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Abstract. . The popular method of estimation in regression, Ordinary Least
Squares (OLS) often displays inefficiency especially with large variances and wide
confidence intervals thereby making precise estimate difficult when there is strong
multicollinearity. Bayesian method of estimation is expected to improve the effi-
ciency of estimated regression model when there is relevant prior information and
belief of situation being modelled is available. This study however provided an al-
ternative approach to OLS when there is almost perfect multicollinearity while its
performance were compared with the aid of simulation approach to OLS estimator.
Results of the simulation study indicate that with respect to Mean Squared Error
(MSE) criterion and other criteria, the proposed method perform better than OLS.

Key words: Multicollinearity, Regression, Standard Error, Simulation.
AMS 2010 Mathematics Subject Classification : 62F15, 62GO5, 62H10.

∗Corresponding author Adedayo A. Adepoju: pojuday@yahoo.com
Oluwadare O. Ojo : ojooo@futa.edu.ng



A. A. Adepoju and O. O. Ojo, Afrika Statistika, Vol. 13 (3), 2018, 1823 – 1834. Bayesian
method for solving the problem of multicollinearity in regression. 1824

Résumé. (French) La méthode d’estimation par régression populaire, la méthode
des moindres carrés ordinaires (MCO), est souvent peu efficace, en particulier
lorsque les variances sont grandes et que les intervalles de confiance sont larges,
ce qui rend difficile une estimation précise lorsque la multicolinéarité est forte.
La méthode d’estimation bayésienne devrait améliorer l’efficacité du modèle de
régression estimé lorsqu’il existe des informations préalables pertinentes et lorsque
l’on est convaincu de la situation à modéliser. Cette étude a toutefois fourni une
approche alternative à la méthode des moindres carrés ordinaires lorsqu’il y a une
multicolinéarité presque parfaite, tandis que ses performances ont été comparées
à l’aide de l’approche de simulation de l’estimateur MCO. Les résultats de l’étude de
simulation indiquent qu’en ce qui concerne le critère d’erreur quadratique moyenne
(MSE) et d’autres critères, la méthode proposée donne de meilleurs résultats que
la méthode MCO.

1. Introduction

Multicollinearity is a violation of assumption of regression model. It occurs when
the regressors are correlated. This violation can be a serious problem when
there is a near perfect correlation, in the sense that regression coefficients of X
variables although may be determinate but possess large standard errors, which
means that parameters cannot be estimated with great precision. If the correlation
between the regressors is perfect, the parameters of the regression model can be
indeterminate while the standard errors are infinite Gujarati (1995), Belsley et al.
(1980)

Some of the solutions in literature to multicollinearity are addition of new data,
transforming of variables using suitable transformations, the method of principal
component by the reducing the number of regressors Jeffers (1967), Jollife
(1972), Mansfield et al. (1977) and Miller (1990). Other solution to the problem
of multicollineairty, is the use of ridge estimator by Hoerl and Kennard (1970),
Duzan and Shariff (2015)and Iguernane (2016), but all the methods are classical
methods and Dreeze (1962) argued that classical inferences have shortcomings
in that; the available information on parameters is ignored.

However, the use of Bayesian estimation method to solve the problem of multi-
collinearity in regression model is not common due to its complexity in terms
of computation and prior information. Recently, some Bayesian works on multi-
collinearity in regression are Curtis and Ghosh (2011) and Ijarchelo et al. (2016).

Curtis and Ghosh (2011) in their work proposed a Bayesian model that accounted
for correlation among the predictors by simultaneously performing selection and
clustering of the predictors, dirichlet process and variable selection priors were
used for regression coefficient while redundant predictors were removed from the
models; they concluded that Bayes method proposed did not outperformed all
other methods in all situations but often the best in high collinearity. Ijarchelo
et al. (2016) developed a Bayesian regression procedure for variable selection

Journal home page: www.jafristat.net, www.projecteuclid.org/as



A. A. Adepoju and O. O. Ojo, Afrika Statistika, Vol. 13 (3), 2018, 1823 – 1834. Bayesian
method for solving the problem of multicollinearity in regression. 1825

under collinearity of parameters using a Zellner’s g-prior. Their results showed
that a strong collinearity may lead to a multimodal posterior distribution over
models in which joint summaries are more appropriate than marginal summaries.
They concluded that their posterior distribution were not available in closed form
and that can make the problem of multicollinearity become computationally
challenging.

All the aforementioned Bayesian methods are variable selection method, but as
noted by Lee et al (2015) on the use of variable selection methods, that if some
explanatory variable are throws out in a regression model, others might not have
explanatory power on the dependent variable and this may lead to difficulty in
assessing the effect of regressors on the dependent variable.

Herein, we propose a Bayesian estimation procedure with the use of an informative
prior. The use of proposed method permits easy computation of many posterior
features of interest in regression to overcome the problem of multicollinearity.

The structure of the remainder of this paper is as follows. In section 2, the re-
gression model and the method of Ordinary Least Squares (OLS) will be reviewed.
Section 3 provides an overview of Bayesian procedure using an informative prior
in regression model in the presence of Multicollinearity. Section 4; provide a sim-
ulation where numerical studies are conducted. For comparative purposes, the
performance of proposed Bayesian estimation procedure is compared to OLS in
Section 5. Section 6 concludes.

2. Regression Model and OLS

The Normal Regression model is given by:

y = xθ + ε (1)

Where y and x are the observed data on the n x 1 vector of dependent and n x k
matrix of explanatory variables of the regression respectively. θ is the k x 1 vector
of parameters to be estimated and ε is an error term which is normally distributed
with mean zero and constant σ2 and x values are independent of the error term.
In order to estimate the parameters in (1), the popular Classical estimator, OLS for
estimating the regression parameters is given by:

θ̂ = (x′x)−1x′y (2)

While the confidence interval can be obtained as:

θ̂ ± t1−α/2,N−KSE(θ̂) (3)

Where
SE(θ̂) =

√
S2(x′x)−1

And

S2 =
y′y − θ̂′x′y
n− k

(4)
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It could be observed from the equations (3) and (4) that parameter θ heavily depends
on x’x.

3. Bayesian Estimation Procedures

In order to ameliorate the problem of multicollinearity, Bayesian method of esti-
mation is given in this section. Bayesian approach can be expressed through the
following relationship which can be written as:

P (θ|y) ∝ P (θ)P (y|θ) (5)

P (y|θ) is the likelihood function.
P (θ) is the prior density distribution and P (θ|y) ) is the posterior distribution
The likelihood is written as follows;

P (y|θ, h) =
h

N
2

(2π)
N
2

exp[−h
2

(y − xθ)′(y − xθ)] (6)

For convenience, it is better to write (6) in terms of Ordinary Least Squares (OLS)
estimator:

(y − xθ)′(y − xθ) = (y − xθ + xθ̂ − xθ̂)′(y − xθ + xθ̂ − xθ̂) (7)
= (y − xθ̂)′(y − xθ̂) + (θ̂ − θ)′x′x(θ̂ − θ) (8)
= SSE + (θ̂ − θ)′x′x(θ̂ − θ) (9)

Hence, the likelihood is written as:

P (y|θ, h) =
h

N
2

(2π)
N
2

exp[−h
2
{SSE + (θ̂ − θ)′x′x(θ̂ − θ)}] (10)

Prior distribution. Priors play a defining role in Bayesian inference which can take
any form and are also meant to reflect any information the researcher has before
seeing the data. However, it is common to choose particular classes of priors that
are easy to interpret or which would make computation easier Koop (2003). Natu-
ral conjugate priors typically belong to such class. The likelihood function in (10)
suggests a prior in form of Normal distribution forθ|h and a Gamma distribution for
h. The name of such prior which is a product of Gamma and a conditional Normal
is called a Normal-Gamma distribution.
Based on the above premise, it follows that:

θ|h ∼ N(θ0, h
−1Q0) (11)

Equation (11) can also be written as:

P (θ|h) =
h

k
2

(2π)
k
2 |Q0|

1
2

{exp[−h
2

(θ − θ0)′(Q0)−1(θ − θ0)]} (12)
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And also,
P (h) =

1

Γ( v02 )(
2S−2

0

v0
)

v0
2

h
v0−2

2 exp(− hv0

2S−20

) (13)

Where,

Γ(
v0
2

)(
2S−20

v0
)

v0
2 is the integrating constant.

In the distribution of (12) and (13), θo denotes the prior mean for parameter θ, Q0

is the un-scaled variance-covariance matrix for parameterθ, S−20 is the prior mean
of gamma density function for the model precision h and v0 is the prior degree of
freedom of gamma distribution for the model precision h.

Hence, equations (12) and (13), the natural conjugate prior for θ and h can be
simply written as:

P (θ, h) =
h

k
2

(2π)
k
2 |Q0|

1
2

{exp[−h
2

(θ − θ0)′(Q0)−1(θ − θ0)]}

× 1

Γ(v02 )(
2S−2

0

v0
)

v0
2

h
v0−2

2 exp(− hv0

2S−20

)

P (θ, h) =
h

v0+k
2 − 1

(2π)
k
2 |Q0|

1
2 Γ( v02 )(

2S−2
0

v0
)

v0
2

{exp[−h
2

(θ − θ0)′(Q0)−1(θ − θ0)

+
v0

S−20

]} (14)

Equation (14) can also be written as:

θ, h ∼ NG(θ0, Q0, S
−2
0 , V0) (15)

Equation (15) above means that the distribution of the prior, P (θ, h) for θ and h is
a multivariate Normal-Gamma.

N.B: The symbol ”o” under the parameters are the priors, while symbol represented
by ∗ over the parameters indicate the posterior parameters.
Multiplying (10) and (15), gives the joint posterior distribution as:

θ, h|y ∼ NG(θ∗, Q∗, S−20 , V ∗) (16)

Since both the prior and posterior distributions are Normal-Gamma, conjugacy
was established.

Hence, the hyper-parameters given in (16) are:

Q∗ = (Q−10 + x′x)−1 (17)

θ∗ = Q∗(Q−10 θ0 + x′xθ̂) (18)
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v∗ = N + v0 (19)

Equations (17), (18) and (19) are the estimators for un-scaled variance-covariance
matrix which is a k x k matrix, posterior mean and degree of freedom of posterior,
respectively.
While the Sum of Squares of Error (SSE) and Variance of the error of the model in
(1) can also be given respectively as:

SSE = (vS2)0 + vS2 + (θ̂ − θ0)′[Q0 + (x′x)−1]−1(θ̂ − θ0) (20)

S2 ∗ =
(vS2)0 + vS2 + (θ̄ − θ0)′[Q0 + (x′x)−1]−1(θ̄ − θ0)

v0
(21)

In regression modelling, the coefficient on the regressors, θ is usually a primary
focus, and a measure of marginal effect of the regressors on the dependent variable.
The posterior mean, E(θ|y) is the point estimate, and v(θ) is a metric for measuring
the uncertainty associated with the point estimate.
Since the interest is on θ, we integrate out h in (16) to obtain the marginal posterior
for θ. Applying the rule of probability we have:

E(θ|y) =

∫ ∫
θP (θ, h|y)∂h∂θ =

∫
θP (θ|y)∂θ (22)

Where,
P (θ|y) =

∫
P (θ, h|y)∂h (23)

Hence, equation (23) becomes:

P (θ|h) =
v

n
2 Γ( v

0+k
2 )

π
k
2 Γ(v

0

2 )
|S2 ∗Q∗|− 1

2 [v∗ + (θ − θ∗)′(S2 ∗Q∗)−1(θ − θ∗)]
v0+K

2 (24)

Equation (24) follows a t-distribution which can also be written as:

θ|y ∼ t(θ∗, S−2 ∗0 , Q∗, V ∗) (25)

And from the definition of t-distribution, the mean and variance can be obtained
as:

E(θ|y) = θ∗ (26)

v(θ) =
SSE

v0 − 2
Q∗ (27)

Equation (26) and (27) are mean and variance estimators used to obtain the values
for parameter, θ for different degree of multicollinearity. SE (θ∗) is the standard
error of Bayesian estimator of θ∗ which can also be obtained as:

SE(θ∗) =
√
v(θ∗) (28)

The Credible interval for estimators of Bayesian in the same way we have confidence
interval in the classical is given by:

θ∗ ± t1−α/2v∗SE(θ∗) (29)
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4. Simulation and Prior specification

The data experiment is set up using the Data Generating Process (DGP) below:

y = 17 + 8.5x1 + 5.0x2 + 2.0x3 + ε (30)

The error term, ε ∼ N(0, 1) and the explanatory variables generate the dependent
variable. Since the degree of collinearity among regressors (X’s) is of central impor-
tance, the works of Alkhamisi et al. (2006), Kibria (2003), Kibria and Banik (2016)
will be used in generating x’s using the following equation:

xij = (1− ρ2)1/2x∗ij + ρxip, i = 1, 2, ..., n, j = 1, 2, ..., p

Where x∗ij is the independent standard normal pseudo-random numbers, ρ is the
correlation between any two x’s.

Prior specification

v0 = 4, V0 =


2.4 0 0 0
0 6× 10−7 0 0
0 0 0.15 0
0 0 0 0.6



S−20 = 1.5, θ0 =


15
10
5.5
2.5



5. Results and Discussion

The objective of the work is to compare performances of our approach with OLS
and work of based on the strength of multicollinearity. Here, two different degrees
of correlation between variables considered are ρ =0.80 and 0.95. The sample
sizes selected are N= 30, 200 and 300. The results from Bayesian and OLS
methods for different degree of multicollinearity using Standard Error (SE), Confi-
dence/Credible intervals and Mean Squared Error (MSE)as criteria for comparison
are presented in this section. In the tables below, estimators are represented as;
Bayesian Informative Prior (BIP) for our estimator used in this work and OLS for
Ordinary Least Squares. Tables 1-6 show the Standard Error estimates and CI of
the estimators while the MSE of the estimators are also reported in Table 7
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Table 1: ρ = 0.95 when the sample size, N=30.
Parameters Estimators Standard Error CI

θ0 OLS 0.6965 (16.5354,19.3985)
BIP 0.3642 (15.7856, 17.2657)

θ1 OLS 2.8858 (3.3379,15.2017)
BIP 0.0009 (9.9981, 10.0019)

θ2 OLS 4.9174 (-7.8681, 12.3478)
BIP 0.4546 (4.2310, 6.0787)

θ3 OLS 5.2168 (-9.7692, 11.6775)
BIP 0.8081 (-0.5084, 2.7760)

Table 2: ρ = 0.80 when the sample size, N=30.
Parameters Estimators Standard Error CI

θ0 OLS 0.6793 (15.7968, 18.5894)
BIP 0.3371 (15.6903, 17.0605)

θ1 OLS 1.5259 (5.4896, 11.7626)
BIP 0.0008 (9.9983, 10.0017)

θ2 OLS 2.4797 (-0.6799, 9.5144)
BIP 0.4078 (4.4804, 6.1378)

θ3 OLS 2.6355 (-2.8534, 7.9813)
BIP 0.7238 (0.3521, 3.2941)

Tables 1 and 2 report the SE and CI for both the Bayesian (BIP) and OLS methods
when the degree of multicollinearity are ρ = 0.80 and 0.95 for sample size of 30.
The SE of the estimators for parameters when, ρ = 0.80 are bigger than when ρ =

0.95 which means then lower the degree of multicollinearity the better the
estimates. Results obtained from the tables 1 show that Bayesian method gives
better performances than the OLS estimator having a minimum SE for all the

parameters considered. The CI also reveals that the proposed Bayesian method
has a narrower CI than the OLS method of estimation.
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Table 3: ρ = 0.95 when the sample size, N=200.
Parameters Estimators Standard Error 95%CI

θ0 OLS 0.2174 (16.5865, 17.4247)
BIP 0.2125 (16.5879, 17.2018)

θ1 OLS 1.0457 (5.9640, 10.0887)
BIP 0.0008 (9.9983, 10.0016)

θ2 OLS 1.5373 (-0.5523, 5.5111)
BIP 0.3689 (3.7979, 5.2524)

θ3 OLS 1.5661 (2.1171, 8.2944)
BIP 0.5015 (-0.6434, 1.3343)

Table 4: ρ = 0.80 when the sample size, N=200.
Parameters Estimators Standard Error CI

θ0 OLS 0.2050 (16.2912, 17.0996)
BIP 0.1660 (16.2988, 16.9536)

θ1 OLS 0.4811 (7.3150, 9.2127)
BIP 0.0008 (9.9985, 10.0015)

θ2 OLS 0.7675 (4.2616, 7.2887)
BIP 0.3240 (4.2634, 5.5410)

θ3 OLS 0.7885 (0.2960, 3.4062)
BIP 0.4334 (-0.4631, 1.2459)

Table 5: ρ = 0.95 when the sample size, N=300.
Parameters Estimators Standard Error CI

θ0 OLS 0.1783 (16.6980, 17.3999)
BIP 0.0858 (16.6082, 16.9460)

θ1 OLS 0.8281 (7.2806, 10.5401)
BIP 0.0008 (9.9984, 10.0016)

θ2 OLS 1.3195 (2.3793, 7.5728)
BIP 0.3455 (5.1697, 6.5293)

θ3 OLS 1.2601 (0.4608, 5.4207)
BIP 0.4380 (3.0036, 4.7276)
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Table 6: ρ = 0.80 when the sample size, N=300.
Parameters Estimators Standard Error CI

θ0 OLS 0.1744 (16.2166, 16.9030)
BIP 0.1482 (16.3663, 16.9497)

θ1 OLS 0.4130 (7.0599, 8.6854)
BIP 0.0008 (9.9984, 10.0015)

θ2 OLS 0.6380 (4.2917, 6.8028)
BIP 0.3068 (4.0674, 5.2748)

θ3 OLS 0.6512 (2.2425, 4.8056)
BIP 0.3952 (0.3285, 1.8838)

Tables 3-6 also present the SE and CI for both the Bayesian and OLS estimators
when the degree of multicollinearity are ρ = 0.80 and 0.95 for sample sizes of 200
and 300. The SE for sample sizes of 200 and 300 reduces compared to when the

sample is 30. However, Bayesian method also has minimum value for SE and
compact CI compared to OLS for sample sizes of 200 and 300.

Table 7: MSE of estimators for ρ = 0.95
Sample sizes OLS BIP

30 2.5599 0.8123
200 4.2136 1.3060
300 2.8584 1.1877

Results from Table 7 show the MSE of the estimators when the degree of multi-
collinearity is ρ = 0.95 for all the sample sizes. The MSE of Bayesian method of
estimation are smaller than the OLS estimator for all the sample sizes considered.

6. Conclusion

In this work, Bayesian method of estimation with the use of informative prior
(conjugate) in the presence of multicollinearity for linear regression model was
proposed. The performance of proposed Bayesian method was compared with OLS.
In order to facilitate comparison between the two methods, three different data sets
were simulated with two multicollinearity levels. The criteria used for evaluation of
performance of the estimators are the Standard Error (SE),Confidence/ Credible
Intervals (CI)and MSE.

The performance of the estimators in terms of Standard Error (SE) shows that
there was an increase in SE due to the increase in the degree of correlation
especially when the sample size is small. As the sample sizes increase, the
performance of both the OLS and BIP improve. The Bayesian method, BIP is more
precise than OLS estimator having the minimum SE for both small and large
samples while the average deviation from the true parameter as measured by MSE
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also showed that the MSE of Bayesian estimator is relatively smaller than the OLS

In terms of stability of all the estimators, the results from the Credible and
Confidence Intervals (CI) of estimators show that, Bayesian method, BIP has a
narrower CI of parameter estimates and also the most stable estimator compared
to OLS.

The results suggested that the proposed Bayesian method using a natural conju-
gate prior; outperformed the OLS method.
Therefore, Bayesian method of estimation is suitable in handling multicollinearity
especially when degree of multicollinearity is high and when there is sufficient
prior information.
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