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Abstract. . In the literature much work has been devoted to the non-parametric estimation
of survival analysis functions. In this work, we focus on the nonparametric estimation of the
conditional hazard rate and the point of its maximum, in the model of right censored data
with presence of functional covariate. We establish the almost uniform complete conver-
gence of these estimators at appropriate rates. This generalizes the almost sure convergence
obtained in the literature.

Résumé. Dans la littérature beaucoup de travaux ont été consacrés à l’estimation non-
paramétrique des fonctions d’analyse de survie. Dans ce travail, nous nous focalisons sur
l’estimation non-paramétrique du taux de hasard conditionnel et du point de son maximum,
dans le modèle des données censurées à droite et en présence de covariable fonctionnelle.
Nous établissons la convergence uniforme presque complète de ces estimateurs à des vitesses
appropriées. Ce qui généralise la convergence presque sûre obtenue dans la littérature.
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1. Introduction

The hazard rate is one of the tools in survival analysis. If T is a random variable associated
with a lifetime (that is, a random variable with values in R+), then the hazard rate λ(t)
(sometimes also called hazard function, failure rate or survival rate) is defined at the point
t as the instantaneous probability that this lifetime ends at the time t. More specifically, it
is defined as follows : for all t ≥ 0,

λ(t) = lim
∆t→0

P(t 6 T < t+ ∆t/T > t)

∆t
=
f(t)

S(t)
, S(t) > 0 (1.1)

where f(t) is the probability density function, S(t) = 1− F (t) the survival function of and
F (t) is the cumulative distribution function of the random variable T .

From a mathematical point of view, the hazard rate may be sufficient to characterize the
distribution of a positive random variable. In applications, it is more often used to ana-
lyze duration data, for example, for medical follow-up, industrial reliability, unemployment
treatment in socio-economic problems or earthquakes study. In the latter case, λ(t) is used
to measure the instantaneous risk of a replica or to predict the maximum risk in the event
of an earthquake. In most situations, the hazard rate depends on one or more covariates.
This is the case, for example, when the event of interest is the survival time of a patient,
which is influenced by the age and/or gender. In many practical situations, we can have an
explanatory variable X and the question becomes how to estimate the conditional hazard
rate λ(t/x) of T given X = x defined for t ≥ 0 by:

λ(t/x) = lim
∆t→0

P(t 6 T < t+ ∆t/T > t,X = x)

∆t
, (1.2)

which is also naturally written from the conditional density function f(./x) and the condi-
tional distribution function F (./x) or the conditional survival function S(./x) = 1−F (./x))
of T given X = x, in the form:

λ(t/x) =
f(t/x)

S(t/x)
, (1.3)

for all t such that S(t/x) > 0.

The study of the hazard rate function λ(.) or the conditional hazard rate λ(./x) is obviously
of interest in many fields of science such as biology, medicine, reliability, seismology,
econometrics, etc., and many of authors were interested in the nonparametric estimation
of the hazard rate λ. Historically, the nonparametric estimation of the hazard rate was
introduced for the first time in the statistical literature by Wason and Leadbetter (1964a).
One of the most common techniques for constructing estimators of λ(.) and λ(./x) is based
on the form (1.1) and similarly on the form (1.3). It consists in studying a quotient between
an estimator of f(.) (respectively f(./x)) and an estimator of S(.) (respectively S(./x)).
The paper by Patil and al. (1994) gives a general overview of these estimation techniques.
Nonparametric methods based on convolution by kernels ideas, which are known for their
good behavior in problems of probability density estimation (conditional or not), are also
widely used in the nonparametric estimation of the hazard function. Mention may in
particular be made of the recent articles by Gneyou (1997), Gefeller and Michels (1992),
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Nassari and al. (2000), Estévez (2002), Estévez and al. (2002), Pascu and Vadura (2003),
Quintela (2006), Laksaci and Mechab (2010), Dupuy and Gneyou (2011), as examples and
references therein. A wide range of literature in this field is provided by Tanner and Wong
(1983), Singpurwalla and Wong (1983), Hassani and al. (1986) or by Ferraty and al. (2008).
The works of Ramsay and Silverman (2005) and Ferraty and Vieu (2006) propose another
wide range of recently developed statistical methods, both parametric and non-parametric,
to deal with various estimation problems involving functional random variables (that is,
with values in a space of infinite dimension).

In the presence of an explanatory variable X with values in a functional space, one of the
problem also concerns the estimation of the maximum of the hazard rate. Given X = x, it
is assumed that there exists an interval [ax; bx] ⊂ R+ and a unique θ ∈ [ax; bx] such that

λ(θ/x) = sup
t∈[ax,bx]

λ(t/x). (1.4)

Gneyou (2013) and Gneyou (2014) established almost sure representations and the
asymptotic normality of a maximum risk estimator in the right-censored data model. This
estimator is obtained via the conditional cumulative hazard rate by convolution with a
kernel. Rabhi and al. (2015) established the almost complete uniform convergence and the
asymptotic normality of the maximum conditional risk estimator under the condition of
dependence data.

In this paper, we propose a direct estimator of the conditional hazard rate obtained by
taking the quotient of two nonparametric estimators : an estimator of the conditional
cumulative distribution function and an estimator of the conditional probability density
function given X = x, based on a right-censored data model. We establish the almost
complete convergence results with appropriate rates. We mention that part of our results
was treated in Ferraty and al. (2008). The difference lies that, in the current paper, we
focus on the high risk point.

This paper is organized as follows. In Section 2 we give the definitions and determine the
nonparametric estimators of the conditional hazard rate function and its maximum point.
In Section 3, we set out the assumptions under which we derive the results, which we state.
The detailed proofs are relegated in Section 4. In Section 5, we present numerical studies
and simulations.

2. Nonparametric estimate of the conditional hazard rate

Let us consider a conditional model in which the explanatory variable X is not necessarily
real or multidimensional but assumed to be of values in an abstract space F equipped with
a semi-metric d. As in any nonparametric estimation problem, the dimension of the space
F plays an important role in the concentration properties of the random variable T . Thus,
when this dimension is not necessarily finite, one defines some functions so-called small balls
probabilities. A function of small balls probabilities φ : R −→ R is defined as follows :

φx(h) = P [X ∈ B(x, h)] = P [X ∈ {x′ ∈ F : d(x, x′) < h}]

= E
[
1B(x,h)(X)

]
= E

[
1[0,1]

(
d(x,X)

h

)]
, (2.1)
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where B(x, h) is the ball of center x and radius h with x ∈ F fixed and h is a positive real
number.

Note that the probability of the ball B(x, h) appears clearly in the normalization. The
function φx is called the ”small balls probabilities” because the smoothing parameter h
(also called the bandwidth) decreases with the size of the sample of the functional variable,
more precisely h tends to 0 if n tends to +∞. Thus, when we take n very large, h is close
to 0 (zero) and then the ball B(x, h) is considered as a small ball and P[X ∈ B(x, h)] as a
small balls probability. This notion of small balls probabilities plays a major role both from
the theoretical and practical points of view. Because the notion of ball is strongly related to
the semi-metric d, the choice of this semi-metric will become an important issue. Thus the
function φx intervenes directly in the asymptotic behavior of any functional nonparametric
estimator.

Let T ∈ R+ be the lifetime of interest and X ∈ F a random covariate. We assume that T
and X are absolutely continuous random variables with conditional distribution function
F (t/x) and conditional probability density f(t/x) of T given X = x. Let C be a right
censoring variable with conditional distribution function G(t/x) and probability density
g(t/x) such that C and T are conditionally independent given X. Define Y = min(T,C)
and δ = 1{T6C} where 1{A} denotes the indicator function: δ = 1 if T 6 C and δ = 0 if
T > C, in which case the duration T is said to be censored to the right by C.

Let H(t/x) = P[Y ≤ t/X = x] be the conditional distribution function of Y given X = x,

H1(t/x) = P [Y 6 t, δ = 1/X = x] =

∫ t

0

(1−G(u/x))dF (u/x), (2.2)

the conditional sub-distribution function of the uncensored observation (Y, δ = 1) given
X = x and let f∗(t/x) = f(t/x)(1 − G(t/x) be its corresponding conditional sub-density
function. By the independence condition, we have

1−H(t/x) = (1− F (t/x))(1−G(t/x)). (2.3)

Hence, from the relation (1.3), we have the following form of λ(t/x) which takes account of
the censorship mechanism :

λ(t/x) =
f(t/x)(1−G(t/x))

(1− F (t/x))(1−G(t/x))
=

f∗(t/x)

1−H(t/x)
, H(t/x) 6= 1. (2.4)

Let K be a kernel on R with support in [0, 1]. Define the function Kh by Kh(x) = 1
hK

(
x
h

)
,

x ∈ [0, 1], h ∈ R∗+. Let (Y1, δ1), · · · , (Yn, δn) be a sample of observed durations of size n
and h = hK,n a sequence of positive real numbers (smoothing parameter) decreasing to 0
(zero) as n tends to +∞. Then a nonparametric Nadaraya-Watson type estimator of the
conditional distribution function H(t/x) is given by:

Hn(t/x) =

n∑
i=1

Wi(x, hK,n)1{Yi6t}, (2.5)
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where for i = 1, · · · , n,

Wi(x, hK,n) =
KhK,n(d(x,Xi))∑n
i=1KhK,n(d(x,Xi))

=
K
(
d(x,Xi)
hK,n

)
∑n
i=1K

(
d(x,Xi)
hK,n

) . (2.6)

The quantities Wi are the so-called Nadaraya-Watson weights (Nadaraya (1964), Watson
and Leadbetter (1964b)).

It is easy to construct a smooth version of this naive estimator (see also in Roussas (1969)
or in Samanta (1989)). To do so, it suffices to change the basic indicator function (1{Yi6t})
in the conditional distribution function H(./x) given by (2.5) into a smooth conditional
distribution function L called ”Integrated Kernel” or ”cumulative Kernel”. To fix the ideas,
let us consider K0 : R −→ R+ a symmetric kernel with compact support in [0, 1] and define

L(t) =

∫ t

−∞
K0(u)du .

In this case, L is a conditional distribution function and the quantity L
(

(t− Yi)h−1
L,n

)
,

(where hL,n is similarly defined as hK,n with K replaced by L), acts as a local weighting :

when Yi is less than t the quantity L
(

(t− Yi)h−1
L,n

)
is large and the more Yi is above t, the

smaller the quantity L
(

(t− Yi)h−1
L,n

)
. Moreover, we can write:

L

(
t− Yi
hL,n

)
=

{
0 si t 6 Yi − hL,n,
1 si t > Yi + hL,n.

Thus, we define the kernel estimators of conditional distribution and sub-distribution func-
tions H(t/x) and f∗(t/x), respectively as follows:

Ĥn(t/x) =

n∑
i=1

Wi(x, hK,n)L

(
t− Yi
hL,n

)
,

and

f̂∗n(t/x) =
1

hL,n

n∑
i=1

Wi(x, hK,n)δiK0

(
t− Yi
hL,n

)

The final estimator of the conditional hazard rate λ(t/x) is then given, for all t ≥ 0 and
F (t/x) 6= 1, by

λ̂n(t/x) =
f̂∗n(t/x)

1− Ĥn(t/x)
=

1
hL,n

∑n
i=1Wi(x, hK,n)δiK0

(
t−Yi
hL,n

)
1−

∑n
j=1Wj(x, hK,n)L

(
t−Yj
hL,n

) . (2.7)

A natural estimator θ̂n of θ is finally given by

θ̂n(x) = Argmaxax≤t≤bx λ̂n(t/x). (2.8)
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3. Asymptotic properties of estimators

Given x in the functional space F , we denote by Vx a neighborhood of x in F and for any
conditional distribution function L(./x), set τL = sup {t ∈ R+/L(t/x) < 1} .

Choose 0 < τ ≤ τH = min(τF , τG), naturally τF , τG and therefore τ depend on the covariate
x. For the rest of the paper, we set S = [0, τ ]. We need the following assumptions.

3.1. Assumptions

General Assumptions

(A1) ∀h > 0, P[X ∈ B(x, h)] = φx(h) > 0,

(A2) Conditionally to X = x, the random variables T and C are independent;

Assumptions about the regularity of conditional distribution functions

(F1) ∃C1 > 0, C2 > 0, b1 > 0 and b2 > 0, ∀ (x1, x2) ∈ V 2
x , ∀ (t1, t2) ∈ [0, τ ]2, :

i) |H(t1/x1)−H(t2/x2)| 6 C1(db1(x1, x2) + |t1 − t2|b2);
ii) |f∗(t1/x1)− f∗(t2/x2)| 6 C2(db1(x1, x2) + |t1 − t2|b2).

(F2) ∃µ <∞, f∗(t/x) < µ, ∀ (t, x) ∈ [0, τ ]× Vx,

(F3) ∃η > 0, 1−H(t/x) > η, ∀(t, x) ∈ [0, τ ]× Vx.

(F4) The function t 7−→ λ(t/x) has a continuous second derivative with respect to t and
satisfies:
i) λ′(θ/x) = 0;

ii) dx = inf
t∈[0,τ ]

|λ”(t/x)| > 0.

(F5) The function t 7−→ H(t/x) has a continuous first derivative with respect to t denoted
H ′(t/x) and uniformly bounded on S.

Assumptions on the Kernels

(K1) The cumulative kernel L is hölderian of order a with a ∈]0, 1].

(K2) The cumulative kernel L is differentiable and its derivative L′ = K0 satisfies:
i) K0 has compact support [−1, 1] and K0(t) > 0, ∀t ∈ [−1, 1];

ii) ∃C5 > 0, ∀ (t1, t2) ∈ [−1, 1]2, |K0(t1)−K0(t2)| 6 C5|t1 − t2|.

(K3) The functional kernel K has compact support [0, 1], in particular ∃M > 0, M ′ > 0,
∀m ≥ 1, ∀t ∈ [0, 1], M 6 Km(t) 6M ′.
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Assumptions on smoothing parameters

(H1) The functional bandwidth hK,n satisfies the following conditions:

lim
n−→+∞

hK,n = 0 and lim
n−→+∞

log n

nφx(hK,n)
= 0.

(H2) The cumulative kernel bandwidth hL,n satisfies :
lim

n−→+∞
hL,n = 0 and ∃α > 0, lim

n−→+∞
nαhL,n =∞.

(H3)
nhL
log n

−→ +∞ and lim
n−→+∞

log n

nhLφx(hK)
= 0.

Despite their number, our assumptions are not very restrictive. On the one hand, they are
not specific to the problem of estimating the conditional hazard rate and its maximum risk.
On the other hand, they correspond to the assumptions usually made in the context of non-
functional random variables. The assumptions on the kernels and the assumptions on the
smoothing parameters ensure the correct behavior of the Hn(./x) and f̂∗n(./x) estimators

and hence λ̂n(./x) (see in Ferraty and Vieu (2006)).

3.2. Results

Recall that a sequence (Zn)n∈N of almost everywhere (a.e)-finite real random variables
converges almost completely (p.co) to an a.e. finite real random variables Z if for every
ε > 0,

∑
n∈N P [ | Zn − Z |> ε] < +∞. Hence by the Borel-Cantelli Lemma the almost

complete convergence implies the almost sure convergence (p.s.) of Xn to X. Similarly,
given a sequence (Un)n∈N of real numbers, we say that Xn = O(Un) p.co if there exists a
constant M > 0 such that lim supn→+∞ | ZnUn |≤M p.co (see also (Lo and al., 2016), Section
5, page 121).

Theorem 1. Assume that the assumptions (A1), (A2), (F1)− (F3) and (F5), (K1)− (K3)
and (H1)− (H3) are satisfied. Then for all x ∈ F fixed, we have:

sup
t∈S
|λ̂n(t/x)− λ(t/x)| = O

(
hb1K,n + hb2L,n

)
+O

(√
log n

nhL,nφx(hK,n)

)
p.co (3.1)

Proof.

The proof of this theorem is based on the following decomposition valid for all t ∈ S :

λ̂n(t/x)− λ(t/x)

=
1

1− Ĥn(t/x)

[
f̂∗n(t/x)− f∗(t/x)

]
+

λ(t/x)

1− Ĥn(t/x)
[Hn(t/x)−H(t/x)] .

Considering the assumptions (F1) which ensure the uniform continuity of λ(./x) on the
compact interval S and the hypothesis (F3), we immediately obtain the inequality
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sup
t∈S
|λ̂n(t/x)− λ(t/x)| 6 cte.

supt∈S |f̂∗n(t/x)− f∗(t/x)|+ supt∈S |Ĥn(t/x)−H(t/x)|
inft∈S lim infn→+∞ |1− Ĥn(t/x)|

≤ M0

[
sup
t∈S
|f̂∗n(t/x)− f∗(t/x)|+ sup

t∈S
|Ĥn(t/x)−H(t/x)|

]
, (3.2)

for a constantM0 > 0. The complete proof of the Theorem 1 finally follows from the following
lemmas:

Lemma 1. Let the assumptions (A1), (A2), (F1)− (F3) and (F5), (K1)− (K3) and (H1)−
(H2) hold. We have:

sup
t∈S
|Ĥn(t/x)−H(t/x)| = O

(
hb1K,n + hb2L,n

)
+O

(√
log n

nφx(hK,n)

)
, p.co. (3.3)

Lemma 2. Under the conditions of Theorem 1, we have:

sup
t∈S
|f̂∗n(t/x)− f∗(t/x)| = O

(
hb1K,n + hb2L,n

)
+O

(√
log n

nhL,nφx(hK,n)

)
, p.co. (3.4)

To simplify the demonstrations of the above results, we introduce the following notations:

(a) Ki(x) = K
(

d(x,Xi)
hK,n

)
; Li(t) = L

(
t−Yi
hL,n

)
; K0,i(t) = L′i(t) = L′

(
t−Yi
hL,n

)
, i = 1, · · · , n

(b) Θi =
Ki(x)

EK1(x)
, ∆i =

Ki(x)Li(t)

EK1(x)
, Ωi =

Ki(x)K0,i(t)δi
hL,nEK1(x)

, i = 1, · · · , n,

(c) Ψ̂1(x) =
1

n

n∑
i=1

Θi =
1

n

n∑
i=1

Ki(x)

EK1(x)
=

1

nEK1(x)

n∑
i=1

Ki(x),

(d) Ψ̂2(t, x) =
1

n

n∑
i=1

∆i =
1

n

n∑
i=1

Ki(x)Li(t)

EK1(x)
=

1

nEK1(x)

n∑
i=1

Ki(x)Li(t),

(e) Ψ̂3(t, x) =
1

n

n∑
i=1

Ωi =
1

n

n∑
i=1

Ki(x)K0,i(t)δi
hL,nEK1(x)

=
1

nhL,nEK1(x)

n∑
i=1

Ki(x)K0,i(t)δi.

These notations lead to the following representations:

Ĥn(t/x) =

∑n
i=1K

(
d(x,Xi)
hK,n

)
L
(
t−Yi
hL,n

)
∑n
i=1K

(
d(x,Xi)
hK,n

) =
Ψ̂2(t, x)

Ψ̂1(x)
. (3.5)

f̂∗n(t/x) =

∑n
i=1K

(
d(x,Xi)
hK,n

)
K0

(
t−Yi
hL,n

)
δi

hL,n
∑n
i=1K

(
d(x,Xi)
hK,n

) =
Ψ̂3(t, x)

Ψ̂1(x)
. (3.6)

Proof of Lemma 1.

Journal home page: www.jafristat.net, www.projecteuclid.org/as



Agbokou K. and Gneyou K.E., Afrika Statistika, Vol. 12 (3), 2017, pages 1397 – 1416.
On the strong convergence of the hazard rate and its maximum risk point estimators in presence
of censorship and functional explanatory covariate 1405

The proof of this lemma is based on the following decomposition:

Ĥn(t/x)−H(t/x) (3.7)

=

[
Ψ̂2(t, x)− EΨ̂2(t, x)

]
−
[
H(t/x)− EΨ̂2(t, x)

]
+H(t/x)

[
EΨ̂1(x)− Ψ̂1(x)

]
Ψ̂1(x)

By the Strong Law of Large Numbers (SLLN), we almost surely have limn→+∞ Ψ̂1 = 1. On
the other hand, according to the notations in (c) and (d), we can write

ψ̂1 − Eψ̂1 =
1

n

n∑
i=1

(Θi − EΘi), ψ̂2 − Eψ̂2 =
1

n

n∑
i=1

(ΘiLi(t)− EΘiLi(t)) and

EΨ̂2(t, x)−H(t/x) = EΘ1L1(t)−H(t/x) = E [Θ1 (E(L1/X)−H(t/x))]

= E
[
Θ11B(x,hK)(X) (E(L1/X)−H(t/x))

]
.

In the sequel, we will write simply hK (resp. hL) to designate the sequence hK,n (respec-
tively hL,n).

Asymptotic behavior of ψ̂1 − Eψ̂1

ψ̂1 − Eψ̂1 = 1
n

n∑
i=1

(Θi − EΘi). Let us consider Zi = Θi − EΘi. For all m ≥ 1, we have

EΘm
i =

1

(EKi(x))m
EKm

i (x). Under the assumption (K3) we check that

Mφx(hK) 6 EKm
i (x) 6M ′φx(hK).

This leads to
M

φm−1
x (hK)

6 EΘm
i 6

M ′

φm−1
x (hK)

. (3.8)

Therefore
E|Θm

i | = O
(
φ−m+1
x (hK)

)
.

But

Zmi = (Θi − EΘi)
m = (Θi − 1)m =

m∑
k=0

CkmΘk
i (−1)m−k with Ckm =

m!

k!(m− k)!
,

and we can therefore write

E|Zmi | = E|(Θi − EΘi)
m| = E|(Θi − 1)m| 6 M

m∑
k=0

E|Θk
i |

6 M.m max
k=0;··· ;m

E|Θk
i |

6 Cmφ
−m+1
x (hK) (3.9)
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with Cm = M.m. It is therefore established that for every m ≥ 2,

E|Zmi | 6 Cmφ
−m+1
x (hK) = Cma

2(m−1) with a2 =
1

φx(hK)
. (3.10)

Under Assumption (H1) the conditions of Corollary A.8 in Ferraty and Vieu (2006) page
234 are satisfied. From this corollary we have

|ψ̂1(x)− EΨ̂1(x)| = O

((
log n

nφx(hK)

)1/2
)
, p.co (3.11)

Asymptotic behavior of ψ̂2 − Eψ̂2

The compactness of the interval S = [0, τ ] allows to cover it by µn disjoint intervals so that

S ⊂
µn⋃
k=1

[τk − ln, τk + ln[ (3.12)

where τ1, · · · , τµn are points of S and where ln and µn are chosen such that

∃Cµ > 0, ∃c, ln = Cµµ
−1
n = n−c. (3.13)

For each t ∈ S, we denote by

τt = argminτ∈{τ1,··· ,τµn}|t− τ |.

This allow to write

sup
t∈S
|Ψ̂2(t, x)− EΨ̂2(t, x)| = D1 +D2 +D3, (3.14)

where

D1 = sup
t∈S
|Ψ̂2(t, x)− Ψ̂2(τt, x)|

D2 = sup
t∈S
|Ψ̂2(τt, x)− EΨ̂2(τt, x)|

D3 = sup
t∈S
|EΨ̂2(t, x)− EΨ̂2(τt, x)|

Consider D1 and D3. Under Assumption (K1), we have:

|Ψ̂2(t, x)− Ψ̂2(τt, x)| =
1

n

n∑
i=1

Θi

∣∣∣∣L( t− YihL

)
− L

(
τt − Yi
hL

)∣∣∣∣
6

a

n

n∑
i=1

Θi
|t− τt|
hL

6 a
ln
hL

6
M

nchL
.
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Hence

sup
t∈S
|Ψ̂2(t, x)− Ψ̂2(τt, x)| 6 M

nchL

and by the Assumption (H2) we get

lim
n−→∞

D1 = 0, p.co.

Similar reasoning makes possible to establish that

|EΨ̂2(t, x)− EΨ̂2(τt, x)| 6 M

nchL
.

Consequently

lim
n−→∞

D3 = 0, p.co.

We are going to handle D2. We can write that for every ε > 0,

P
[
sup
t∈S
|Ψ̂2(τt, x)− EΨ̂2(τt, x)| > ε

]
= P

[
max

j=1,··· ,µn
|Ψ̂2(τj , x)− EΨ̂2(τj , x)| > ε

]
6 µn max

j=1,··· ,µn
P
[
|Ψ̂2(τj , x)− EΨ̂2(τj , x)| > ε

]
.

In other hand, for all j = 1, · · · , µn we have

Ψ̂2(τj , x)− EΨ̂2(τj , x) =
1

n

n∑
i=1

[ΘiLi(τj)− EΘiLi(τj)] =
1

n

n∑
i=1

[Tji − ETji]

with Tji = ΘiLi(τj).

We will therefore use the same techniques as before. To do so, let us consider Zji = Tji−ETji.
Since Tji is positive, and given that the kernel Li is bounded (Assumption (K3)), we have

| Zji |≤| Tji |=| ΘiLi(τj) |≤M | Θi | .

Thus, by reasoning as before, we obtain similar inequalities. By using the relation (3.13)
with ε0 large enough, we have

∞∑
j=1

P

[
sup
t∈S
|Ψ̂2(τj , x)− EΨ̂2(τj , x)| > ε0

√
log n

nφx(hK)

]
<∞.

Therefore

D2 = O

((
log n

nφx(hK)

)1/2
)
, p.co.
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and ultimately

sup
t∈S
|Ψ̂2(t, x)− EΨ̂2(t, x)| = O

((
log n

nφx(hK)

)1/2
)

p.co. (3.15)

Asymptotic behavior of H − EΨ̂2:

We have

EΨ̂2(t, x)−H(t/x) = EΘ1L1(t)−H(t/x)

= E [Θ1 (E(L1/X)−H(t/x))]

= E
[
Θ11B(x,hK)(X) (E(L1/X)−H(t/x))

]
ince L′ = K0, we have

E(L1(t)/X) =

∫
R
L

(
t− u
hL

)
dP(u/X)

=

∫
R

∫ t−u
hL

−∞
K0(v)dvdP(u/X)

=

∫
R

∫
R
K0(v)1[v,+∞[

(
t− u
hL

)
dvdP(u/X)

=

∫
R
K0(v)

(∫
R

1[v,+∞[

(
t− u
hL

)
dP(u/X)

)
dv (by Fubini’s Theorem)

=

∫
R
K0(v)H(t− vhL/X)dv.

ince K0 is a probability density, we can write

E(L1/X)−H(t/x) =

∫
R
K0(v)H(t− vhL/X)dv −

∫
R
K0(v)H(t/x)dv

=

∫
R
K0(v) [H(t− vhL/X)−H(t/x)] dv. (3.16)

We have

|H(t−vhL/X)−H(t/x)| 6 |H(t−vhL/X)−H(t−vhL/x)|+|H(t−vhL/x)−H(t/x)| (3.17)

and by hypothesis (F1)i) for all t ∈ S, we have

sup
v∈[−1,1]

1B(x,hK)(X)|H(t− vhL/X)−H(t− vhL/x)| 6Mhb1K

and

sup
v∈[−1,1]

|H(t− vhL/x)−H(t/x)| 6M ′hb2L .
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Let Mmax = max(M,M ′). Then we get via (3.16), (3.17) and the above increments

sup
t∈S

1B(x,hK)(X)|E(L1(t)/X)−H(t/x)| 6Mmax

(
hb1K + hb2L

)
.

ince EΘ1 = 1, we finally get

sup
t∈S
|EΨ̂2(t, x)−H(t/x)| = O

(
hb1K + hb2L

)
. (3.18)

In view of the relations (3.7), (3.11), (3.15) and (3.18) Lemma 1 is proved.

Proof of Lemma 2

The proof of this lemma is based on the following decomposition:

f̂∗n(t/x)− f∗(t/x)

=

[
Ψ̂3(t, x)− EΨ̂3(t, x)

]
−
[
f∗(t/x)− EΨ̂3(t, x)

]
+ f∗(t/x)

[
EΨ̂1(x)− Ψ̂1(x)

]
Ψ̂1(x)

.

The result of Lemma 2 follows directly from the results below demonstrated in the same
way as before under the assumptions (H1) - (H3)

|Ψ̂1(x)− EΨ̂1(x)| = O

((
log n

nφx(hK,n)

) 1
2

)
, p.co. (3.19)

sup
t∈S
|Ψ̂3(t, x)− EΨ̂3(t, x)| = O

((
log n

nhL,nφx(hK,n)

) 1
2

)
, p.co. (3.20)

sup
t∈S
|f∗(t/x)− EΨ̂3(t, x)| = O

(
hb1K,n + hb2L,n

)
, p.co. (3.21)

Proof of Theorem 1
We apply the Lemma 1 and Lemma 2 to each of the terms of the decomposition (3.7), noting
that

log n

nφx(hK,n)
= o

(
log n

nhL,nφx(hK,n)

)
, n −→ +∞

and Theorem 1 is proved.

We apply the above results to estimate the maximum risk point.
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4. Maximum risk point estimation

Given x ∈ F fixed, we assume that the conditional hazard function λ(./x) has a unique
maximum in an interval [ax, bx] ⊂ S = [0, τ ] and its maximum risk point denoted by
θ = θ(x) is defined by :

λ(θ/x) := sup
t∈S

λ(t/x). (4.1)

A kernel estimator of θ is then defined by the random variable θ̂n := θ̂n(x) which maximizes

the kernel estimator λ̂n(./x) of λ(./x). In other words,

λ̂n(θ̂n/x) := λ̂n(θ̂n/x) = sup
t∈S

λ̂n(t/x). (4.2)

More precisely θ̂n is defined by :

θ̂n = inf

{
t ∈ S : λ̂n(t/x) = sup

s∈S
λ̂n(s/x)

}
. (4.3)

Theorem 2. In addition to the hypotheses of Theorem 1, if the hypothesis (F4) is also
satisfied, then for any x ∈ F fixed,

|θ̂n(x)− θ(x)| = O
(

(hb1K,n + hb2L,n)
1
2

)
+O

((
log n

nhL,nφx(hK,n)

) 1
4

)
, p.co. (4.4)

Proof of Theorem 2
Under the hypothesis (F4) i), the Taylor expansion of the function λ(./x) in the neighbor-
hood of the θ gives:

λ(θ̂n/x) = λ(θ/x) +
(
θ̂n − θ

)2 λ′′(θ∗/x)

2!
, (4.5)

where θ∗ is between θ and θ̂n in the compact [ax, bx] ⊂ S = [0, τ ]. Thus we have :

|θ̂n(x)− θ(x)|2 6
2!

min
t∈S
|λ′′(t/x)|

|λ(θ̂n(x)/x)− λ(θ(x)/x)|. (4.6)

Now by the triangular inequality, we have the following increase:

|λ(θ̂n(x)/x)− λ(θ(x)/x)| 6 |λ(θ̂n(x)/x)− λ̂n(θ(x)/x)|+ |λ̂n(θ(x)/x)− λ(θ(x)/x)|
6 2 sup

t∈S
|λ̂n(t/x)− λ(t/x)|.

Thus (4.6) becomes:

|θ̂n(x)− θ(x)|2 6
4

min
t∈S
|λ′′(t/x)|

|λ̂n(t/x)− λ(t/x)|. (4.7)

Applying Theorem 1 and the hypothesis (F4) ii) to the right side of the inequality (4.7), we
get the result. This completes the proof of this theorem.
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5. Simulations

5.1. Empirical Validation of estimators

In this empirical study, we consider a usual law that is often found in parametric models of
survival times: the Log-Normal distribution with probability density function q(t) defined
on R∗+ by

q(t) =
1

σ2πt
exp

(
− [log(t)− µ]2

2σ2

)
We simulate n (for n ∈ {1000, 2000, 3000, 5000, 7000, 10000}) independent observations rep-
resenting the durations Ti, 1 6 i 6 n. We also simulate n independent observations which
represent the values of the random censorship C. For the functional covariate X, we also
simulate n independent observations such that X(t) = cos(2πZt) for any t ∈ [0, 1] where
the variable Z is uniformly distributed on [0.5, 1]. Moreover, the conditional distribution of
T , given X is a Log-Normal distribution of mean µ(X) = ‖X‖2 and standard deviation
σ(X) = 1.5 with

‖X‖22 =

∫ 1

0

X2(t)dt =
1

2

[
1 +

sin(4πZ)

4πZ

]
,

and the conditional distribution of C given X is an exponential distribution of parameter
α(X) = (1 + ν)‖X‖2 + 1.5 where the parameter ν will be varied to obtain the percent-
age of censorship. With a value of the parameter ν set near 3.5, we observed an average
censorship rate of about 30% for each of the three values of the functional covariate x
(x ∈ {0.7, 0.8, 0.9}). The choice of the semi-metric d is a recurrent question in the functional
estimation Ferraty and Vieu (2006). In this paper we consider the semi-metric d defined by
(see in Girard and Gardes (2013)):

d(s, t) =
∣∣‖s‖22 − ‖t‖22∣∣ .

The estimator λ̃n depends on the choice of two kernels K and K0 and two windows hK and
hL. The choice of kernels has little effect on the performance of the estimator, which has
led us to favor the classical Gaussian kernel solution for K0 and the kernel of Epanechnikov
for K. The choice of the smoothing parameters hK and hL is, on the other hand, crucial.
As an optimal window, we choose the value that minimizes the Mean Integrated Square
Error (MISE). In fact, since the theoretical calculation of the MISE is too complicated for
censored data, we repeat the previous simulations 100 times in order to obtain an empirical
series {λ̃jn}j=1,··· ,100. It is possible to estimate naturally the empirical MISE on a compact
[min(Y ),max(Y )]:

MISE(h) =
1

100

100∑
j=1

∫ max(Y )

min(Y )

[
λ̃jn(t/x)− λ(t/x)

]2
dt,

for a given bandwidth h and for x fixed. Thus, a scan on the values of hK and hL allows to
determine the optimal values hoptK and hoptK of the bandwidths hK and hK which minimize
the empirical MISE:

(hKopt, hLopt) = arg min
hK ,hL

M̂ISE (hK , hL) .
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5.2. Results

In this subsection, we represent the various estimators λ̂n and θ̂n of the conditional hazard
function and the maximum risk point for each of the values of x (x ∈ {0.7; 0.8; 0.9}) for 6
samples of different sizes. These estimators, represented respectively by the curve in bold
and orange color (for the hazard rate) and by the vertical line in dotted and blue color (for
the maximum risk point), are calculated using the optimal windows hoptK and hoptL , for a set
of n different data Simulated; The other curve in blizzard blue color and vertical line in red
color correspond respectively to the hazard function and the maximum risk point of the
theoretical hazard function.

The results of the estimated MISE and the optimal bandwidths values derived therefore are
summarized in Tables 1 to 3 for each of the values of x and for each sample of size n.

Table 1:Maximum risk point nonparametric estimation of the conditional hazard rate with
x = 0.7

covariate x = 0.7

Size n θ(x) θ̂n(x) λ(θ(x)/x) λ̃n(θ̂n(x)/x) Mise hoptK hoptL

1000 0.28 0.50 0.6622886 0.6091518 0.01926373 0.5011872 0.25118860
2000 0.28 0.45 0.6622886 0.6214251 0.01360150 0.4676242 0.21867240
3000 0.28 0.42 0.6622886 0.6303655 0.01252181 0.4490429 0.20163960
5000 0.28 0.39 0.6622886 0.6396525 0.01088368 0.4266807 0.18205640
7000 0.28 0.36 0.6622886 0.6510653 0.00966699 0.4125629 0.17020820
10000 0.28 0.32 0.6622886 0.6546703 0.00926452 0.3981072 0.15848930

Table 2:Maximum risk point nonparametric estimation of the conditional hazard rate with
x = 0.8

covariate x = 0.8

Size n θ(x) θ̂n(x) λ(θ(x)/x) λ̃n(θ̂n(x)/x) Mise hoptK hoptL

1000 0.31 0.50 0.5992638 0.5530352 0.01515300 0.5011872 0.25118860
2000 0.31 0.47 0.5992638 0.5667058 0.01276774 0.4676242 0.21867240
3000 0.31 0.44 0.5992638 0.5726265 0.01095756 0.4490429 0.20163960
5000 0.31 0.41 0.5992638 0.5804458 0.01000052 0.4266807 0.18205640
7000 0.31 0.36 0.5992638 0.5820060 0.00943976 0.4125629 0.17020820
10000 0.31 0.34 0.5992638 0.5874231 0.00894696 0.3981072 0.15848930

Table 3:Maximum risk point nonparametric estimation of the conditional hazard rate with
x = 0.9

covariate x = 0.9

Size n θ(x) θ̂n(x) λ(θ(x)/x) λ̃n(θ̂n(x)/x) Mise hoptK hoptL

1000 0.34 0.52 0.5422315 0.5173909 0.01382277 0.5011872 0.2511886
2000 0.34 0.48 0.5422315 0.5295975 0.01012492 0.4676242 0.2186724
3000 0.34 0.44 0.5422315 0.5255532 0.00958982 0.4490429 0.2016396
5000 0.34 0.43 0.5422315 0.5420404 0.00765708 0.4266807 0.1820564
7000 0.34 0.40 0.5422315 0.5422305 0.00722211 0.4125629 0.1702082
10000 0.34 0.36 0.5422315 0.5422315 0.00682938 0.3981072 0.1584893
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Curve of λ̂n(t|x) in bold and orange color, that of λ(t|x), the line in blizzard blue color, the

point θ̂n(x) in blue color and that of θ(x) in red color
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Conclusion

We considered a nonparametric kernel estimator of the conditional hazard rate, the covariate
taking values in a functional space. We have established its uniform (with respect to time)
almost complete convergence. We applied the result to the nonparametric estimation of
the high-risk point dependent on the covariate. This convergence can also be uniform in
both time and space (covariate) by restricting the covariate to vary in a compact subspace
of F (see in Gneyou (2013, 2014)). We undertook a numerical study. The computational
capabilities of our computers did not allow us to replication for larger values of N . This
could lead numerically to the convergence and therefore to the suitability of the curves
of λ(t|x) and its nonparametric estimator λ̂n(t|x). So we can say that, what we did not
observe is good regardless to the theoretical aspect.
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