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Abstract. The main purpose of this paper is to use the trimmed L-moments method for
the introduction of a new estimator of multi-parametric copulas in the case where the mean
does not exist. The consistency and asymptotic normality of this estimator is established.
An extended simulation study shows the performance of the new estimator is carried.

Résumé. Le but principal de ce papier est d’utiliser la méthode des trimmed L-moments
pour l'introduction d’'un nouvel estimateur des copules multi-paramétriques dans le cas ou
la moyenne n’existe pas. La consistance et la normalité asymptotique de cet estimateur sont
établies. Une étude de simulation étendue, qui montre la performance du nouvel estimateur,
est menée.

Key words: Copulas; Dependence; Bivariate L-moments; Trimmed L-moments; Trimmed
L-comoments.
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1. Introduction and motivation

Let (X1, X2) be a 2-dimensional vector with joint distribution function (df) H(z1,z2) and
margins F(x;), j = 1,2. Under the Theorem of Sklar (1959) we can link F" and the F}’s by

a function C' called copula, which is defined from [0, 1]* to [0, 1] as follows
H(zy,22) = C(Fi(11), Fa(22)),

where the Copula C is the joint df with uniform margins U = (Ui, Uz) with U; = F}(X;),
defined by
Clur,up) = H ((Fy (), Fy ' (u2))
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where F]fl(s) =inf {& : F;(z) > s} is the generalized inverse function of Fj, j =1, 2.

The copula function also describes and models the dependence structure of a multivariate
data set. It characterizes many properties as the symmetry and the invariance transform.
The importance of these two properties appears in measuring of association such as Kendall’s
tau and Spearman’s rho written in terms of copula, by

T = 4/ C’(ul,u2)dC(u1,u2) — 1,
[0,1)

p= 12/ uruedC(ug, ug) — 3. (1)
[0.1]?

Many parametric copula families have been introduced and applied in different fields such
as insurance, medical science, hydrology and survival analysis (see, e.g., Frees and Valdez,
1998, Cui and Sun, 2004 and Genest and Favre, 2007). Among these families, we have the
Archimedean copula class which has been named by Ling (1965), they have found many suc-
cessful applications like the actuarial and survey actuarial applications, in finance (Clayton,
1978, Oakes, 1982, Cook and Johnson, 1981). This class of copulas has a nice properties, as:
the ease with which it can be constructed; the great variety of families of copulas which it
contains (see, Nelsen, 2006, p.109). A bivariate Archimedean copula is defined by

Clur,uz) = ¢~ (p(u1) + @(uz)),

where ¢ is a positive continuous function, strictly decreasing on [0, 1] called generator with

pseudo inverse ¢~ 1.

Many families of Archimedean copulas are cited in (Nelsen, 2006, Table 4.1, p.116-p119)
such as Gumbel copula, defined by

Ci(uy,uz) = exp(— [(=Inuy)” + (= Inuy)” 1/5), B>1, (2)

with generator
©(s) = (—Ins)® and ¢! (s) = exp (75)1/04 .
Also, a very popular applied in engineering and medical fields called the FGM copulas (see
Blischke and Prabhakar, 2000). For a dependence parameter o with || <1 it is defined by
Colur,ug) = urug + auyugiiy iz, (3)
where 4; = 1—u;,j = 1,2, Johnson et al. (1979) introduced the (r—1)-iterated FGM family
with r-dimensional parameter o = (ayq, ..., ;) as

Co(ug,us) = ugug + Zaj(uluQ)[j/2]+1(a1a2)[j/2+1/2] (4)

j=1

where [t] denotes the integer part of ¢, for r = 2, we obtain one iterated FGM copula with
two parameters, given by

Cayas (U1, u2) = wrua(l + a1t + cougusti Uz), (5)
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and the range of parameters (a1, ) is given by the region
1
R = {(al,ag), o] < 1,01 +as > -1, a0 < 3 3—a;+(9—6a; — 301%)1/2] } .

Suppose that the parametric copula C belongs to a class C where C : = {Cy : 8 € O} and O
is an open subset of R" for > 1. The problem of estimating € under this assumption has
already been the object of much work, beginning with classical methods: fully maximum
likelihood (ML), Pseudo maximum likelihood (PML) and Inference function of margins
(IFM) (see Genest, 1987, Joe, 2005). (7, p)-inversion methods Oakes (1982), Genest et al.
(1995). Minimum distance (MD) (see Tsukahara, 2005, Biau and Wegkamp, 2005) which is
based on: the empirical copula process, Kendall’s dependence function which is proposed by
Genest et al. (2006) and Rosenblatt’s probability integral transform proposed by Rosenblatt
(1952). Many comparative studies between these methods were discussed in the literature
such as in Kim et al., 2007) and Gregor (2009). Semi parametric estimation methods for
multi-parametric copulas were also discussed by Brahimi and Necir (2012), Benatia et al.
(2011) and Brahimi et al. (2014) based on moments (CM) and copula L-moments (CLM).
They noted that these methods are quick and dos not use the density function and therefore
no boundary problems arise. In a comparative simulation study, they concluded that the
PML and the CM based estimation perform better than the(r, p)-inversion method and the
main feature of CM and CLM methods is that they provide estimators with explicit forms.

The aim of this paper is to estimate the dependence and the marginals parameters using
a new representation of TL-moments. This method is analogous to bivariate L-comoment
method where the largest value is removed from the conceptual sample to study its influence
on bias and root mean squared error (RMSE).

The outline of the paper is as follows. In Section 2 we present a brief introduction of L-
moments and L-comoments, and we discuss the representation of bivariate L-moments in
terms of copula and by analogy we presents bivariate Trimmed L-moments. Section 3 conse-
crated to the parameter estimation procedures, and an illustrative examples with simulation
study. Consistency and asymptotic normality is relegated to Section 4.

2. Bivariate Trimmed L-comoments

The L-moments play an important role to describe the characteristics of a probability distri-
bution as: location, scale and shape. They are related to expected values of order statistics
and was first introduced and defined by Hosking (1990). For Y3, ...Y;. , denoting the ordered
observations for a sample of size r from a univariate distribution, the rth L-moment A, is
defined as

/\7“ = % z_:(_l)k <T ; ! ) E(K’—k:r)a (6)
k=0
where |
E(Yr—k:r) = m / Fyl(w)u™ 11 — w)*du. (7)
[

0,1]
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By Substitution into (6) of a standard expression for the expected value of an order statistic
(7) yields the follow representation of L-moments

Ar = Fyl(w)Pr_q(u)dFu, (8)
(0,1]

where P,.(u) := Y p,puf, with p,x = (=1)"*(r + k)!/[(k*)!(r — k)!], presents the shifted
k=0

Legendre polynomials. The orthogonality of P,_; and using Py = 1 leads to a representation
of (8) in terms of covariance

_ E[Y], r=1
Ar = { Cov(Y, P (Fy(y)),  r>2 ©)

Hosking (2007) showed that L-moments have the advantage that they exist whenever the
mean of the distribution exists, even though some higher moments may not exist, and are
relatively robust to the effects of outliers. However, there are some applications for which
these advantages are insufficient. Some kinds of data, such as loss distributions in insurance
and traffic volumes on computer networks, involve distributions with very heavy tails, such
that there may be doubts about whether even the first moment exists. For these applications,
it would be useful to have measures analogous to L-moments that remain meaningful for
distributions that have no mean. This measure is the TL-moments, witch is defined by Elamir
and Seheult (2003) as a generalization of L-moments where they replace the expected value
E[Y,—g:r] by E[Y;tt;, —kirtty+t,]- Thus TL-moments noted, Aﬁfl’t?) are given as follows

r—1

1 (r—1)!
(t,t)f,E:, k__ A\ ) Ry _
AR = rk:o( 1) k:!(r A 1>! [ T+t1—kir+t1+t2]a7‘*1727--“ (10)

where t; and t, are positive integers. The case t; = t; = 0 yields the original L-moments.
An analogous result for trimmed L-moments presented by Hosking (2007), by using shifted
Jacobi polynomials, so (10) may be written as

A = [ R P (1)
[0,1]
where
r—1
* — D)(r +t +t2)! ke
prtytz) _ _1)k (r rbti—k—1gq _ 2tk
-1 () kz:;)( e ey Ty e Ty T {1 =™

also shifted Jacobi polynomials are orthogonal on [0, 1] with weight function u' (1 — u)*2.
Forr=1,2,3 and t; = 0,t2 = 1, we get

Py () = 2(1 —u),

POV () = (3/2)(4u — 3u® — 1),

PO () = 3(710113 +18u? — Qu + 1),

. 5
POV () = (350" + 80u® — 60u? + 16u — 1),
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and the first TL-moments are given as follows

)\50,1) =2 /[0 . Fyt(w)(1 — u)du,

M =@3/2) [ Fy(w)(du - 3u® — 1du (12)
(0,1]

N0V = 4y3) [ B (1004 1802 90+ 1
[0,1]

The multivariate L-moments are discussed by (Serfling and Xiao, 2007) and a new repre-
sentation in terms of copula are given by Brahimi et al. (2014). We present in the following
bivariate case and all results are considered for bivariate random variables.

Let (X(1)7X(2)) have a joint distribution function F' and marginals Fy, Fy, with finite
mean and L-moment sequences {/\7(})} and {)\52)} . Using the covariance representation for
L-moments in (9) the 7th L-comoment of X with respect to X(? is defined by

Arirg) = Cov(X W, P (Fp(X @) (13)
and by the same the 7th L-comoment of X ) with respect to X(*) is defined by

Arpzr] = Cov(X P P (Fy (X D).

For X = X yields the L-moments ), and when X, X(2) are independent, A, 1] = 0,
all » > 2. Brahimi et al. (2014) showed that if F’ belongs to a parametric family of dfs
then the rth L-comoment A,[15) will depend on the parameters relies the marginals and
the dependence structure between X and X(®), they gave a new representation of L-
comoments, depend only on the estimation of parameter dependence, so they defined the
L-comoments in terms of marginals distribution function F(XU)),j = 1,2. Then the rth
L-comoments 6,12 of F/(X (M) with respect to X is given as follows

Sraz) = Cou(F(XW), P(F(X®)),  r=1,2,...
and the rth L-comoments d,31) of F(X(z)) with respect to X1 is given as follows
Orpp1) = Cov(F(X?), P(Fy(XM)),  r=1,2,...

This representation leads to the following representation in terms of copula C, according
(Theorem 3.1 Brahimi et al., 2014) where

Opf12) = / (C(u1,u2) — urug)dus Pr(u2), r=1,2,.. (14)
12

As example, the first bivariate copula L-comoments of X () with respect to X® for copula
Cp with three parameters (01,602, 03) are

1
51[12] =2 /]12 Ce(m,w)dmdw - 5

1
Saz = 6 [ (202 = 1)Colun, ua)durduy — 5 (15)

1
S3p19) = /]12 (60u3 — 60ug 4 12)Cy (w1, us)dug duy — 3
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observe that the A.[19], Aq[21] exist under two conditions as (Serfling and Xiao, 2007) showed:

the first one is the existence of mean (E(X") < c0) and the second the existence of all
L-moments so in that case we can not apply it on distributions with infinite means as
Cauchy distribution where its mean is not finite and the L-moments A, exist for r > 2. In
this paper we propose an alternative modification of (13) in which P,.(F;(X () is replaced

by P20 (P (X)), j = 1,2. Then the representation of )\(ﬁ’f )\gt[;’ltf) defined in the
following proposition.

Proposition 1. Let (X(l)7 X(2)) have a joint distribution function F' belongs to a paramet-
ric family of df ’s and marginals Fy, Fy. Using the covariance representation for TL-moments
in (9), so the rth TL-comoment of XU with respect to X@ is defined by

N = [ B )P (), ). (16)
I

and the rth L-comoment )\ff[;ltz) of F(X®)) with respect to X1 is defined as follows

N = [ B )P ) dC ), a7)
]12
Calculating the first TL-comoments for t; = 0,t; = 1, we obtain
A =2 [ P ) - 200, w),
I
A“gl;] = (3/2)/ 1wy ) (dug — 3ud — 1)dC (uy, us) (18)

NI = 473) [ P ) (100 + 1808 ~ 005 + 10, )

3. Illustrative example and simulation study

As an illustrative example, we choose the FGM copula (3) and (4) and Archimedean copulas
(Gumbel copula given in (2)) with two different marginals: Cauchy and Pareto laws.

3.1. FGM-copulas with Cauchy marginals
Let X,Y two random variables with two parameters Cauchy distribution p and o, then their

distribution functions are defined by

1 — 1 1 — 1
F:lu,zn (I) = ; arctan <x‘ul> + 57 F‘,u2702 (y) = ; arctan <w> + 57

01 02

with quantile function

twny = ovton (= (- 1)) @ = st (= o 1))

then we have a joint distribution function with three parameters as follows

FOMMU(xa y) = COt(Ful,fn (.7;), Fuz,ffz (y))’
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where C,, in that case is the one-parameter FGM copula (3), so by using (18) and (14), we
get the following results

(0,1)

(0,1) _ _
A2 = M1y Afpgq] = M2,
o1 _ 1 o1 _ 1
Aoy = 21701, Agp1] = S4Te02 (19)
1
51[12] = T8a7
the parameters may be written as
(0,1)
>‘1[12] ’\1[21]
4 o
= AL 20
01 377(51[12] 2[12] ( )
gy 2 O
2 371'(51[12] 2[12]
o = 1861[12]

when taking the same marginals and FGM copula with two parameters (5), and using the
same system, we obtain

Mg = (443 x 10701 (00 + @) + 1,

Aot = (443 x 107) 02 (01 + 02) + 112
/\(0 1) 7010 o102

2(12] 24 240
(0,1) TO201 o209
o] = Ty 240 (21)
St = 2L 4 22
2= 98 7 79
_ Q2
do12) = 120"
so, we have an explicit form
(0
=A%~ (4.43 x 107) Ao (180112) = R3110) + 12085(12))
) (7301119) — ™33 02012) + T502119])
(0
p = A%Y — (4.43 x 107))\2[21 (1801 112] — 5 d2(12) + 1200212))
2 — .
e (730119) — ™23 02012) + T50219])
59 1
= /\;?12 / <7T O1[12] — 77552[12] + 7T252[12]) ; (22)

1) 59 1
/\2[21]/ <7T51[12] - 7T552[12} + 7T252[12])

59
a1 = 1851[12] - 352[12]

Qg = 120(52[12].
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3.2. FGM copulas with Pareto marginals

The distribution function of two random variables X,Y of Generalized Pareto law is defined
by

=1 (2 i1 o ()

with quantile functions

Qur) = (1= (1 —u)™), Quz) = (1= (1 —up)).

K1 K2

where v;,k5,j = 1,2 are scale and shape parameters, so, we obtain a joint distribution
function as follows

FOéleJﬂ (SU, y) = CQ(F’Yl,Kl (‘T)’ F’Yzﬁ‘z (y))a

and using the system (18), we get

A1) _ ! n 1 —am
1[12] K1+ 1 3 K2+ 3Kk + 2]

yoy _ (2 ) L —om
121] Ko + 1 3 K3 + 3kg + 2
)\(0,1) _ ani 923
2[12] 4(!{}% _’_3,{/1 +2)7 ( )
/\(0,1) _ an
2207 4(k3 + 3k +2)]
1
51[12] = 1780(.
then, we have
(0,1) 0,1 (0,1)
B 901712) (()‘1[12] + 12)‘;[12%)) - 4/\2[12]
2[12
(0,1) (0,1) (0,1) (0,1)
[ Mg 1200y ) Az T 1225109
ne OO 0D
2[12] 2[12]
0,1 0,1 0,1
901[21) (()‘5[213 + 12)‘(2[21%)) - 4)‘é[21§
Ko = QA(O’U ) (24)
2[21]
(0,1) (0,1) (0,1) (0,1)
o = )‘1[21] + 12/\2[21] /\1[21] + 12)‘2[21]
0= | === _ B G ) G
(0,1) (0,1)
>‘2[2] )‘2[21]
1
51[12] = Ea.
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3.8. Semi parametric TL-moment estimation

Let (XZ-(I), Xi(z)) a random sample of r.v X = (X(l), X(Q)),With empirical marginal distribu-

tion functions
n

Fjn(zy) =nY 1 {Xf” < a:j} j=1,2

i=1
X 1
and F, (X)) = nFj,./(n +1).
The estimation procedure consists of two steps:

1. Estimating the dependence parameters by solving the system

51[12] (017 eeey ol)

= <§1[12]
da[12] (9.17~-,9l) = 01[12) (25)
812 (01, .., 01) = by
where .
iz = 7" Y Fn (X)) P (F5 (X)), (26)
i=1
2. Estimating the marginals parameters by substitution the value of 6 in terms of &[12] in
;\it[igi) ,where
\ ; — 1 * * 2
Mgt =n 13 xR (B, (X)) (27)
i=1

Such example, for FGM copula with Cauchy margins, we have

~ 1ok o qo1) 4
o= 1851[12]7M1 = Al[lg]aal = §§1[12}
4
3
Remark 1. In some cases, it is not easy to find an explicit formulas for parameters estima-
tion then we solve the system of equation by numerical method.

&= 1851[12]7ﬂ2 = 5\&?&%»62 = 52[12}

3.4. Simulation study

In our simulation study we select many different sample sizes with n = 30,50 and 200 to
assess their influence on the bias and RMSE of the estimators and we choose different values
of dependence parameters, according the degree of dependence calculated by Spearman’s rho
(1), that is consider three cases, corresponding to weak, moderate and strong dependence
Table (1) and marginal’s parameters. For each choice we make N = 1000 repetitions and we
compute the estimation bias and RMSE:

Bi —iﬁ(é-—e) RMSE = ifj(é-—aﬁ .
ZaS_N, i B - N 7 .

=1 =1

We can summarize the procedure of simulation as follows:
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1. Determine the value of the parameters, sample sizes n and the number of simulated
Samples N.
2. Simulate a sample (uq, ...u,) of size n from the copula C,, (FGM and Gumbel copulas).

et

Compute the parameter estimates by solving the system (22, 24).

4. Compare the parameter estimates with the true parameters (presented in Tables 2 and
3) by computing the biases and RMSE.

FGM Gumbel

Sparman p a1 2 p B
0.001 0.1 0 0.01 1.01
0.208 0.4 0.9 0.5 1.6
0.427 0.941 1.445 0.88 3.45

Table 1. True parameters of FGM copula and Gumbel copula used for the simulation study.

p = 0.001
n ar =0.1 az =0 w=-1 c=0.5
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
30 1.600 0.620 1.005 0.552 —0.820 0.510 0.340 0.200
50 1.320 0.430 0.956 0.462 0.610 0.420 0.250 0.105
200 0.507 0.306 0.596 0.382 0.412 0.201 0.210 0.100
p =0.208
n ar =04 az =09 w=-1 c=0.5
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
30 0.650 0.340 0.493 0.330 0.613 0.312 0.260 0.201
50 0.520 0.250 0.402 0.250 0.512 0.212 0.120  0.098
200 0.430 0.200 0.360 0.335 0.200 0.100 0.101 0.055
p=0.941
n ar = 0.941 ap = 1.445 w=-1 oc=0.5
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
30 0.420 0.301 —1.111  0.420 —0.111 0.076 0.200 0.121
50 0.340 0.210 —0.487 0.357 —0.0780 0.069 0.192 0.098
200 0.201 0.140 —0.250 0.220 0.065 0.032 0.079 0.052

Table 2. Bias, RMSE of the dependence and margins estimator of FGM copula with Cauchy

margins.

4. Consistency and asymptotic normality

To study the asymptotic normality of the TL-moments estimator noted

F ) PRSP (uy) = M) i = 1,2,i # 4.

Ky (u;0) =

éCTL, we put

(28)
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p=0.01
n p=1.01 v=1.5 K=3
Bias RMSE Bias RMSE Bias RMSE
30 —0.339 0.276 0.760  0.520 0.811  0.650
50 0.205 0.110 0.494 0.320 0.540 0.320
200 —0.167 0.108 0.201 0.212 0.254 0.214
p=05
n B8=1.6 vy=15 k=3
Bias RMSE Bias RMSE Bias RMSE
30 —0.320 0.280 0.420 0.213 0.413 0.376
50 —0.212 0.210 0.315 0.279 0.325 0.301
200 —0.120 0.100 0.202 0.201 0.119 0.260
p =038
n B =3.45 v=1.5 K=3
Bias RMSE Bias RMSE Bias RMSE
30 0.116 0.250 0.210 0.450 0.222 0.310
50 0.109 0.131 0.111  0.320 0.09 0.150
200 0.06 0.110 0.054 0.215 0.06 0.115

Table 3. Bias, RMSE of the dependence and margins estimator of Gumbel copula with
Pareto margins.

and
ICT(U; 0) = (Kl (U; 9)7 ey IC[(U; 9))
Let 6y be the true value of § and assume that the following assumptions [A1]-[.43] hold.
— [Al] 6y € O C R" is the unique zero of the mapping 6 — f[o 1ja K(u; 8)dCOo(u) which is
defined from O to R”

— [A2] K(.;0) is differentiable with respect to 6 such that the Jacobian matrix denoted by
K(w; 0) = [0K,(u;0)/00k],, and K(u; 0) is continuous both in u and 6, and the Euclidean

norm ‘IC(u, 0)‘ is dominated by a dCy—integrable function.
— [A3] The r x r matrix By := f[O,l]d K(u; 0)dC8y(u) is nonsingular.
Theorem 1. Assume that the concordance ordering condition (9) and assumptions [Al] -
[A3] hold. Then, there exists a solution 0T to the system (11) which converges in proba-
bility to 6y. Moreover
V(0°TE = 05) B N0, By Do(By 1)), as n — oo,

where

Dy = var({lCT(ﬁ; 90) + V(ﬁ, 90)} ,

V(l?, 90) = (Vl (19’ 00)7 X VT(297 00))7

with ) o

O(Colu) P ((Co)))

Vst =3 [ i

j=1710,1]

(1{9; < uy} — uy)dCoy(u),
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where ¥ is a (0, 1) —uniform ro.

Remark 2. Following Genest et al. (1995) and Tsukahara (2005) in the case of PML estima-
tor and Z-estimator, one may consistently estimate the asymptotic variance B IDO(Ba 1)T
by the sample variance of the sequence of rv’s

{BID(BT, i=1,m),

where
B; ::/ K(u, éCTL)dCéCTL (u),
[0,1]2
and
D, = K(U;,0°T") + V(U;,6°TF),
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