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Abstract. In this paper, we consider the study of the efficiency of predictive den-
sity estimators of multivariate observables measured by the frequentist risk cor-
responding to S-Hellinger distances as a set of loss functions (for every a € [0, 1]).
The main themes, revolve around the inefficiency of minimum risk equivariant
(MRE) predictors in high enough dimensions and about the inefficiency of plug-in
estimators. We improve the plug-in for a dual point estimation loss with or with-
out expanding the scale. A link between the S-Hellinger distances risk of plug-in
type estimators and the risk under reflected normal loss for point estimation is
established, bringing into play all the established literature on Stein type domi-
nators. Further, we suggest dominant estimators with or without the presence of
restrictions on the unknown mean parameter. Ultimately we prove under the new
measure of goodness-of-fit dominance results under a restricted parameter space
(multivariate and univariate).
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Résumeé (French abstract) Dans cet article, nous considérons I'étude de l'efficacité
des estimateurs de densité prédictives d’observables multivariés mesurés par le
risque fréquentiste correspondant aux distances S-Hellinger en tant qu'ensemble
de fonctions de perte (pour chaque a € [0,1]) . Les thémes principaux tournent
autour de l'inefficacité des prédicteurs ERM (équivariant a risque minimal) dans
des dimensions suffisamment élevées, et de I'inefficacité des estimateurs plug-in.
Nous améliorons I'estimateur plug-in pour le probleme ponctuel dual avec ou sans
extension du paramétre d’échelle. Un lien entre le risque de distance S-Hellinger
des estimateurs de type plug-in et le risque sous perte normale refléchie pour
I'estimation ponctuelle est établi, en mettant en jeu toute la littérature établie sur
les dominateurs de type Stein. De plus, nous suggérons des estimateurs domi-
nants avec ou sans la présence de restrictions sur le paramétre moyen inconnu.
En fin de compte, nous prouvons que la nouvelle mesure de divergence permet
d’obtenir des résultats de dominance dans un espace paramétrique restreint
(multivarié et univarié).

1. Introduction

Let X and Y be two normal d-variate random variables, independently distributed,
and let p and ¢ be the respective pdf’s (probability density functions), such that
X0 ~ Ng(0,0214) and Y0 ~ Ny(6,0214). The pivotal problem is predicting the un-
known mean vector ¢, by observing X, where o2, 03, p and ¢ are known. We will
assess the goodness of prediction fit of a given predictive estimate G(y|x) from the
target density ¢(y|6), via the family of S-Hellinger Distances (introduced by Ghosh

et al (2017)), defined as follows

2 atl atl 2
D ,G) = —— (AT —q 2 (ylo ) d 1
so(0:0) = T L (ylx) —q > (lo)) dy (1)
2 a+1 a1

= —  |lg =2 — 2 9 2

T3 lla ™ Wle) —a = (ol
with one tuning parameter « taken in [0, 1], where ||.||2 is the usual Ly-norm. This
is a generalized family of L, type distances, which generates the twice-squared
Hellinger distance at a = 0, and exactly the Ly;-norm for « = 1. In fact (1) connects
the ordinary Hellinger distance to the Ls-norm smoothly through the parameter

«. However, (1) is not exactly a distance, but rather after a slight makeup, i.e.

this entity (HTO‘DSQ (q, cj))% is now a genuine distance. Furthermore, we may use
multivariate location and covariance estimation using the S-Hellinger distances,
since it presents some easiness, which is mainly due to the fact that it corresponds
to a distance metric.

An extension of the inefficiency of MRE predictors in high enough dimensions to
our case is established, as well as the efficiency of plug-in estimators by either
improving on the plug-in for a dual point estimation loss or expanding the scale.
For the plug-in estimation problem, it is the reflected normal loss (introduced by
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Spiring (2011)), that turns out to be the dual loss function to S-Hellinger distances
for predictive estimation, which is also a bounded loss, this latter property seduces
many statistical decision makers, and brings into play all the established results
on Stein effect (Stein (1956)). Afterwards, we introduce dominating estimators
with or without the presence of restrictions on the unknown mean parameter.
Ultimately we extended under the new measure of goodness-of-fit dominance
(S-Hellinger distances) Hartigan type results, under a restricted parameter space
(multivariate and univariate).

The organization of this paper is outlined as follows. In Section 1, we introduce
some preliminary identities and results, namely, an essential identity in general
(matrix variate variance) and then a particular case (degenerate variance), then
we deduce the expression of S-Hellinger Distances between two gaussian distribu-
tions. Afterwards, we establish the expression of the generalized Bayes estimator
for a prior 7(f) under S-Hellinger distances, as a consequence we derive the MRE
predictor for the flat prior (7(6) = 1), and we show its minimaxity, where we re-
trieve the established results for Kullback-Leibler loss (e.g. Kubokawa et al (2015))
and Liang et al (2004)), and for Ly;-norm (o = 1), Kubokawa et al (2015). We de-
duce the inadmissibility for d > 3 of the MRE estimator Stein (1956), finally we
give an example in the univariate case. In Section 3, we swiftly move to study
plug-in type estimators, we firstly evaluate the duality and efficiency of density es-
timators NVy(6(z), c>021,), where c? > 1, the scale-expanding factor. We established

a sufficient condition of domination when the estimators of # are f(z) = X and
0(z) = aX, with 0 < a < 1. To emphasize these findings, we provide a bunch of
classic dominating estimators when d > 3, we provide numerous numerical eval-
uations particularly for the positive part of the James-Stein estimator. For sake of
avoiding congestion, we restricted our study on three main members of S-Hellinger
family, namely for a € {0,0.5,1}, standing respectively for: twice-squared Hellinger
distance, mid-range of the set [0,1] and L,;-norm, (Example (6) Baranchick type
estimators), where we recover domination under the same sufficient dominance
condition on the scale-expanding factor, the estimator of 6 is either X or aX, as
well as for other cases, emphasizing the existence of other areas of domination,
with other conditions on the scale-expanding factor ¢? (¢> > 1), and the ratio of
variances r = o2 /o,. Ultimately, we show that the Hartigan type results Hartigan
(2004), shown previously in Kubokawa et al (2015), hold under S-hellinger dis-
tances.

2. Bayes, best equivariant and minimax estimation in the normal case

Let X and Y be two normal d-variate conditionally independent random variables
given 0 € R%, and let p and ¢ be respectively the pdfs of X given ¢ and Y given 6,
with 02 and 05 being their respective variances, such that

X0 ~ p(x]0) £ Ny(0,0214) and Y|0 ~ q(y]0) < Na(0,021,), 2)

where *£” stands for equality in distribution.
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In the next lemma we give a general expression of S-Hellinger distances as a loss
function of two normal densities, for two normal distributions, namely, ¢;(y|f;) and
¢2(y|02), where o7 and o3 are their respective variances.

Lemma 1. For 0 < o < 1, and under the model (2) such that p(z|0) = q(y|0,) for

01 € Ra, q(y10) = q(y|02) for 62 € Ry, 02 = 0} and o], = 03, we obtain

2 1to 1to 2
Ds.(ana) = 1 [ (07 6100 - 0™ Gien)) dy
d
—da 2 2 T2
R () B ] s St @)
(1+ )8+t 2(0t03) =
X

exp [ — 161 — 65| .
2175 (0} +03)

Proof. It is enough to directly apply Lemma 3, for a1 = a3 = (1 + «)/2. O

The next proposition gives a general expression of the bayesian predictive density
estimator (BPDE) of Y given X, under S-Hellinger distances, for any prior = (6) (it
could be improper).

Proposition 1. Under S-Hellinger distances and for a prior « (it can be an improper
prior), the bayesian predictive density estimator of q(y|0) is given by

2 _
kali (y, )
2

= (4)
Jra kZTIi (y,z)dy

Gr (ylz) =
with
o) = [ wl)w(6la)ds

whenever (4) exists.
Proof. Let §(y|x) be a BPDE of ¢(y|0), and let p(¢) be its corresponding posterior

risk, which is stated according to Fubini’s theorem, denoting w = ' (y|z), as the
following

o) = [ Ds.(a.d)m(Ola)as
2

B / (kra(y, ) + @ (y|2) — 2kass (y,2)3°F (y|z))dy
]. + 0% Rd 2

2
= T a /Rd(aﬂ — 2wko%1 (y,2) + k11a(y, x))dy

= h(w),
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by Holder’s inequality we establish that the function h reaches its unnormal-
2

ized minimum at k{2 (y,z). Therefore, the BPDE denoted by §.(y|z) satisfies

2
gr(ylz) x k115 (y, ), thus, by normalizing this latter we retrieve Equation (4), which
2
concludes the proof. O

Remark 1. We highlight that the predictive density is proper if and only if the
posterior density is proper. The BPDE’s expression in (4) includes the established
expression of the BPDE under Ly-norm in Kubokawa et al (2015) (for o = 1 un-
der S-Hellinger distances), which is similar to Aitchison’s expression under KL in
Aitchison (1975).

Example 1 (Normal prior). We suppose that the distribution of 6 is NV;(0,21,;), then
2 _2
we obtain that the posterior density is AV (ﬂiﬂla and

+02 t2402

t? 202 207
kita £ Y
%(va)OCNd <t2+037<t2+0_%+1+a d 9

and hence,

= 2 l1+a t%02
k1+u T 2 I )
%ﬂ(y’x)o‘/\[d<t2+ag’( 2 2yo2  Tv)l

Therefore,

. t2 l+a t%02 5
R e ]

Example 2 (Non informative prior). In this example, we consider the flat prior
m(0) = 1, under the model (2), then we compute its corresponding BPDE, which co-
incides with the minimum risk equivariant (MRE) estimator, denoted by G, (y|x),
becomes

vl

dmre(yu):qﬂ_l(yu):(a; (”%H)) of —v=r -

2 Uy\/HT”‘r—i—l
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with 7 = 07 /o2. We can also provide the expressions of Ds,_ (¢, Gmr.) and its corre-
sponding frequentist risk Rg_(q, §mre), under S-Hellinger distances:

do

A 2(27‘1’02)_% 1+« el
Ds, (¢, Gmre) = m x |1+ (2 r+ 1) (6)

%
1+a —Ale—ell? 0112
- 92 T+2 (T+1+a)
2(&er+1) %
2(27702)_% 1+« S
- _ y

RSQ (Qanre) = 7(1 n a)%""l 14+ ( B r+ 1) (7)

—4(14a)
1 4
2( ‘;O‘r+ 1> 1 .

Remark 2. (a) For « = 1 we find the same expression of MRE estimator under
Lo-norm established in Kubokawa et al (2015), which coincides with Aitchison’s
BPDE, under Kullback-Leibler loss, indeed:

~ 2 _d y—
mreyYlT) = r+1 2 — .
o) = @3+ 1) 4o (2 )
We notice that for « = 1 we retrieve as well the risk expression of the MRE estimator
under Ls-norm established in Kubokawa et al (2015):

4 4
2 2

Rs, (qv(jmre) = (4770'5)_ )

(b) For o = 0 under S-Hellinger distances, we find the expression of the minimum
risk equivariant estimator under twice-squared Hellinger distance:

1—(r+1)~

Inreyl2) = (@2(r/2+ 1)) 46 <\/T> ©

Therefore, the risk expression of the MRE estimator under twice-squared Hellinger
distance, where the MRE estimator corresponding to the squared Hellinger dis-
tance:

Rs, (¢, Gmre) = 21 — (14 7/2)" %),

Example 3 (Univariate Laplace distribution). In this example we consider the
Laplace distribution, so that X and Y are independently Laplace distributed, and
the prior distribution of 4 is also Laplace distributed (centered for sake of simplic-
ity), i.e.:
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1 |z—6]
0 = —e =z
palt) = 5
W) = o—e 5"
ql) = —e W
2y
1 _lel
() = —e o,
( ) 279

with v,, 7, and vy (a hyperparameter) are respectively the scale parameters of X,
Y and 6. The posterior density turns out to be also Laplace distributed, i.e.

e Yz Vo
Laplace ( x, ) ,
Yo+ Yzt Vo

2
Hence the unnormalized BPDE k7% (y, z) is proportional to
2

1 2
Laplace Yo z) +a [ Y2 n Yy ) ’
Yo + Yo 2 Yet+v 1+«

Thus, the corresponding BPDE states as follows:

. Yo I+a ( v 27y
(Y|, ~ Laplace T, + . 9
(vl 70) P (%ﬁw 2 (’)’z-i-’}’a 1+a ©)

The next proposition provides another formula for the BPDE, presenting a con-

. 1fo . . . .
voluting form between ¢ > and a given arbitrary function g, when the posterior
density coincides with ¢ at the point (¢ — 6(x)), and gives the expression of the
MRE (Minimum Risk equivariant) estimator (i.e. for 7(f) = 1) and establishes its

minimaxity.
Proposition 2. We have the following facts.

(1) Under the model (2), if the posterior density w(0|z) is of the form g(6 — 0(z)), where
g an arbitrary function, and é(x) any point estimator of 6, then:

For any prior distribution (), the BPDE under S-Hellinger distances, states as the
Jollowing

1

(475" xg)™ (y — O(x)
Jral@™= % g) T (y — O(x))dy
(2) The MRE estimator associated to (10) under S-Hellinger distances is given by

Gr(ylx) = (10)

1to 2
(¢= *p)T= (y|z)

Joa(g 2 % p) e (yla)dy

qure(y|x) = (11)

Furthermore, G, (y|z) is minimax.
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proof. See the appendix. [J

Example 4 (Univariate Laplace distribution). According to Example (3), we de-
duce the expression of the MRE estimator under S-Hellinger distances, by noticing
that it suffices to substitute ﬁ by v., and %”_;”Wa: by z, as pointed out by (9),
since 7 (0|z) reduces to p(x|f) when 7 () = 1, therefore,

1
Gmre(ylz) ~ Laplace <x7 ( —;ar + 1> %,) ,

with r = v, /7,.

3. Plug-in type estimators in the normal case
3.1. Dudlity and efficiency of density estimators Ny(0(z), c>021,)

We consider in this subsection the normql mode}, in which we aim to assess the
performance of density estimators ¢, 4(y|6 ~ Ny(0(z), c*o21;) which combines both

a plug-in component with (z) being an estimate of ¢, and a modification of vari-
ance component for ¢ # 1 Kubokawa et al (2015). We give a sufficient condition
on the scale-expanding factor c of the efficiency of such estimators related to the
efficiency of the point estimator §(z) in estimating 6, as well as the degree of vari-
ance expansion governed by the choice of ¢? > 1. With respect to the duality with
the point estimation problem, it remains the reflected normal loss, under our loss
function, S-Hellinger distances, denoted as

5 19— 611>
Dv(e,e) = 1 — eXp <_2’y y (12)
with v > 0, which brings back the established results in Kubokawa et al (2015),
whereas it's the quadratic loss (||. —.||?) that intervenes as a dual loss for Kullback-

Leibler ( George et al (2006); Brown et al (2008)), it's worthy to mention that
. AN (o A2
Jim 2yD,(9,6) =6 - 0]1°.

The expression of S-Hellinger distances are given by

A 4(2702)= % 0(z) — 0|2
Do.ta.dwe) = T (1 LI 13)
14+«
—da
_ 4(2mo2)™ 2 (6.9)
S (apit

402
where 75 = 4.

In the next lemma we compute the S-Hellinger distances of our new candidate 4.2 >
using an auxiliary lemma:
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Lemma 2. Let j_. ;(y|0 ~ Na(f(x), c®0214) be a scale-expanded estimator of q(y|6), if
Q.2 5yl ~ Na(0(x), ?o;14), then its corresponding S-Hellinger distances are given by

. 2(2%05)*% o da 14+¢2 \
DSa (Qv q027é) - W 1 + (C ) 2 —2 W (14)
6(z) — 0|2
o [ 0@ = 0l
21+(y1(1 + c?)

Proof This is a direct application of Lemma 3, by making these substitutions
Q0 =¢ q@=7{qz.4 th=0,0=0(),0f =0, and 03 = ?0..00

Theorem 1. Under the model (2), we have:

1. For a fixed ¢*. We have q,. b, ~ Ny(6y, ?o;1,) improves on g, b, ™~ Ny (b, FPopla)
under S-Hellinger distances iff 0y improves on 6, under reflected normal loss a +
bD,,(0,0), with v, = 402(1+ ¢?)/(1 + a), where

d

2

d

2(2mo2) 1+c2 )
GZ% L+ ()% —2 [ :
(1+a)z+! 2(c?) =

and
d
2

4 [+ ae)@red)e 1+
l+a 2(c?) ="

2. Forf(z) = x, and let r be the ratio of variances, i.e. r = o2/o;. Therisk Rs, (¢, §e> )
is constant, and states as

d
da 2

2(2mo3) % H(Cz)d;2<1¥“7“+1+02> , (15)

(1+ o)1 2(c2) =

)

3. For all d, the constant (and minimax) risk of §m.r., corresponding to the optimal

choice of ¢?, ¢? = 112y + 1 is equal to

2(2#05)_%&

(14 a)zt?

da

(1+ @)% —2(e o). (16)

4. Furthermore, for 0 < o < 1, all estimators q.2 ¢ dominate the plug-in estimator ¢, ;

Jor all d, whenever 1 < ¢ < (172)c2.
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Proof. Let us proceed by parts.
Part (1) follows directly from Lemma (2).

For part (2), using the fact that §(z) = = and the fact that g , (y|z) L Ny(a, (Po2)la)
we obtain (14), the use of (21) leads to (15).

Part (3) The value of ¢? that minimizes the risk in (15) is attained at HT“H— 1, indeed,
if we put u = ¢* > 1 and let ¢, be a function of u such that:

4
2

. uf%a_ U+ Cx -
Qas(u)_ 1+( ) 2 (2(u)12a> )

d
2(2#05)_70‘

the risk in (15) denoting that A, = - becomes

RSQ (9, un,m) = A*(ps (u)
It is easy then to check that ¢’(c2) = 0. We obtain (16) by inserting 2 in (15).
For part (4), we distinguish two cases, namely, case 1: 0 <« < 1 and case 2: o = 1:

case 1: The derivative function of ¢, satisfies

299; (U) 14.d do
e — o) L )y T (u 4 ch)t
dAu= 51 (L ajus ™ (u+e) 1+a

it can be seen that for u < (%)CE’ the risk in (15) becomes a decreasing function
of u, whenever 0 < o < 1.

case 2: A stronger condition on the ¢? is available in Kubokawa et al (2015) (not
only sufficient but also necessary), where ¢? = 1 + r, which concludes the proof. B

3.2. Dominating plug-in type estimators of the form 0(z) = ax

In this section, we consider the performance of estimators of the type ¢., ~

Na(6, ¢?0214), and with more development for the affine linear case 0(z) = ax, with
0 < a < 1. As in subsection 3.1, there exists an optimal choice of the expansion
factor ¢?, when a =1 (i.e. for ¢ = ¢2 = 427 + 1 under S-Hellinger distances), under
the conditions of Theorem (1). Here, the objective is to assess whether such results
hold for other choices of 6(z), and more specifically: to determine a range of vari-
ance expansions of values ¢? that leads to improvement, and to determine whether
there exists a universal dominance results for sufficiently large d (i.e. for all ¢ > 1).

For any §(z) € R%, Lemma (2) implies that
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-4
~ _da da 1—|—u
RSa(q’q(;27é) = A, (1 + (u) de _23"'1 (W) (17)
0(z) — 0|2
B ey 00
21+a(1+u)

More precisely, we aim to study the case where §(X) = aX, consequently (17) be-
comes by virtue of Lemma (3):

vl

da

Rs.(¢,4.2,9) = palu) = A (1 + <u>-2—2<;z$fii> (18)

T,
exp - ira R
a?r —+ a21(1~_+a)

where ug = a*(1+a)r+1and T, = ||0]|*(a — 1)*/o;. Thus, in the following proposition
we established a sufficient condition of domination when 6(X) = aX:

Proposition 3. All estimators of the form §.: ,x dominates ¢ ,x, whenever 1 < ¢* <

l—«
71+a’u,0.

proof. We derive the derivative of the risk function, denoted ¢, (u) in (18), verifying
this expression

2u u + ug )—S( 14+« j—Y 4T, u )

a7 = Gom) T G T T T s e —n + 1)
T,
S R 19
X exp( 2(a2r+a21(q:—1a))> « (19)

As in (19), a sufficient condition of domination would be

1 < u < $=2up, which concludes the proof. [J

3.3. Dominating estimators over the MRE estimator

According to the established parallel between plug-in estimation under S-hellinger
distances in Theorem (1), with the point estimation under reflected normal loss
a + bD,,, this latter being concave in |6 — ]|, however the fact that it's strictly
bowled-shaped in ||§ — || brings into play all the valid results for loss functions
alike. It’s worthy to mention that the previous works tackled a wider class of losses,
namely those of the form f(]|6 — 6|2), where f is a concave nondecreasing function
(Brandwein et al (1981), Brandwein et al (1991) and Brandwein et al (1993)), be-
sides, Kubokawa et al (2015), Kubokawa and Saleh proved the dominance of the
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bayesian estimate ; (z) corresponding to uniform prior on (a,b), or (a, ) over the
MRE estimator X under reflected normal loss, in the univariate case, as men-
tioned in Kubokawa et al (2015), which remains valid for plug-in estimation under
S-Hellinger distances, in the normal case, for example:

Theorem 2 (Univariate normal case). For d = 1 and 0 € (a,b) (resp. 6§ € (a,0)),
the plug-in estimation under S-Hellinger distances of q(y|9), based on X, the plug-in

y—0y (x)
Co'y

type estimator %¢ ( ) improves over %¢ (%) under reflected normal loss

D, (6, 0), where 0y () is the Bayes point estimator of § associated with a uniform
prior on [a,b] (on [a,0)), with v, = 402(1+ ¢*) /(1 + a).

proof. Since () improves upon the MRE estimator as shown in Marchand et al
(2005), the result follows from part (1) of Theorem (1). O

By virtue of an intuitive lemma in Kubokawa et al (2015), together with the estab-
lished duality in Theorem (1) between plug-in density estimators under S-hellinger
distances, and the corresponding point estimator under reflected normal loss, we
are led to the following theorem, in the multivariate case, which is net extension of
the same result under L;-norm in Kubokawa et al (2015).

Theorem 3 (d-variate normal case). Considering the estimation of q(y|0) based on

X : Under S-Hellinger distances, the MRE estimator G, (y|z) ~ Na(x,0;c214) is inad-

missible when d > 3, and dominated by §(y —0(x) ~ Ny(0(x), o2c2ly), as long as o(W)
dominates W, where W ~ Ny(0,021;) under the quadratic loss || — 6|, such that

2 2 2(14c}) . _ 92/ 2 2 _ 1ta
T5 = OusaTayr(iTa) withr =03 /o, and c5 = =5%r + 1.

proof. The result is readily verified, by virtue of Lemma 3.3 in Kubokawa et al (2015)
and part (1) of Theorem (1), by making the these substitutions: ¢? = ¢Z = 27 + 1
and v, = 20(1 +¢*)/(1 4 ) for part (1). O

The results previously shown emphasize the inadmissibility of the MRE estimator
as a benchmark estimator for (d > 3), which brings into play all the established
results on the Stein estimation under quadratic loss, more precisely, we can provide
several explicit dominating plug-in type density estimators of the form ¢(y — 0(z) ~

Na(0(z),02¢214). where ¢ = (1427 +1) under S-Hellinger distances, as the following:

Example 5 (Bayes estimators under Superharmonic prior). Stein in 1981 showed
that when the prior 7 is superharmonic, the Bayes estimator (W) improves upon
W, with W ~ Ny (0,02 1,), when d > 3, under quadratic loss, as a consequence, the
corresponding plug-in density

Gyl O(z)) ~ Ny (Ox(x),021;) dominates G, (y|z) under S-Hellinger distances. More-
over, Stein’s result also brings about the dominance of 6, (z) over X. Furthermore,
we can widen more the family of dominating estimators, by taking the square root
of the marginal density of W under =, denoted by \/m. (W), to be superharmonic
as well Fourdrinier et al (1998).
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Example 6 (Baranchick type estimators). Baranchick in Baranchick (1966), sug-
gested a better class of dominating estimators (it includes the James-Stein estima-
tor) over the MLE estimator (i.e. W ~ N(6,021,)), where 02 = 02 under S-Hellinger
distances, namely, Baranchick type estimators, this class of estimators is of the
form

Oy ) = (1- 005 . (20

where 7(.) is an increasing function, such that 8 €]0,2(d — 2)¢?] and 0 < r(.) < 1.
It is easily seen that such estimators fully satisfy the conditions of domi-
nance in theorem (3), thus, the corresponding plug-in type estimators, i.e.
Gbre ~ Nd(élgw(.)(W),agchd), dominate the MRE estimator §,,,. when d > 3 under
S-Hellinger distances .

In order to get a closer view, we singled out of the Baranchick class of estimators,
a modified version of the most famous and historical member of this class, which
is considered to be the precursor to the Baranchick class of estimator, namely the
positive part of James-Stein estimator, i.e.

where

(d—2)o2c2

to obtain numerical simulations based on Theorem (3), for the corresponding
plug-in estimator g,;, ~ Ny(0,;5(W), 02c21,) versus the MRE estimator Ny (X, 02¢21,)
, setting fixed values for the dimension d, the ratio of variances r, the scale-
expanding factor ¢ and the tuning parameter «, mainly for twice-squared Hellinger
distance (for & = 0), and Ly-norm (for @ = 1), tuning over A\ = ||f|| and the ratio
r = o2/o2, and for sake of simplification we take o7 = 1, then we assess the ratio

Ratio = Rs, (0,dpjs)/Rs. (0, Gmre)-

We present the 3D figures corresponding to three members of the S-Hellinger fam-
ily, namely: « € {0,0.5,1}, assessing the latter ratio (Ratio) for both (A, r) and (), ¢),
where d € {3,5,10}, A € [0,10] and r, ¢ € [1, 10].

Comments on the figures:

Let us make the following comments.

(a) The fact that the barrier of dominance };—gci (avoiding o = 1, to go on details

Kubokawa et al (2015)) of the expanding factor ¢, is an nondecreasing function
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Newm

T
0% 8 7 65 43 3 )

c=10

Table 1. Ratio: d = 10, A € [0,10], € [1,10] and ¢ € [1,10], for & = 0 (twice-squared
Hellinger distance)
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Table 2. Ratio: d =3, A € [0,10], » € [1,10] and ¢ € [1,10], for o = 0.5 (the mid-range)
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W9 87 6543 1

c=10
Table 3. Ratio: d = 10, A € [0,10], » € [1,10] and ¢ € [1, 10], for o = 0.5 (the mid-range)
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of the ratio r, explains the growth of the area of dominance of the PJS esti-
mator over the benchmark MRE estimator, is in concordance with the growth
of r, further, we emphasize that this phenomenon is omnipresent at all dimensions.

(b) The second general phenomenon is that our two rivals (PJS vs MRE) become
twin estimators (superposition), once the norm A and the expanding factor c
take big enough values, the Ratio converges to 1 for low values of r (< 2), for
greater values of r (> 2), they become proportional with a remarkably constant
improvement of PJS estimate over the benchmark estimate (limit < 1), accordingly,
the greater the dimension gets, the sooner the Ratio converges to 1.

(c) Thereupon, coming to the effect of the tuning parameter o € [0, 1], whenever
a tunes from 0 to 1, the area of dominance shrinks more and more (where PJS
beats MRE), in both cases: either when (r € {1,5,10}, ¢ € [1,10]) or (¢ € {1,5,10},
r € [1,10]). For sake of avoiding congestion, we singled out only 3 members of the
S-Hellinger family, e.g. (o« = 0)corresponding to twice-squared Hellinger distance,
(o = 0.5)corresponding to the mid-range distance and (o = 1) corresponding to
Lo-norm.

Remark 3. Another class of dominating estimators which is wider than the
Baranchick class, in the sense that the latter class shrinks the sample mean X
towards 0, instead one can shrink X towards any arbitrary §. The authors in Ghosh
et al (2008), stated the explicit expression of the Bayes estimator 0, (z) of § under
S-Hellinger distances and a normal prior «(6) ~ Ny(p, AI,) with (A > 0), such that
0-(x) = (1 — B)x + By, where B = 02(A + 02)~!. Therefore a more general Bayes
estimator of § will be given by

. (x) = <1 - TE?) . T(S'S)%

where S = ||z — u||?/02, the authors established also the dominance of such esti-
mators over X under S-Hellinger distances.

Theorem 4 (Hartigan type result). Let W ~ N(0,021,;) with 02 = 0202/02 + 02 ,
and let 0, (W) be the Bayes estimators of § associated to the prior = and the quadratic
loss. For estimating the density of Y ~ Ny(0,0.1;) based on X ~ Ny(0,031;) under
S-Hellinger distances, whenever 0 is constrained to any convex subset C of R? with

non-empty interior.

(a) The estimator §(.; X) ~ Ny(0r, (W),02c21,) dominates uye(; X) ~ Nay(X,02c21,).
with ny being the uniform prior on C.

(b) Univariate case (C = [a, b]), the dominance of Gm,.(.; X) is attained at any ¢(.; X) ~

N0, (W), o2c21y), as long as the prior density « is absolutely continuous and sym-

metric around the mid-range of C ,i.e. ‘17*’7
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Proof. This is a direct consequence of Kubokawa et al (2015), for ¢? = 42y +1
under S-Hellinger distances and Part (1.) of Theorem 1, combined with point
estimation results of Hartigan (2004) for Part (a), and Kubokawa (2005), or
Marchand et al (2011) for part (b).

4. Conclusion and perspectives

By and large, the results of this paper established essential findings for assessing
the efficiency of predictive density estimators of multivariate observables for
S-Hellinger distances as a set of loss functions (for every a € [0,1]). Thus, by
widening the scope of investigation from L,;-norm (integrated squared error loss,
for « = 1), to a broader perspective, such as S-Hellinger distances, a family of
symmetric divergences for any « in [0, 1].

The main topics, revolved around the inefficiency of MRE predictors in high
enough dimensions and about the inefficiency of plug-in estimators by either im-
proving on the plug-in for a dual point estimation loss or expanding the scale.
Another key point, would be to upgrade these results to scale mixture of normals
as a model distribution, we already made an attempt, but faced significant hard-
ships. Last but not least, considering such models with unknown scale represents
one of several challenging and interesting problems worthwhile pursuing.
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5. Appendix
5.1. Auxiliary lemma

Lemma 3 (Degenerate case). For a;,as > 0, and if ¢1(y|01) ~ Ny(01,0%21;) and
q2(y|02) ~ Ny(02,031,), we have

d
2\1—ay (0_2)17(12 2

aq 0 s 0)dy = 92 (1—a1—a2) (Jl) 2 21

/]Rd " (y101)a5" (yl62)dy (( ) PO (21)

% exp 116 — 62|
207,

with 052 = %f + 1"_§a, where ¢ denotes the probability density function of a standard

normal random variable.

Proof. It suffices to make these substitutions ¥; = 0?1, and ¥ = 031, in Lemma
2.2 in Ghosh et al (2008), and (21) follows immediately, we clarify the calculus in
our degenerate case:

(XQU%C\C]O'%

(y20f91+a1z7§92
OLQU%+Q10§ ’

Given that w2 = P and o7, =

commonly used equality

we can check with ease the

12 12

-0 -0
ly= 6P lly =6

2 2
2y 22

Ay —wigl* | 161 — 6o
- o? T
1,2 0171—’— ?2

(22)

a1 a2

and by virtue of (22), we have the passage from second line to third line in the
calculation right below:
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1 o _dg y— 01 2
feo 05" 0G5 01021y = [ (2moty 2 enp | il
R4 o1
(&5}
— 65|12
X (QWUS)*%QQexp —7”2; 2]l dy

2
292

Q2
4
2

((emerFed (o) (03) 702 )

9 2 -0 2
. =0, =it} ,,
s
d
— ((271- (a1+a2 U%)—al(gg)—w)z
2 6, — 0 2
) ( loowd? 108 ),

P)
ﬁ_|_‘L2
ay a2

a
<(27T) ~(artan) (@D al(”%)laz)z exp [ — 161 — 62|

2 2 2 o2
Qo0] + (10 91 2
1 2 2( N + 2)

o (1 )y
01,2
=1

a
_ <(2ﬂ.)1(a1+a2) (0%)170(1 (O—g)loQ) : exp | — H01 - GQHQ

2 2 2 2
Qo0 a0 o1 92
207 + 1105 2(a+£)

X
T
g./—\
R)
N
o

which concludes the proof.
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5.2. Proof of proposition (2)
For part (1), by making this substitution u = §(z) — 6, our result follows easily:
1

2
demy(ylz) = mkﬁ; (y,z)

- — ( / 0 Wl0)g(0) 9>d9) -

M ()

- m#(w) ( / - é(z))g(u)du)lz“

1 1+a 2 A~
2

*g) T (y — 0()).

_2
where m, () = [z, kiia (y, z)dy.
2

For part (2), when 7(f) = 1, we have n(|z) = g(6 — 6(x)) = p(z|f), moreover, the
expression in (11) is readily verified by making these substitutions 6(z) = = and
g = pin (4), thus we get (5).

We give the proof in both the normal and the general case, proceeding via a direct
approach in the normal case (i.e. finding a least favourable sequence of priors to
show that §,,,.(y|z) is minimax under the S-Hellinger distances), we suggested a
somewhat different proof from the one given in Ghosh et al (2008) in the normal
case, this lying basically on a technique introduced by Girshick et al (1951), which
is identical to the one used in Kubokawa et al (2015).

Normal case For 7(6) = 1, we have 7 (0|x) = p(z|0), then we consider the sequence
of priors 7, ~ Ny(0,m?I,), and its corresponding posterior density

o) = (S2) o (50) o () ()

we notice that, lim,, .7, (0]z) = p(z|0), besides, since

vl

2\— % (14a) 2\ & 2 m*o} '\
kr,, (y,7) = (2m0,) " 4 (4moy,)? x |20, +1+ N

2
. _.m
Yy m2+03x
X ¢ — |
o2+ l+a m7o;
Y 2 m2+4o02
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then
2
2 1+a m?o? d Y- mgfﬁ-rf2 *
ke (y,z) o (02 + ——)" 2
Tm (y ) ( Y 2 m2+0-2) d) 0_2+ 1+a ’ITL20'2

Y 2 m2+<72

and we have as a consequent

14+« m202
2 m?+402)’

. m? 9
G, (Y]T) ~ Na <mQ—|—U%x’ oyt

according to example (2), we notice that lim,, ,ooGr,, (y|Z) = §mre(y|z); thus, the cor-
responding posterior risk will be

(@ m,) = / Do (4, Gy, ) (B]2) 0

d
2

_ 2(2mo7)”
(1+ a)%ﬂ

1+a m3r d
_o =" 41 —4(1+a)
( 2 m2+03 + ) 5

(1—|—a m2r do
2 m2+o2

pm(q,dr,) = 75.(€qr,) — Rs,(qqGmre) = 75,(Gmre), since Rg, (q,4r,) and
Rs, (¢, Gmre) are constant, which proves the minimaxity of ¢....(y|z), and that the
sequence 7, is least favourable.

General proof. We firstly state the expression of S-Hellinger distances correspond-
ing to the MRE predictor given in (5), by virtue of (1):

. 2 1ta lda 2
DSO, (Q» ere) =T _ , (q 2 (y|0) - sz;e (y|$)> dy
R

1+«

Then the corresponding frequentist risk given by

. 2 Ita Jlda 2
Rs, (¢, Gmre) = Tra ) (/Rd (q = (Yl0) — Gmre (ylx)) dy) p(x|0)dz

Consequently the corresponding bayesian risk states as, where 7(6) =1,

; S (410) — o () ) d
75, (4, Gimre) = 1+a/]Rd/Rd (/Rd q = (yl )—qmre(ylx)) y)

x p(xz|0)dxm (6

-~ L. /R (/R 5 010) = i o)) )

x p(x|0)dado. (23)

We consider now the following sequence of sets
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Sy =A{0/10;| < k/2,i=1,..,d,k € N"}.
We notice that S, — R? when k — oo, and let 7, be a sequence of priors given by

m(0) = kid(Sg(Sk) (24)

with dy(.) being the dirac function. The corresponding Bayesian estimators are of
the form

N kH“ 7 /fp%“(y,x)
G (yl2) = W.2)  _ Fs . (25)
Jra krlrkm (y,z)dy ms, (x)
where
Ky (y, ) = k= g, 0 lap(ela)da _ ks (y.2)
Tk ) k— dmﬂ—k({)?) mﬂ-k(l’) ’
with mm fs 0)do, ks, (y,r) = fsk qHTa(y\Q)p(x — 0)d9, and mg, (z) =

Jra ks 1+“ dy prov1ded that kg, (y, «) and m,, (z) are finite on S.
Accordmg to (1) the S-Hellinger distances associated to §r, (y|z) is:

2 (o - ul)

Ds, (q,qr,) = T+ Jea

besides, given that

k™ p(x0)ds, (9) _ p(=]0)ds, ()

k= dmy, () M, ()

T (0]z) =

)

the corresponding posterior risk is

P50 (@5 4(m,) = /Rd Ds, (g, Gy, )7k (0]2)dO
- [ (25 [ @0 - i o) ar) 2.

Further, after the following substitutions: z = 2 — 0, h = a — 0, v = £, the corre-
sponding Bayes risk will be
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s 0dm) = [ |95 (m e, (o)

- /S / ( / L (qlta(l/W)—(if?(yﬂf))?dy)

x m(””|<9) 1+ k™ Ymy, ()dzdd,
- L (L (05 v - e i) o)
x p(z)dzkdv,
with
k;ia , T
quc* (y|x) = i:LS(?(JLC))
where,
S, ={v/|vi| < 1/3},
Sh = {h/h+ kv € Sk},
ks, (0:0) = [ ' (lap(ala)da
and

msh(x) = /]Rd kS (y’ )dy

Provided that rg_(Gx,) < rs, (Gmre), @ll we need is to prove that

lim inf}’c—)ooTS(l (q7 éﬂk) 2 TS, (émre)-

For ¢ > 0, we have the inequality, given that S, = {v/|v;| < (1 —¢€)/2}:

rsiain) = [ (5 [ R (05 00— e i) ) leazar
L L (s L (0% 000 = in i) ) ez

It is easy to check for |v;| < (1 — €)/3, that {|h| < ke/2} C Sp, which insures that
Grp (YlT) = Gmre(y|x) when k — oo by construction. Now by virtue of Fatou’s lemma
and (23), we obtain

Y
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\%

2
lim infy_s o0 e lim infy_s o
iminfy_oors, (¢r,,) > liminfy_, 1+04/S* /Rd

(L F (4% 0 - 0 6lo) ) pledazar

2
> lim infy_ ook —¢
T 14+« S*/]Rd (/]Rd I
2

(45 016) = i 0lo)) d ) plehtzar

= (1 - E)dTSu ((L (jmre)v

X

X

thus, liminfy oors, (Gr.) > rs.(q, Gmre), hence the minimaxity of (11), which con-
cludes the proof.
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