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Abstract. . In this paper, we present a method for utilizing the usually intrinsic spatial
information in spatial data sets to improve the quality of temporal predictions within the
framework of singular spectrum analysis (SSA) techniques. The SSA-based techniques con-
stitute a model free approach to time series analysis and ordinarily, SSA can be applied to
any time series with a notable structure. Indeed it has a wide area of application including
social sciences, medical sciences, finance, environmental sciences, mathematics, dynamical
systems and economics. SSA has two broad aims: i) To make a decomposition of the original
series into a sum of a small number of independent and interpretable components such as
a slowly varying trend, oscillatory components and a structure-less noise. ii) To reconstruct
the decomposed series for further analysis in the absence of the noise component. Multivari-
ate singular spectrum analysis (MSSA) is an extension of SSA to multivariate statistics and
takes advantage of the delay procedure to obtain a similar formulation as SSA though with
larger matrices for multivariate data. In situations where spatial data is an important focus
of investigation, it is not uncommon to have attributes whose values change with space and
time and an accurate prediction is thus important. The usual question asked is whether the
intrinsic location parameters in spatial data can improve data analysis of such data sets. The
proposed method is based on the Inverse Distance Weighting and is exemplified on climate
data. Results show that the proposed technique of incorporating spatial dependence into
MSSA analysis leads to improved quality of statistical inference.
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Résumé (French) Dans cet article, nous présentons une méthode qui utilise les informa-
tions spatiales intrinseques de données spatiales pour améliorer la qualité des prédictions
temporelles dans le cadre de techniques d’analyse multivariée spectrale singuliere (MSSA).
La question habituelle posée est savoir si les parametres de localisation intrinseques des
données spatiales peuvent améliorer I’analyse de telles données. La méthode proposée est
basée sur la notion Inverse Distance Weighting. Elle est appliquées a des données climatiques.
Les résultats montrent que la technique proposée d’intégration de la dépendance spatiale
dans I'analyse MSSA conduit a une amélioration de la qualité de I'inférence statistique.

1. Introduction

Singular Spectrum Analysis (SSA), a well developed tool for time series analysis, is a model
free approach to time series analysis, as opposed to model based time series analysis with
several restrictive assumptions. SSA has two broad aims: i) to make a decomposition of the
original series into a sum of a small number of independent and interpretable components
such as a slowly varying trend, oscillatory components and a structureless noise and
ii) to reconstruct the decomposed series for further analysis in the absence of the noise
component. SSA is implemented through a sequence of steps and the following are the
steps in brief, detailed exposition and background theory can be found in Golyandina et al.
(2001). The first step is the Embedding step in which the time series Fy = (f1,---, fn) is
transformed into a multidimensional data matrix X, called the trajectory matrix using an
embedding operator: T (F) — X. The single most important parameter in this step is the
window length L. The second step is the Singular value decomposition (SVD) step in which
the trajectory matrix is factorized into a sum of elementary matrices using the nonzero
eigenvalues of XX”. The Grouping step is the third step where the elementary matrices
are split further through the procedure known as eigentriple grouping. The final step is
the Diagonal averaging or also commonly known as Hankelization. This step transfers
the sum of the elementary matrices after eigentriple grouping back to the time series. It
is in a way the reverse of step one. A very important concept in SSA is the notion of
Separability, see Golyandina, N. (2010). Multivariate Singular Spectrum Analysis (MSSA)
is a direct extension of SSA to multivariate analysis and takes advantage of the (delay)
embedding procedure to obtain a similar formulation as SSA, albeit with larger matrices
for multidimensional time series. The main aim of MSSA is to extract signal from the
multivariate time series leaving out the residual (noise) so as to perform further analysis,
see Patterson et al. (2011).

2. Inverse Distance Weighting, IDW

For spatial data sets, there is always the intrinsic (geographic) information—the location at-
tribute embedded in every recording. Whether it is in environmental sciences, economics,
agriculture, climatology, geology or any other fields where spatial data is frequently encoun-
tered, the desire to harness this embedded information for purposes of analysis cannot be
over emphasized. Data mining is an automated search for knowledge hidden in large col-
lections of data set attributes. In environmental science and other areas where space-time
behaviour is an important focus of investigation, it is not uncommon to have attributes
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whose values often change with space and time. This leads to spatial dependence which
subsequently influences data analysis, see Miiller, W. G. (2007) and therefore a technique
to incorporate spatial information into the analysis of such data sets is desirable. Data close
together in space and time usually exhibit higher dependencies than those that are farther
apart, see Cressie N. A (1993). This dependency is thus inversely proportional to the dis-
tance of separation between any two data gathering sites. A method that utilizes this inverse
proportionality in the distance of separation as a technique of incorporating spatial depen-
dence into the analysis is the inverse distance weighting (IDW). Inverse distance weighting
assigns bigger weights at near points and smaller weights at distant locations. There are sev-
eral ways of computing the inverse distance weights to be used in the analysis, see Mateu, J.
and Miiller, W. G. (Eds.). Here, we present the inverse distance technique first introduced
in Awichi, R. O. and Miiller, W. G. (2013).

The multivariate data set y = {y;;} is an s x N matrix and the inverse distance is given
as w;; = 1/d;; where d;; is the Euclidean distance between locations ¢ and j. For missing
values in the data, a new weight is calculated by excluding the corresponding distance mea-
sure from the w;;s. To include spatial information into the analysis based on the model free
MSSA framework, we premultiply the data set by the row-normalized spatial weight matrix,
W = {w;;} to yield the spatially weighted averages Wy.

3. Data

The proposed technique was applied to climate data from several recording sites in Upper
Austria. The data was provided by the Zentralanstalt fiir Metereologie in Austria and is
described in more detail in Mateu, J. and Miiller, W. G. (Eds.). This data set contains
climatic data measured at 37 stations irregularly placed over the region provided from
http://www.zamg.ac.at/fix/klima/0e71-00/k1ima2000/klimadaten_oesterreich_
1971 _framel.htm.

Here, we have (incomplete) monthly data from Jan 1994 to Dec 2009 on average temperature
and total rainfall. Due to some missing observations, however, not all of the stations could
be effectively used. A map of the region with the respective locations of the measurement
stations and the contours for the rainfall data is displayed in Figure 1.

For purposes of this application, we used the rainfall data from 11 locations that have no
missing information, hence the series length is 192 (monthly recordings from Jan 1994 to
Dec 2009). The rest of the sites have missing data to varying degrees of missingness. The
data was also preprocessed by log-transformation, see Golyandina, N. and Zhigljavsky, A.
(2013).

To determine the effect of the spatial dependence on the data, we pooled together the data
at different levels. The pooling was done by conditioning data from a particular site, y; on
data from the rest of the sites and likewise for the spatially weighted averages. To assess the
accuracy, we calculated the root mean square errors, RMSE, i.e. R(y;|y) and R(y;|Wy). The
RMSE R(y;) of the single unweighted series is referred to as the default RMSE in this paper.
If R(yily) < R(y:) (or R(y;|Wy) < R(y;)), then the proposed technique leads to improved
quality of the results, otherwise it is worse than results without pooling. For comparative

purposes, the ratio of the root mean square error, which is given by RRMSFE = %
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Fig. 1. The Sampling Locations of the Climatic Data Set Within Upper Austria

can be computed. The analysis was done in R using the package Rssa, see Korobeynikov et
al. (2015).

3.1. Rssa Package

The most time consuming step of SSA is the SVD and this is overcome in Rssa by using
computationally efficient algorithms described in details in Korobeynikov, A. (2010). The
fastest implementation of SSA is done in the R package Rssa, and since only a few leading
components are required, Rssa uses the so-called Partial SVD to compute the required
number of leading eigentriples, see Golyandina, N. and Zhigljavsky, A. (2013). Another
advantage is the Hankel nature of the trajectory matrix which helps in speeding up the
matrix multiplications for the optimum value of the window length L ~ N/2. The entry
point to the package is the function ssa, which performs the decomposition stage. The
function has the following format:

ssa(x, L, ..., kind, svd.method, force.decompose = TRUE).

Further details of the arguments can be viewed by poring through the ‘help’ page from the
package download. However, for the format indicated above, the argument x gives the input
series, L specifies the window length, kind corresponds to the type of SSA analysis to be
performed (can be “l1d-ssa” or “toeplitz-ssa” or “2d-ssa” or any other kind), svd.method al-
lows for the selection of the SVD method to be used and the default value force.decompose
= TRUE enables completion of the Decomposition stage, see Korobeynikov, A. (2010). The
acceleration in the Rssa package is achieved in the following ways:

— combining the embedding step with the SVD step thereby decreasing the storage re-
quirement,
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— applying the Lanczos-based Partial SVD for computational efficiency in calculating the
eigentriples of the required components, see Korobeynikov, A. (2010),

— applying the Fast Fourier Transform (FFT) in the multiplication of a Hankel matrix by
a vector thus reducing the computational complexity of the SVD step and also at the
reconstruction stage.

The main step of the SSA method is the singular value decomposition of the series trajectory
matrix. The package provides several implementations of this procedure (this corresponds
to the different values of svd.method argument). Some of these implementations are briefly
discussed below, details can be found in Korobeynikov, A. (2010) and the help page of the
package from R, see for example R Core Team. (2014).

— auto. This is the automatic method of selection depending on the series length, N, the
window length L, the SSA kind and number of eigenvalues requested.

— nutrlan and propack. These methods utilize the Lanczos-based Partial SVD tech-
niques and the Hankel structure of the trajectory matrix for efficient computations and
are quite fast. The methods use the truncated SVD (where only a specified number of
eigentriples are to be computed) and the continuation of the decomposition. propack
is slightly faster and more numerically stable, see Korobeynikov, A. (2010) for more
information.

— svd. The method does not assume anything special about the trajectory matrix and
thus is slow.

— eigen This method computes full SVD via eigen-decomposition of the cross-product
matrix. It is faster than the svd method, but still slow for most matrix sizes.

Usually the ssa function tries to provide the best SVD implementation for given series
length and the window size. In particular, for small series and window sizes it is better
to use generic black-box routines (as provided by svd and eigen methods). For long time
series, special purpose routines are to be used. The outcome of the function ssa is an
SSA object which is the input for the majority of other functions in the package. The
contents of the object can be viewed via the function summary. There are several other
functions in the package, for example the function reconstruct(x, groups) is used to
perform Reconstruction stage, where the first argument is an SSA object and the second
specifies the eigentriple grouping. For these and other details about the Rssa package, see
Golyandina, N. and Zhigljavsky, A. (2013) and for the latest version of the package, see
Korobeynikov et al. (2015).

The R codes we used in our computations are partly reported in the Appendix.

4. Results

The results for the in-sample analyses can be found in Awichi, R. O. and Miiller, W. G.

(2015). Here, we present the out-of-sample analyses. For MSSA, the window length, L can
be calculated using the relation L < ;ﬁ, where N = time series length and s = dimension
of the series, see Golyandina, N. and Zhigljavsky, A. (2013). A good choice of the window
length ensures proper separability. We report findings for the unweighted and the spatially

weighted for the set of entire sites. The other set of results fall between these two. For the
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out-of-sample analysis, we used the data up to Dec 2008 implying that the window length
reduced to 180. The data for the final year, Jan-Dec 2009, was used to compare with the
predicted values for the same period for different forecast procedures. To assess the effect of
the spatial weighting, we computed both RMSE and the mean absolute percentage deviation,

M N
MAPD for the different forecast steps (MAPD = 2 3 (M))
=1

[ye

Table 1. Out-of-Sample Forecasts

Forecast Actual | Weighted | Unweighted Weighted Unweighted
for 2009 Value Forecast Forecast MAPD | RMSE | MAPD | RMSE
Jan | 3.044522 | 2.939382 5.208310 M=1:
Feb | 4.174387 | 2.770864 4.487440 0.0345 | 0.1051 | 0.7107 | 2.1638
Mar | 4.369448 | 3.915668 3.894846 M=3:
Apr | 3.091042 | 3.860014 4.259645
May | 4.615121 | 4.376068 3.735367 0.1582 | 0.8538 | 0.2981 | 1.2917
Jun | 5.347108 | 3.931153 4.622641 M=6:
Jul | 4.997212 | 5.077728 3.817844
Aug | 4.317488 | 4.812715 3.637416 0.1733 | 0.8982 | 0.2664 | 1.1306
Sept | 3.931826 | 4.607082 4.456604 M=12:
Oct | 4.127134 | 4.629895 3.005752
Nov | 3.637586 | 3.189317 2.980330
Dec | 3.433987 | 4.079065 2.969817 0.1480 | 0.7313 | 0.2261 | 0.9876

Table 1 shows the results for one of sites, Freistadt. The spatially weighted forecasting
conditioning on Wy outperforms the default forecast at all levels of forecast steps. This
performance can be checked against the RMSE and MAPD values for the spatially weighted
and the unweighted forecasts.

A rolling forecast was undertaken for the spatially weighted series for the same selected
site. Results of the comparison with the year-long forecast is shown in Table 2.

5. Conclusions

Using IDW to incorporate spatial dependence into the analysis of spatial data within the
framework of MSSA time series analysis leads to improved quality of statistical analysis.
This can be seen from Table 1, where both the MAPD and RMSE values are smaller for
spatially weighted analysis where spatial lag (weight) matrix was used to incorporate spa-
tial dependence into the analysis. The year-long prediction outperforms the rolling forecast
potentially due to the seasonality within the original time series.

We therefore highly recommend incorporation of spatial dependence (via spatial weight
matrix) into the model free time series analysis within the framework of the SSA-based
techniques. For prediction, the inherent characteristics or features of the time series under
investigation should be taken into consideration before deciding upon the method to use.
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Table 2. Comparison of Rolling and Year Long Predictions

Actual | Year-long | Rolling | Year-long | Rolling
Yt Gt Gt lye = el | lye — B¢l
3.044522 | 2.939382 | 2.939382 | 0.105140 | 0.105140
4.174387 | 2.770864 | 2.559900 | 1.403523 | 1.614487
4.369448 | 3.915668 | 3.380577 | 0.453780 | 0.988871
3.091042 | 3.860014 | 3.468199 | 0.768972 | 0.377157
4.615121 | 4.376068 | 3.696763 | 0.239053 | 0.918357
5.347108 | 3.931153 | 3.308346 | 1.415954 | 2.038761
4.997212 | 5.077728 | 4.753443 | 0.080516 | 0.243769
4.317488 | 4.812715 | 4.575633 | 0.495227 | 0.258145
3.931826 | 4.607082 | 5.613441 | 0.675257 | 1.681616
4.127134 | 4.629895 | 7.590778 | 0.502761 | 3.463644
3.637586 | 3.189317 | 6.127708 | 0.448269 | 2.490121
3.433987 | 4.079065 | 6.221942 | 0.645078 | 2.787955
MAPD 0.1480 0.3518
RMSE 0.7313 1.7716
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APPENDIX.

R Codes for Spatially Weighted Analysis

These R codes are to calculate the spatial weight matrix to incorporate the spatial informa-
tion into the analysis.

RainData4 <- read.csv("UpperaFULLDATA.csv", sep = ",")
xm <- as.matrix(RainData4l[, 2:3])
dl <- dist(xm)
distancematrix <- as.matrix(dl)
dtl <- 1/distancematrix
dt1[dt1==Inf] <- 0
dist <- dt1
beta <- apply(dist, 1, sum)
distl <- sweep(dist, 1, beta, "/")
Rains <- RainData4[,-c(1:3)]
Rains <- as.matrix(Rains)
LogRains <- log(Rains)
LogRains[LogRains==-Inf] <- 0
LogRainsl <- LogRains
Rains2 <- dist1%*%Rains
LogRains2 <- log(Rains2)
Rdata <- as.matrix(cbind(RainData4[, c(1:3)], Rains?2))
write.csv(t(LogRainsl), file = "LogRainsl.csv")
write.csv(t(LogRains2), file = "LogRains2.csv")
library("Rssa")
LogRains14 <- read.table("LogRains14.txt", header = TRUE)
LogRains14 <- ts(LogRains14[,-1], start = c(1994, 1),
end = c(2009, 12), frequency = 12)
Rainl4 <- window(LogRains14)
St14=Raini4[,"St1"] #Vary "Sti" till "Sti11"
s.St14 <- ssa(St14, L = 96, kind = "1d-ssa")
r.St14 <- reconstruct(s.St14, groups = list(Seasonality = 2:11))
r.St142 <- reconstruct(s.St14, groups = list(Signal = 1:42))
p-St14 <- Reduce("+", r.St142)
plot(r.St142, add.residuals = TRUE, add.original = TRUE,
plot.method = "xyplot",
superpose =TRUE, auto.key = list(columns = 2))
plot(s.St14, type = "vectors", idx = 1:12)
plot(s.St14, type = "paired", idx = 2:11, plot.contrib = FALSE)
parestimate(s.St14, groups = 1list(2:3,4:5), method = "esprit-1ls")
plot(wcor(s.St14, groups = 1:42), scales = list(at = ¢(10,20,30,40)))
plot(reconstruct(s.St14, add.residuals = FALSE, add.original = FALSE,
groups = list(G12 = 2:3, G4 = 4:5, G6 = 6:7, G2.4 = 8:9)))
f.St14 <- vforecast(s.St14, groups = list(Signal = 1:42),
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len = 12, only.new = TRUE)

plot(cbind(St14, f.St14), plot.type = "single", col = c("black",

"red"), ylab = NULL)
wtld <- Rainl4d[,c("St1","Wtl1","Wt2","Wt3","Wt4","Wts","Wt6","Wwt7",
"Wt8","Wt9","Wt10","Wt11")]

L <- 180 #Different L values used (96,144,156,168,180)

.wtld <- ssa(wtl4, L = L, kind = "mssa")

r.wtl4 <- reconstruct(s.wtl4, groups = list(Trend = c(1,6),

Seasonality = c(2:5, 7:12)))

p-wtl4 <- Reduce("+", r.wtl4)

r.wt142 <- reconstruct(s.wtl4, groups = list (Signal = 1:42))

Rwtl14 <- r.wt142$Signal

#plot(r.wt142, add.residuals = FALSE, plot.method = "xyplot",
superpose = TRUE, auto.key = list(columns = 3))

plot(s.wt14, type = "vectors", idx = 1:12)

plot(s.wtl4, type = "paired", idx = 2:14, plot.contrib = FALSE)

parestimate(s.wtl14, groups = list(2:3, 4:5), method = "esprit-1ls")

plot(wcor(s.wt14, groups = 1:42), scales = list(at = ¢(10,20,30,40)))

f.wt14 <- rforecast(s.wtl4, groups = list(Signal = 1:42) ,len = 12,
only.new = TRUE)

plot(cbind(wt14[,"St1"], f.wt14[,"St1"]), plot.type = "single",
col=c("black", "red"), ylab = "wtl4")

rmel <- sqrt(mean((r.St142$Signal - Raini4[,"St1"])"2))

rme2 <- sqrt(mean((Rwt14[,"St1"]-Rainl4[,"St1"]1)"2))

rme <- c(rmel, rme2)

# Signal Comparison:

wtl5 <- Rainl4[,c("St1", "Wt1l", "St2", "wt2", "St3", "Wt3")]

s.wtl5 <- ssa(wtl5, L = 180, kind = "mssa")

r.wtlh <- reconstruct(s.wtl5, groups = list(Trend = c(1, 2, 5),
Seasonality = c(3:4, 6:12)))

plot(r.wt15, add.residuals = FALSE,plot.method = "xyplot",
slice = list(component = 1), screens = list(colnames(wt15)),
col = c("blue", "green", "red", "violet", "black", "green4"),
1ty = rep(c(l, 2), each = 6), scales = list(y = list(draw = FALSE)
), layout = c(1, 6))

plot(r.wt15, plot.method = "xyplot", add.original = FALSE,
add.residuals = FALSE, slice = list(component = 2),
col = c("blue","green","red", "violet", "black", "greend"),
scales = list(y = list(draw = FALSE)), layout = c(1, 6))

]

R Codes for Computing Rolling Forecasts
These codes are for calculating rolling forecasts from January 2009 to Dec 20009.

RainDat6 <- read.csv("UpperaFULLDATARoll.csv", sep = ",")
xm <- as.matrix(RainDat6[, 2:3])
dl <- dist(xm)
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distancematrix <- as.matrix(d1l)
dtl <- 1/distancematrix
dt1[dtl==Inf] <- 0
dist <- dt1
beta <- apply(dist, 1, sum)
distl <- sweep(dist, 1, beta, "/")
RainF16 <- RainDat6[,-c(1:3)]
RainF16 <- as.matrix(RainF16)
LogRainF16 <- log(RainF16)
LogRainF16[LogRainF16==-Inf] <- 0
LogRainF6 <- LogRainF16
RainF26 <- distl’%*%RainF16
LogRainF26 <- log(RainF26)
library("Rssa")
LogRainF16 <- read.table("LogRainF16.txt", header = TRUE)
LogRainF16New <- ts(LogRainF16[,-1], start = c(2009, 1),
end = c(2009, 12),frequency = 12)
LogRainF16 <- ts(LogRainF16[,-1], start = c(1994, 1),
end = c(2008, 12),frequency = 12)
f.Vwtl6 <- vector("numeric", 12)
for (i in 1:12) {
RainF16 <- window(LogRainF16)
Vi6=RainF16[,"V1"]
s.V16 <- ssa(V1i6, L = 84, kind = "1d-ssa")
r.V16 <- reconstruct(s.V16, groups = list(Seasonality = 2:11))
r.V162 <- reconstruct(s.V16, groups = list(Signal = 1:42))
p-V16 <- Reduce("+", r.V162)
Vwtl16 <- RainF16[,c("V1", "wWti", "wt2", "Wt3", "Wt4", "Wt5",
"Wte", "Wt7", "Wt8", "Wt9", "wtli0", "Wti1i")]
L <- 168
s.Vwt16 <- ssa(Vwt16, L = L, kind = "mssa"
r.Vwtl6 <- reconstruct(s.Vwtl6, groups = list(Trend = 1,
Seasonality = c(2:12)))
p-Vwtl6 <- Reduce("+", r.Vwtl6)
r.Vwt162 <- reconstruct(s.Vwtl6, groups = list (Signal = 1:42))
RVwt16 <- r.Vwt162$Signal
f.Vwt16[i] <- rforecast(s.Vwtl6, groups = list(Signal = 1:42),
len = 1, only.new = TRUE) [1]
LogRainFi6New[i, "Vi"] <- f.Vwt16[il]
LogRainF16 <- ts(rbind(LogRainF16, LogRainF16New([i,]),
start = start(LogRainF16),
frequency = frequency(LogRainF16))
}
write.csv(f.Vwt16, file = "ForeRollWtd.csv")
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