensional adapted and continuous process X defined on an extension of the space
(Ω,F ,Ft) and solution of the following SDE starting at %

dXi(t) =

∫
A

bi(t,X(t), a)qt(da)dt+

d∑
k=1

∫
A

σi,k(t,X(t), a)Mk(da, dt), (7)

where M =
(
Mk
)d
k=1

is a family of d-strongly orthogonal continuous martingale measures
with intensity qt(da)dt.

(2) If the coefficients b and σ are Lipschitz in x, uniformly in t and a, the SDE (7) has
a unique pathwise solution.

Using the chattering lemma, we get the following result due to Méléard (1992) on approx-
imating continuous orthogonal martingale measures, with given intensity, by a sequence of
stochastic integrals with respect to a single Brownian motion.
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Proposition 1. Let M be a continuous orthogonal martingale measure with intensity
qt (da) dt on A× [0, 1] . Then there exist a sequence of predictable A-valued processes (un (t))
and a Brownian motion B defined on an extension of (Ω,F , P ) such that for all t ∈ [0, T ]
and ϕ continuous bounded functions from A to R,

lim
n→+∞

E

[(
Mt (ϕ)−

∫ t

0

ϕ (un (s)) dBs

)2
]

= 0.

2.3.1. Approximation and existence of optimal relaxed controls

In order for the relaxed control problem to be truly an extension of the original one, the
infimum of the expected cost among relaxed controls must be equal to the infimum among
strict controls. This result is based on approximation of a relaxed control by a sequence of
strict controls, given by Lemma 1.

The next theorem gives the stability of the controlled stochastic differential equations with
respect to the control variable.

Let (qt) be a relaxed control. We know from Theorem 1 that there exists a family of contin-
uous strongly orthogonal martingale measures Mt =

(
Mk
t

)
such that the state of the system

satisfies the following SDE, starting at X(0) = a

dX(t) =

∫
A

b(t,X(t), a)qt(da)dt+

∫
A

σ(t,X(t), a)M(da, dt). (8)

Moreover, thanks to Lemma 3.4 in Bahlali (2008) and Proposition 1, there exist a sequence
(un (t)) of strict controls and a Brownian motion B defined on an extension of (Ω,F , P )
such that for each t ∈ [0, T ] and each continuous bounded function ϕ from A to R,

lim
n→+∞

E

[(
Mt (ϕ)−

∫ t

0

ϕ (un (s)) dBs

)2
]

= 0. (9)

Denote by Xn(t) the solution which can be written in relaxed form as dXn(t) =

∫
A

b(t,Xn(t), a)qnt (da)dt+

∫
A

σ(t,Xn(t), a)Mn(da, dt)

Xn (0) = %,
(10)

with respect to the martingale measure Mn
t (A) =

∫ t

0

1A(un (s))dBs and qnt (da) =

δun(t)(da).

Theorem 2. Let X(t) and Xn(t) be the diffusion solutions of (8) and (10), respectively.
Then

lim
n→+∞

E

[
sup

0≤t≤1
|Xn(t)−X(t)|2

]
= 0.

Proof. See Bahlali et al. (2006).
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Corollary 1. Let J (un) and J (q) be the expected costs corresponding, respectively, to un

and q, where un and q are defined as in the last theorem. Then there exists a sub-sequence
(unk) of (un) such that J (unk) converges to J (q).

Remark 1. It follows from the last corollary that the strict and relaxed controls are equiv-
alent, in the sense that they have the same value function.

2.4. Predictable representation for orthogonal martingale measures

Let us denote the set of square-integrable martingales over (Ω,F , (Ft) , P ) by M2.

Proposition 2. Let N be in M2. Then there exist a unique square integrable predictable
process n such that

Nt = N0 +

∫ t

0

∫
E

n(a, s)M(da, ds) + Lt,

where L is an L2−martingale with
〈
L,
∫ .

0

∫
E
b(a, s)M(da, ds)

〉
= 0 for every predictable b.

Proof. See Overbeck (1995).

3. The relaxed maximum principle

In this section we establish optimality necessary conditions for relaxed control problems,
where the system is described by a SDE driven by an orthogonal continuous martingale
measure and the admissible controls are measure-valued processes.

Recall the controlled SDE:

dx(t) =

∫
A

b(t, x(t), a)qt(da)dt+

∫
A

σ(t, x(t), a)M(da, dt), x(0) = a (11)

where M(da, dt) is orthogonal continuous martingale measure whose intensity is the relaxed
control qt(da)dt. The corresponding cost is given by

J(q) = E

[∫ 1

0

∫
A

h (t, x(t), a) qt(da)dt+ g(x(1))

]
.

3.1. Preliminary results

The purpose of the stochastic maximum principle is to find necessary conditions for optimal-
ity satisfied by an optimal control. Due to the appearance of the control variable in σ (., .),
the usual first order expansion approach can’t work. Hence, we introduce a second-order
expansion method, we proceed as the classical maximum principle (Peng, 1990).

Suppose that (x(.), q(.)) is an optimal solution of the problem and let us introduce the strong
perturbed relaxed control in the following way

qθt (A) =

{
δυ(A) if t ∈ E
qt(A) if t ∈ Ec
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where E = {r ≤ t ≤ r + θ} , 0 ≤ r < T is fixed and the Ec otherwise, θ > 0 is sufficiently
small, and υ is an arbitrary Fr-measurable random variable with values in U , such that

sup
w∈Ω
|υ(w)| <∞.

Let xθ be the trajectory of the control system (11) corresponding to the control qθ. (A), which
is the intensity of the orthogonal continuous martingale measures Mθ, we create it of the
form

Mθ
t (A) =

∫ t

0

∫
A

1[r,r+θ](s)δν(da)dBs +

∫ t

0

∫
A

1[r,r+θ]C (s)M(da, ds).

where 0 ≤ r < T is fixed, θ > 0 is sufficiently small, and υ is an arbitrary Fr-measurable
random variable with values in U .

The variational inequality will be derived from the fact that

lim
θ→0

1

θ

[
J(qθ (.))− J(q (.))

]
≥ 0,

to this end, we need the following estimation.

Lemma 2. We assume (H1-H3), then the following estimate holds

E

[
sup

0≤t≤T
|xθ(t)− x(t)− x1(t)− x2(t)|2

]
≤ C(θ)θ2 (12)

where limθ−→0 C(θ) = 0 and x1(t), x2(t) are solutions of the SDEs

x1 (t) =

t∫
0

∫
A

[
b(s, xs, a)qθs(da)− b(s, xs, a)qs(da) + bx(s, xs, a)x1(s)qs(da)

]
ds

+

t∫
0

∫
A

[
σ(s, xs, a)Mθ(da, ds)− σ(s, xs, a)M(da, ds) + σx(s, xs, a)x1(s)M(da, ds)

] (13)

x2(t) =

t∫
0

∫
A

[(
bx(s, xs, a)qθs(da)− bx(s, xs, a)qs(da)

)
x1(s)

]
ds

+

t∫
0

∫
A

[
bx(s, xs, a)x2(s)qs(da) + 1

2bxx(s, xs, a)qs(da)x1(s)x1(s)
]
ds

+

t∫
0

∫
A

[
σx(s, xs, a)x1(s)Mθ(da, ds)− σx(s, xs, a)x1(s)M(da, ds)

]
+

t∫
0

∫
A

[
σx(s, xs, a)x2(s) + 1

2σxx(s, xs, a)x1(s)x1(s)
]
M(da, ds).

(14)
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Remark 2. Equation (13) is called the first-order variational equation. It is the variational
equation in the usual sense. (14) is called the second-order variational equation, without
this equation we can not derive the variational inequality since σ depends explicitly on the
control variable.

Notation

1) For simplicity of the notations, we denote by

f (t, x(t), qt) =

∫
A

f (t, x(t), a) qt(da),

and f stands for b, σ, h and their first and second derivatives.

2) We will generically denote by Ck the positive constants that appear in the estimates
below and may differ from line to line and from proof to proof.

The proof is inspired from Yong and Zhou (1999), Theorem 4.4, page 128. We need to show
that

E

[
sup

0≤t≤T
|x1(t)|2

]
≤ Ckθ, (15)

E

[
sup

0≤t≤T
|x2(t)|2

]
≤ Ckθ2. (16)

We can write

E
[
|x1(t)|2

]
≤ 4E

∣∣∣∣∫ t

0

∫
A

[
b(s, xs, a)qθs(da)− b(s, xs, a)qs(da)

]
ds

∣∣∣∣2
+4E

∣∣∣∣∫ t

0

∫
A

[
σ(s, xs, a)Mθ(da, ds)− σ(s, xs, a)M(da, ds)

]∣∣∣∣2
+4E

∣∣∣∣∫ t

0

∫
A

bx(s, xs, a)x1(s)qs(da)ds+

∫ t

0

∫
A

σx(s, xs, a)x1(s)M(da, ds)

∣∣∣∣2
≤ E(I1) + E(I2) + E(I3)

Since qθ is defined as in (15), then

E(I1) ≤ 4E

∫ t

0

∣∣∣∣∫
A

[b(s, xs, a)δυ(da)− b(s, xs, a)qs(da)] 1E

∣∣∣∣2 ds
≤ CkE

∫ r+θ

r

[
|b(s, xs, υ)|2 +

∫
A

|b(s, xs, a)|2 |qs(da)|2
]
ds

≤ Ck
∫ r+θ

r

E
[
1 + |x(t)|2

]
ds

≤ Ck
∫ r+θ

r

[
1 + E

(
sup

0≤t≤T
|x(t)|2

)]
ds ≤ Ck(1 + α)θ.
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E(I2) ≤ CkE

∣∣∣∣∣
∫ r+θ

r

∫
A

[σ(s, xs, a)δυ(da)dBs − σ(s, xs, a)M(da, ds)]

∣∣∣∣∣
2

≤ CkE
∫ r+θ

r

[
|σ(s, xs, υ)|2 ds+

∫
A

|σ(s, xs, a)|2 qs(da)ds

]
≤ Ck

∫ r+θ

r

[
1 + E

(
sup

0≤t≤T
|x(t)|2

)]
ds ≤ Ck(1 + α)θ

E(I3) ≤ CkE
[∫ t

0

∫
A

|bx(s, xs, a)|2 |x1(s)|2 |qs(da)|2 ds+

∫ t

0

∫
A

|σx(s, xs, a)| |x1(s)|2 qs(da)ds

]
≤ CkE

(∫ t

0

|x1(s)|2 ds
)
≤ Ck

∫ t

0

E |x1(s)|2 ds

Then, we have

E |x1(s)|2 ≤ CkE
(∫ t

0

|x1(s)|2 ds
)

+ Ck(1 + α)θ

By Gronwall Lemma and Burkholder-Davis-Gundy’s inequality, we have

E

[
sup

0≤t≤T
|x1(t)|2

]
≤ Ckθ.

As previously, we have

E
[
|x2(t)|2

]
≤ 6E

[∫ t

0

∫
A

[|bx(s, xs, a)x2(s)qs(da)ds|+ |σx(s, xs, a)x2(s)M(da, ds)|]
]2

+ 3E

[∫ t

0

∫
A

[|bxx(s, xs, a)x1(s)x1(s)| qs(da)ds+ |σxx(s, xs, a)x1(s)x1(s)|M(da, ds)]

]2

+ 6E

∫ t

0

(∫
A

∣∣bx(s, xs, a)x1(s)qθs(da)− bx(s, xs, a)x1(s)qs(da)
∣∣)2

ds

+ 6E

[∫ t

0

∫
A

∣∣σx(s, xs, a)x1(s)Mθ(da, ds)− σx(s, xs, a)x1(s)M(da, ds)
∣∣]2

By (15), we have

E
∣∣x2(s)2

∣∣ ≤ Ck(2

∫ t

0

E |x2(s)|2 ds+ 4

∫ r+θ

r

θds+

∫ t

0

θ2ds

)

≤ Ck

(
2

∫ t

0

E |x2(s)|2 ds+ 4

∫ r+θ

r

θds+

∫ T

0

θ2ds

)

≤ Ck
∫ t

0

E |x2(s)|2 ds+ Ck(4 + T )θ2

Then by Gronwall’s and Burkholder-Davis-Gundy’s inequalities, we obtain the inequalities
(15) and (16).
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As in the proof of Theorem 4.4, page 128, set x3 = x1 + x2, we have

b
(
t, x(t) + x3(t), qθt

)
= b

(
t, x(t), qθt

)
+ bx

(
t, x(t), qθt

)
x3(t)

+

∫ 1

0

∫ 1

0

λbxx
(
t, x(t) + λθx3(t), qθt

)
dλdθx3(t)x3(t)

σ
(
t, x(t) + x3(t), qθt

)
= σ

(
t, x(t), qθt

)
+ σx

(
t, x(t), qθt

)
x3(t)

+

∫ 1

0

∫ 1

0

λσxx
(
t, x(t) + λθx3(t), qθt

)
dλdθx3(t)x3(t)

than, we can write∫ t

0

b
(
s, x(s) + x3(s), qθs

)
ds+

∫ t

0

∫
A

σ (s, x(s) + x3(s), a)Mθ(da, ds)

= x(t) + x1(t) + x2(t)− x (0) +

∫ t

0

Bθ(s)ds+ Λθ(t)

where

Bθ(s) =
1

2
bxx (s, x(s), qs) (x2(s)x2(s) + 2x1(s)x2(s))

+
(
bx
(
s, x(s), qθs

)
− bx (s, x(s), qs)

)
x2(s)

+
∫ 1

0

∫ 1

0

[
λbxx

(
s, x(s) + λθ (x1(s) + x2(s)) , qθt

)]
dλdθ (x1(s) + x2(s)) (x1(s) + x2(s))

−
∫ 1

0

∫ 1

0
[bxx (s, x(s), qs)] dλdθ (x1(s) + x2(s)) (x1(s) + x2(s))

Λθ(t) =
1

2

∫ t
0

∫
A
σxx (s, x(s), a) (x2(s)x2(s) + 2x1(s)x2(s))M(da, ds)

+
∫ t

0

∫
A
σx (s, x(s), a)x2(s)Mθ(da, ds)−

∫ t
0

∫
A
σx (s, x(s), a)x2(s)M(da, ds)

+
∫ t

0

∫
A

∫ 1

0

∫ 1

0

[
λσxx (s, x(s) + λθ (x1(s) + x2(s)) , a) dλdθ (x1(s) + x2(s)) (x1(s) + x2(s))

Mθ(da, ds)
]
−
∫ t

0

∫
A

∫ 1

0

∫ 1

0
[σxx (s, x(s), a) dλdθ (x1(s) + x2(s)) (x1(s) + x2(s))M(da, ds)]

and we can drive

xθ(t)− x(t)− x1(t)− x2(t) =

∫ t

0

∫
A

[b (s, xθ(s), a)− b (s, x(s) + x1(s) + x2(s), a)] qθ(da)ds

+

∫ t

0

∫
A

[σ (s, xθ(s), a)− σ (s, x(s) + x1(s) + x2(s), a)]Mθ(da, ds)

+

∫ t

0

Bθ(s)ds+ Λθ(t)

The rest of the proof is similar to that of Theorem 4.4 in Yong and Zhou (1999) and is based
on a fine estimate of linear SDEs.

We want now to derive a variational inequality which is become from the Taylor expansion
and the cost functional with respect to the perturpation of the control variable.

Since q is an optimal relaxed control and from Lemma 2 we can derive.

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



S. Labed and B. Mezerdi, Afrika Statistika, Vol. 12(1), 2017, pages 1095–1116. The maximum
principle in optimal control of systems driven by martingale measures. 1108

Lemma 3. We assume (H1-H3), then the following estimate holds

0 ≤ J
(
qθ
)
− J (q) ≤ E

[∫ T

0

(h (t, x(t), qθ(t))− h (t, x(t), q(t))) dt

]

+E

[
gx(x(T )) (x1(T ) + x2(T )) +

∫ T

0

hx (t, xt, q(t)) (x1(t) + x2(t)) dt

]

+ 1
2E

[
gxx(x(T ))x1(T )x1(T ) +

∫ T

0

hxx (t, x(t), q(t))x1(t)x1(t)dt

]
+ o (θ)

(17)

Since (x, q) is optimal, we have

0 ≤ E

[∫ T

0

(h (t, xθ(t), qθ(t))− h (t, x(t), q(t))) dt

]
+ E [g(xθ(T ))− g(x(T ))]

we use (12) to get

0 ≤ E
∫ T

0
[h (t, x(t) + x1(t) + x2(t), qθ(t))− h (t, x(t), q(t))] dt

+E [g(x(T ) + x1(T ) + x2(T ))− g(x(T ))] + o (θ)
(18)

Then by Taylor expansion at the point x for h (t, x+ x1 + x2, qθ) and g (x+ x1 + x2), we
have by (15), (16) and (18) can be rewritten as

0 ≤ o (θ) + α(T ) + E
∫ T

0
[h (t, x(t), qθ(t))− h (t, x(t), q(t))] dt

+E
∫ T

0
[hx (t, x(t), q(t)) (x1(t) + x2(t))] dt

+ 1
2E
∫ T

0
[hxx (t, x(t), q(t))x1(t)x1(t)] dt

+E [gx(x(T ) (x1(T ) + x2(T ))] +
1

2E [gxx(x(T ))x1(T )x1(T )]

(19)

where α(T ) is given by

α(T ) = E

∫ T

0

[hx (t, x(t), qθ(t))− hx (t, x(t), q(t))] (x1(t) + x2(t)) dt

+
1

2
E

∫ T

0

hxx (t, x(t), q(t)) (x1(t)x2(t) + x2(t)x1(t) + x2(t)x2(t)) dt

+
1

2
E

∫ T

0

[(hxx (t, x(t), qθ(t))− hxx (t, x(t), q(t))) (x1(t) + x2(t)) (x1(t) + x2(t))] dt

+
1

2
E [gxx(x(T )) (x1(T )x2(T ) + x2(T )x1(T ) + x2(T )x2(T ))]

from the definition of qθ and the assumption (H1), using (15), (16) and the Cauchy Schwartz
inequality, it holds that

α(T ) ≤ o (θ)

We use this relation and (19) to complete the proof.
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3.2. The adjoint processes and the variational inequality

In this subsection, we will introduce the first and second order adjoint processes involved in
the stochastic maximum principle and the associated stochastic Hamiltonian system. These
are obtained from the first and second variational equations (13) and (14) as well as (17).

3.2.1. The first order terms

The first order estimation calculate the first order derivatives in (17). The linear term in (13)
and (14) may treated in the following way (see Bensoussan, 1982). Let φ1 be the fundamental
solution of the linear equation dφ1(t) =

∫
A

bx(t, x(t), a)φ1(t)qt(da)dt+

∫
A

σx(t, x(t), a)φ1(t)M(da, dt)

φ1(0) = Id

This equation is linear with bounded coefficients, then it have a strong unique solution.
Moreover φ1 is invertible and it inverse ψ1 satisfies

dψ1(t) =

∫
A

[ψ1(t)σx(t, x(t), a)σx(t, x(t), a)− ψ1(t)bx(t, x(t), a)] qt(da)dt

−
∫
A

ψ1(t)σx(t, x(t), a)M(da, dt)

ψ1(0) = Id.

φ1 and ψ1 satisfy

E

[
sup
t∈[0,T ]

|φ1 (t)|2
]

+ E

[
sup
t∈[0,T ]

|ψ1 (t)|2
]
<∞.

We introduce the following processes

η1(t) = ψ1(t) (x1(t) + x2(t)) ,

and

X1 = φ1(T )gx (x(T )) +

∫ T

0

φ1(s)

∫
A

hx(s, x(s), a)qs(da)ds

ζ1(t) = E (X1/Ft)−
∫ t

0

φ1(s)

∫
A

hx(s, x(s), a)qs(da)ds

then

E [gx(x(T )) (x1(T ) + x2(T ))] = E [φ1(T )gx (x(T )) η1(T )] = E [η1(T )ζ1(T )]

from the orthogonal martingale measure representation (Proposition 2) we have

E (X1/Ft) = E (X1) +

∫ t

0

∫
A

G1(a, s)M (da, ds) + Lt,

where L is an L2−martingale with
〈
L,
∫ .

0

∫
E
b(a, s)M(da, ds)

〉
= 0 for every b ∈ PM and

such that E [〈Lt〉] <∞.
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Applied Ito’s formula to η1(t)ζ1(t) and we put

p1(t) = ψ∗1(t)ζ1(t), (20)

Q1(t) =

∫
A

ψ∗1(t)G1(t, a)qt(da)−
∫
A

σ∗x(t, x(t), a)qt(da))p1(t) (21)

moreover p1(t), Q1(t) satisfy

E

[
sup

0≤t≤T
|p1(t)|2 + sup

0≤t≤T
|Q1(t)|2

]
<∞,

the process p1 is called the first adjoint process.

We can derive

E [gx(x(T )) (x1(T ) + x2(T ))] = E

∫ T

0

∫
A

p1(t)
(
b(t, x(t), a)qθt (da)− b(t, x(t), a)qt(da)

)
dt

+ E

∫ T

0

∫
A

[
Q1(t)

(
σ(t, x(t), a)qθt (da)− σ(t, x(t), a)qt(da)

)]
dt

+
1

2
E

∫ T

0

∫
A

p1(t)bxx(t, x(t), a)x1(t)x1(t)qt(da)dt

+
1

2
E

∫ T

0

∫
A

Q1(t)σxx(t, x(t), a)x1(t)x1(t)qt(da)dt

− E
∫ T

0

∫
A

hx(t, x(t), a) (x1(t) + x2(t)) qt(da)dt

+ E

∫ T

0

∫
A

p1(t)
[(
bx(t, x(t), a)qθt (da)− bx(t, x(t), a)qt(da)

)]
x1(t)dt

+ E

∫ T

0

∫
A

[
Q1(t)

(
σx(t, x(t), a)qθt (da)− σx(t, x(t), a)qt(da)

)]
x1(t)dt

− E
∫ T

0

∫
A

Q1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)] δν(da)1E(t)dt

+ E

∫ T

0

∫
A

ψ1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)] δν(da)1E(t)d 〈Bt, Lt〉

+ o (θ) .

To derive our variational inequality, we need to prove the following estimates in the last
equality

E

∫ T

0

∫
A

p1(t)
[(
bx(t, x(t), a)qθt (da)− bx(t, x(t), a)qt(da)

)]
x1(t)dt ≤ Cθ,

E

∫ T

0

∫
A

[
Q1(t)

(
σx(t, x(t), a)qθt (da)− σx(t, x(t), a)qt(da)

)]
x1(t)dt ≤ Cθ,

E

∫ T

0

∫
A

Q1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)] δν(da)1E(t)dt ≤ Cθ
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and

E

∫ T

0

∫
A

ψ1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)] δν(da)1E(t)d 〈Bt, Lt〉 ≤ Cθ.

By (15) and applying Young’s inequality, the first inequality becomes

E

∫ r+θ

r

p1(t) [bx(t, x(t), ν)− bx(t, x(t), q)]x1(t)dt

≤ CkE
∫ r+θ

r

[
[p1(t)x1(t)]

2
+ [bx(t, x(t), ν)− bx(t, x(t), q)]

2
]
dt

≤ Ck

(
θ + E

∫ r+θ

r

[
1 + sup

0≤t≤T
|x(t)|2

]
dt

)
≤ Ckθ

For the second and the third estimates, we use the same argument as in the first one. For
the fourth term we use Kunita-Watanabe inequality

E

[∫ r+θ

r

∫
A

ψ1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)] δν(da)d 〈Bt, Lt〉

]
≤

E

(∫ r+θ

r

∫
A

ψ2
1(t) [σ(t, x(t), a) + σx(t, x(t), a)x1(t)]

2
δν(da)dt

)1/2

×

E

(∫ r+θ

r

∫
A

δν(da)d 〈Lt, Lt〉

)1/2

≤ CkE

(∫ r+θ

r

ψ2
1(t)

[
σ2(t, x(t), ν) + σ2

x(t, x(t), ν)x2
1(t)

]
dt

)1/2

E
(
〈L,L〉r+θ − 〈L,L〉r

)1/2
Using the same arguments the inequality holds since E [〈Lt〉] <∞.

Let us now define the Hamiltonian

H (t, x, q, p,Q) =

∫
A

h (t, x, a) q(da) + p

∫
A

b (t, x, a) q(da) +Q

∫
A

σ (t, x, a) q(da),

Therefore, we use the value of E [gx(x(T )) (x1(T ) + x2(T ))] and the Hamiltonian definition,
(17) can be rewritten

0 ≤ J
(
qθ
)
− J (q) (22)

≤ E
∫ T

0

∫
A

[
H (t, x(t), a, p1(t), Q1(t)) qθt (da)−H (t, x(t), a, p1(t), Q1(t)) qt(da)

]
dt

+
1

2
E

∫ T

0

∫
A

x1(t)Hxx(x(t), a, p1(t), Q1(t))x∗1(t)qt(da)dt+
1

2
E [x1(T )gxx(x(T ))x∗1(T )] + o (θ) .
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3.2.2. The second order terms

The second order estimation concerns the second order derivatives in (22). As in Peng (1990),
let Z = x1x

∗
1. By Itô’s formula we obtain

dZ(t) =

∫
A

[Z(t)b∗x(t, x(t), a) + bx(t, x(t), a)Z(t)] qt(da)dt+ Bθ (t, x(t), a)

+

∫
A

σx(t, x(t), a)Z(t)σ∗x(t, x(t), a)qt(da)dt+ Aθ (t, x(t), a) dt

+

∫
A

(Z(t)σ∗x(t, x(t), a) + σx(t, x(t), a)Z(t))M (da, dt)− B (t, x(t), a) . (23)

For simplicity of notations, we denote by

f (t) =

∫
A

f (t, x(t), a) qt(da), fθ (t) =

∫
A

f (t, x(t), a) qθt (da)

in Aθ and in Bθ, B by

fdM =

∫
A

f (t, x(t), a)M (da, dt) , fθdM
θ =

∫
A

f (t, x(t), a)Mθ (da, dt)

f stands for b, σ and their first derivatives.

Then we have

Aθ (t) qt(da) = x1(t) (b∗θ(t)− b∗(t)) +
(
bθ(t)− b(t)

)
x∗1(t)− σx(t)x1(t)σ∗(t)− σ(t)x∗1(t)σ∗x(t)

+ [(σx(t)x1(t)σ∗θ(t) + σθ(t)x
∗
1(t)σ∗x(t))− (σθ(t)σ

∗(t) + σ(t)σ∗θ(t))] 1EC (t)

+ σθ(t)σ
∗
θ(t) + σ(t)σ∗(t),

Bθ (t) = σθ(t)x
∗
1(t) + x1(t)σ∗θ(t)dMθ, B (t) = σ(t)x∗1(t) + x1(t)σ∗(t)dM

we remark that

E

∫ T

0

Aθ (t) dt ≤ E
∫ T

0

[(σθ(t)σ
∗
θ(t) + σ(t)σ∗(t))− (σθ(t)σ

∗(t) + σ(t)σ∗θ(t)) 1EC (t)] dt+ ◦ (θ)

E

∫ T

0

Bθ (t) dMθ ≤ ◦ (θ) and E

∫ T

0

Bθ (t) dM ≤ ◦ (θ) .

As in the first order estimation, we consider now the following symmetric matrix-valued
linear equation associate to (23)
dφ2(t) =

∫
A

[φ2(t)b∗x(t, x(t), a) + bx(t, x(t), a)φ2(t) + σx(t, x(t), a)φ2(t)σ∗x(t, x(t), a)] qt(da)dt

+

∫
A

(φ2(t)σ∗x(t, x(t), a) + σx(t, x(t), a)φ2(t))M(da, dt)

φ2(0) = Id
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This equation is linear with bounded coefficients, hence it admit a unique strong solution.
Moreover φ2 is invertible and it inverse ψ2 satisfies

dψ2(t) =

∫
A

[
(σx(t, x(t), a) + σ∗x(t, x(t), a))

2
ψ2(t)− ψ2(t)b∗x(t, x(t), a)

]
qt(da)dt

−
∫
A

[bx(t, x(t), a)ψ2(t) + σx(t, x(t), a)ψ2(t)σ∗x(t, x(t), a)] qt(da)dt

− [ψ2(t)σ∗x(t, x(t), a) + σx(t, x(t), a)ψ2(t)]M (da, dt)
ψ2(0) = Id

It is easy to see that φ2 and ψ2 satisfy

E

[
sup
t∈[0,T ]

|φ2 (t)|2
]

+ E

[
sup
t∈[0,T ]

|ψ2 (t)|2
]
<∞.

Using the same arguments as for the first order terms, we introduce the processes η2(t) =
ψ2(t)Z(t) and

X2 = φ∗2(T )gxx (x(T )) +

∫ T

0

φ∗2(s)

∫
A

Hxx(s, x(s), a)qs(da)ds

ζ2(t) = E (X2/Ft)−
∫ t

0

φ∗2(s)

∫
A

Hxx(s, x(s), a)qs(da)ds

We remark from these equality that

E [x1(T )gxx(x(T ))x∗1(T )] = E [φ∗2(T )gxx (x(T )) η2(T )] = E [η2(T )ζ2(T )]

The orthogonal martingale measure representation (Proposition 2) give us

E (X2/Ft) = E (X2) +

∫ t

0

∫
A

G2(a, s)M(da, ds) + L′t (24)

where L′ is an L2−martingale with
〈
L′,
∫ .

0

∫
E
b(a, s)M(da, ds)

〉
= 0 for every b ∈ PM and

such that E [〈L′t〉] <∞.

Apply Itô’s formula to η2(t)ζ2(t), to obtain

E [x1(T )gxx(x(T ))x∗1(T )] = −E
∫ T

0

∫
A

x1(t)Hxx(t, x(t), a)x∗1(t)qt(da)dt+ (25)

E

∫ T

0

∫
A

tr
[(
σ(t, x(t), a)qθt (da)− σ(t, x(t), a)qt(da)

)∗
p2(t) ×(

σ(t, x(t), a)qθt (da)− σ(t, x(t), a)qt(da)
)]
dt+ o (θ)

where

p2(t) = ψ∗2(t)ζ2(t) (26)

the process p2 is called the second adjoint process.
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3.2.3. The adjoint equations and the maximum principle

By applying Ito’s formula to the adjoint processes p1 in (20) and p2 in (26), we obtain the
first and second order adjoint equations, which have the forms −dp1(t) =

∫
A

[b∗x (t, x(t), a) p1(t) + σ∗x (t, x(t), a)Q1(t) + hx (t, x(t), a)] qt(da)dt
−
∫
A
Q1(t)M(da, dt)− ψ∗1(t)dLt

p1(T ) = gx (x(T )) .
(27)

with values in Rd, where L is an L2−martingale with
〈
L,
∫ .

0

∫
E
b(a, s)M(da, ds)

〉
= 0 for

every b ∈ PM , Q1 is given by (21) with values in Rd×k. The adjoint equation that p1(.) sat-
isfies is a linear backward stochastic differential equation. This BSDE has a unique adapted
solution.

Using Itô’s formula it is easy to see that p2 is matrix valued and satisfies

−dp2(t) =
∫
A

[b∗x (t, x(t), a) p2(t) + p2(t)bx (t, x(t), a) +

σ∗x (t, x(t), a)Q2(t) +Q2(t)σx (t, x(t), a)] qt(da)dt

+
∫
A

[σ∗x (t, x(t), a) p2(t)σx (t, x(t), a) +Hxx (x(t), a, p1(t), Q1(t))] qt(da)dt

−
∫
A
Q2(t)M(da, dt)− ψ∗2(t)dL′t

p2(T ) = gxx (x(T )) ,
(28)

where L′ is given by (24) and Q2 is given by

Q2(t) =

∫
A

[ψ∗2(t)G2(t, a)− p2(t)σx (t, x(t), a) + σ∗x(t, x(t), a)p2(t)] qt(da) (29)

Note that p2(.) is also a backward stochastic differential equation with matrix-valued un-
knowns. This BSDE have a unique adapted solution.

Remark 3. Hxx (x(t), qt, p(t), Q(t)) is the second derivative of the Hamiltonian H at
x and it is given by Hxx (x(t), qt, p(t), Q(t)) = hxx (t, x(t), qt) + p(t)bxx (t, x(t), qt) +
Q(t)σxx (t, x(t), qt) .

We are ready now to state the main result of this paper.

Theorem 3 (The stochastic maximum principle). Let q be an optimal control mini-
mizing the cost J over R and x denotes the corresponding optimal trajectory. Then there are
two unique couples of adapted processes (p1, Q1) and (p2, Q2) which are respectively solutions
of the backward stochastic differential equations (27) and (28) such that

0 ≤ H (t, x(t), ν, p1(t), Q1(t))−H (t, x(t), qt, p1(t), Q1(t))
+ 1

2 tr
[
(σ(t, x(t), ν)− σ(t, x(t), qt))

∗
p2(t) (σ(t, x(t), ν)− σ(t, x(t), qt))

] (30)

υ is an arbitrary Fr-measurable random variable with values in U , such that

sup
w∈Ω
|υ(w)| <∞.
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Proof. From (25) and (22) can be rewritten

0 ≤ J
(
qθ
)
− J (q)

≤ E
∫ T

0

∫
A

[
H (t, x(t), a, p1(t), Q1(t)) qθt (da)−H (t, x(t), a, p1(t), Q1(t)) qt(da)

]
dt+ ◦ (θ)

+ 1
2E

∫ T

0

∫
A

tr
[(
σθ(t, x(t), a)qθt (da)− σ(t, x(t), a)qt(da)

)∗
p2(t) ×(

σθ(t, x(t), a)qθt (da)− σ(t, x(t), a)qt(da)
)]
dt.

This equation is the variational inequation of the second order.
We use the definition of qθ, the last variational inequality becomes

0 ≤ 1
θ

(
J
(
qθ
)
− J (q)

)
≤ 1

θE

∫ r+θ

r

[H (t, x(t), ν, p1(t), Q1(t))−H (t, x(t), qt, p1(t), Q1(t))] dt+ o (θ)

+ 1
2θE

∫ r+θ

r

tr
[
(σ(t, x(t), ν)− σ (t, x(t), qt))

∗
p2(t) (σ(t, x(t), ν)− σ(t, x(t), qt))

]
dt,

Then, the desired result follows by letting θ going to zero.
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the control of degenerate diffusions: existence of an optimal control. Stochastic. 20(3),
169-219.

Fleming, W.H., 1976. Generalized solutions in optimal stochastic control, Differential Games
and Control Theory. II Proceedings of 2nd Conference, University of Rhode Island,
Kingston, RI.

Haussmann, U.G., 1986. Existence of optimal Markovian controls for degenerate diffu-
sions. Stochastic Differential Systems, Lecture Notes in Control and Inform. Sci., Vol.
78, Springer, Berlin, 171-186.

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



S. Labed and B. Mezerdi, Afrika Statistika, Vol. 12(1), 2017, pages 1095–1116. The maximum
principle in optimal control of systems driven by martingale measures. 1116

Haussmann U.G. and Lepeltier, J.-P., 1990. On the existence of optimal controls. SIAM J.
on Cont. Optim. 28(4), 851-902.
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