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Abstract. We analyze some extensions of the Sequential Monte Carlo (SMC) meth-
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methods to handle high-order HMM through the customary recursions of poste-
rior distributions. It proceeds on mimicking the two-step procedure that is, the
prediction step and the update step, in the derivation of the filter distribution.
Once stated, we extend some smoothing recursions as the Forward-Backward al-
gorithm and the Backward smoother to deal with the actual smoothing distribu-
tions in high-order HMM. Finally, we give few examples as an application of these
extensions.
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Résumé. (Abstract in French) Nous analysons quelques extensions des méthodes
de Monte Carlo séquentielles (SMC) dans le contexte des modèles à espace d’états
non-linéaires. Précisément„ nous adaptons les méthodes SMC pour traiter les HMM
d’ordre supérieur à travers les récursions habituelles des distributions à posteri-
ori. Cela procède par mimer la procédure en deux étapes, c’est-à-dire l’étape de
prédiction et l’étape de mise à jour, dans la dérivation de la distribution du filtre.
Une fois obtenu, nous étendons certaines récursions de lissage comme l’algorithme
Forward-Backward et l’algorithme Backward Smoother pour traiter les distribu-
tions de lissage dans les HMM d’ordre supérieur. Enfin, nous donnons quelques
exemples de l’application de ces extensions.

1. Introduction

The literature of SMC methods is recent and can be dated from the paper
by Gordon et al. 1993. Although, several attempts had preceded including the
work by Handschin and Mayne 1969, Handschin 1970 among other. The main
obstacle to the SMC’s growth was the limitation of computing power. Since
then, several efforts have been made both in theory and in practice to lay down
the foundations of SMC methods. One may consults review articles such as
Doucet et al. 2000, Cappé et al. 2007 or books by Doucet 2001, Del Moral 2004
or Cappé, Moulines and Ryden 2005 which include several theoretical results and
a range of rich and varied applications in many areas.

So far, the SMC methods apply to hidden Markov models of order 1, commonly
called one-order HMM. Specifically, an X × Y−valued bivariate process {(Xk, Yk)},
where {Xk} is an unobservable dynamic Markov model of order 1. {Yk} represents
the observation process used indirectly to quantify the realizations of the process
{Xk} and satisfying the channel without memory property’s. However, it may
happen that the signal process {Xk} depends on more than one of its lags that is,
the memory process of the signal is more persistent. Thus, a direct application of
SMC methods still a little tricky.

To overcome this difficulty, one may at first think that a trivial rewriting of the
process {Xk} according to its lags is enough and may help to fall in the usual case
of Markov chain of order 1. However, this formulation is not without causing addi-
tional difficulty. In fact, one may face among other the degeneracy problem of the
state noise resulting from this state transformation. A new approach is needed.
In this perspective, we derive a new approach that helps handling higher-order
HMM without any modification of the former kind . To achieve it, we just mimic
the different stages in the establishment of the filtering and smoothing equations
in non-linear and non-Gaussian state space models. Singularly, we mimic the pre-
diction and the correction steps of the filter distribution in one-order HMM and
adapt it to HMM of order strictly greater than one. Once done, we derive analogous
recursions to those of the Forward-Backward smoother and the particle smoother
by Godsill et al. 2004. In the sequel, we show a use of the SMC methods extension
in an example a stochastic volatility with an ` memory depth. As a final point, we

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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show the usability of the SMC some parameter inference problems in linear and
Gaussian state-space model and in stochastic volatility model.

2. SMC methods in one-order HMM

Particle filter and smoother belong to SMC methods that aim at generating samples
realizations from actual and historical state sequences given the whole data set or
a part of it. The main idea being that any given measure on a measurable space
can be approximated by a sum of empirical measures. Particle filter aims at com-
puting recursively in time, the conditional distribution of the current state given
the whole data up to current time k, that is the filtering distribution. Smoothing
is more branched, however, most cases can be plugged into the joint smoothing
distribution. When classical approaches fail because of lack of analytical solutions
or for a non-linear or non Gaussian purpose, the SMC methods can help in
a certain way to get rid off most of these limitations. As long as some minimal
requirements are met, the SMC methods are set of powerful tools that approximate
any function of the state sequences even for a class of unbounded functions (See
Hu and Schön 2011 for detail of such unboundedness), given the data up to a
given time.

To state the general idea of particle filter and smoother, consider the following one-
order HMM: {

Xk = ak(Xk−1, Vk)
Yk = bk(Xk,Wk)

where ak(·) and bk(·) are possibly non-linear functions, {Xk} is a 1−order Markov
chain with initial state X0 distributed according to a diffuse prior distribution ν(·)
and transition kernel M from (X ,B(X )) to (X ,B(X )). We assume that M admits
a density function m w.r.t a dominating measure λ. (Vk)k≥1 and (Wk)k≥1 are i.i.d
disturbance noises independent of X0, respectively the state noise and the mea-
surement noise. We also assume that the observation process {Yk}, constructed
on the measurable space (Y,B(Y)) is conditionally independent given {Xk} with a
marginal distribution admitting a density function g such that

∀A ∈ B(Y), P(Yk ∈ A|Xk) =

∫
A

g(Xk, y)µ(dy),

where µ is a σ−finite measure on (Y,B(Y)). To sum up, the model is given by X0 ∼ ν(·)
Xk|Xk−1 = xk−1 ∼ m(·|xk−1) k ≥ 1
Yk|Xk = xk ∼ g(·, xk)

For the sake of simplicity the data are fixed that is, Yk = yk for all time indexes. The
Lebesgue measure is used as a reference measure in order to lighten the notations.
We also omit the dependence of the so called marginal likelihood function g(·) to

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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the data by using the shortened notation gk(xk) := g(xk, yk) and p(·) denotes a
generic symbol for densities. The following notations will be used to introduce the
quantities of interest. Let Fb(X k+1) be the set of bounded and measurable functions
on X k+1. Given an HMM with initial state X0 distributed according to ν(·), define

φν,0:k|k(f) := Eν [f(X0:k)|Y1:k] , k ≥ 0, f ∈ Fb(X k+1) (1)

as the conditional distribution of f(X0:k) given Y1:k with X0 ∼ ν(·). Whenever f
depends only on Xk, it is usual to simplify the notation to:

φν,k(f) := Eν [f(Xk)|Y1:k] , k ≥ 1, f ∈ Fb(X ) (2)

and we refer to this as the filter distribution that is, the conditional distribution of
f(Xk) given Y1:k. We also introduce the 1−step predictive distribution

φν,k|k−1(f) := Eν [f(Xk)|Y1:k−1] , k ≥ 1, f ∈ Fb(X )

with the convention φν,0|−1 := ν, where Eν is the expectation taken with the
underlying law and emphasizing ν as the initial distribution of X0. We also denote
similarly the corresponding conditional densities of the later distributions as
a slight abuse of notation. Their arguments help discriminate between these
functions. For example, φν,k(xk) is used to denote the filtering density while
φν,k|k−1(xk) is the 1−step predictive density.

2.1. Filtering recursions

Particle filtering goal is to compute recursively in time the joint posterior distribu-
tion (1) or some of its features such as (2) a.k.a the filtering distribution. In terms
of operator, (1) admits the compact recursive formula

φν,0:k|k(f) =
φν,0:k−1|k−1(fgkM)

φν,0:k−1|k−1(gkM)
, ∀f ∈ Fb(X k+1) (3)

and (2) satisfies the recursive formulas:

φν,k|k−1 = φν,k−1M (4)

and

φν,k(f) =
φν,k|k−1(fgk)

φν,k|k−1(gk)
, ∀f ∈ Fb(X ). (5)

Note that (3) and (5) are obtained via Bayes rule and (4) is a direct application
of Kolmogorov equation. A more intuitive interpretation of these relations can be
stated in terms of corresponding conditional densities given by:
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φν,0:k|k(x0:k) =
φν,0:k−1|k−1(x0:k−1)m(xk−1, xk)gk(xk)∫

Xk+1 φν,0:k−1|k−1(x0:k−1)m(xk−1, xk)gk(xk)dx0:k
(6)

for the joint posterior density and

φν,k|k−1(xk) =

∫
X
m(xk−1, xk)φν,k−1|k−1(xk−1)dxk−1 (7)

φν,k(xk) =
gk(xk)φν,k|k−1(xk)∫

X gk(xk)φν,k|k−1(xk)dxk
(8)

for the predictive and the filtering density respectively. So, particle filter is a two-
step procedure that uses (4) as a prediction step for the next state and (8) as an
update step according to the new observation. Within a Sequential Importance
sampling procedure, one can get a PF estimate of (6) :

φ̂ν,0:k|k(dx0:k) = Ω−1k

N∑
i=1

ω
(i)
k δ

ξ
(i)
0:k

(dx0:k)

and deduce an estimate of (8) as marginal distribution of the latter :

φ̂ν,k(dxk) = Ω−1k

N∑
i=1

ω
(i)
k δ

ξ
(i)
k

(dxk) (9)

where Ωk :=
∑N
i=1 ω

(i)
k , δx(·) is the Delta-Dirac mass located at x and ω

(i)
k is the

importance weight associated to the particles position ξ
(i)
0:k. The detail derivation of

these weights may be found in Doucet 2001, Doucet and Johansen 2011. A sum-
mary of particle filter is given bellow.
q(·) is a generic notation for instrumental densities in the Importance Sampling
procedure. Note that the resampling step is done only if the degeneracy problem
appears, for example when using the effective sample size approximation as a
quantifier of this phenomena. Before moving towards, note that one can have an
approximation of the joint posterior distribution p(dx0:n|y1:n) just on storing the
outputs at each time step of the generic particle filter.

2.2. Smoothing recursions

The general idea shared by most of smoothing recursions is the nature of the re-
versed time of the dynamic model {Xk}. In fact, {Xk} still a Markov chain, backward
in time. The following result makes clear that assertion.

Proposition 1. Given the data, {Xk} is a Markov chain backward in time with tran-
sition backward kernels from (X ,B(X )) to (X ,B(X )) defined by:
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Algorithm 1 Generic particle filter
1: Initialization : For i = 1, 2, . . . , N draw ξ

(i)
0 ∼ q(·) and set ω(i)

0 = 1/N ;
2: Set k ← 1
3: Importance Sampling step: For i = 1, 2, . . . , N

– draw ξ̄
(i)
k ∼ q

(
·|ξ(i)0:k−1, y1:k

)
– Evaluate and Normalize the importance weights :

ω
(i)
k ∝ ω

(i)
k−1

m
(
ξ
(i)
k−1, ξ

(i)
k

)
gk
(
ξ
(i)
k

)
q
(
ξ
(i)
k |ξ

(i)
0:k−1, y1:k

)

4: Resampling step: (if necessary)
– Multiply/Discard ξ̄

(i)
k w.r.t ω(i)

k to get ξ(i)k approximately distributed according to φν,k
– For i = 1, 2, . . . , N Set ω(i)

k = 1/N
5: Set k ← k + 1 and go to the importance sampling step

Bk,ν(Xk+1, f) : = E [f(Xk)|Xk+1:n, Y0:n]

= E [f(Xk)|Xk+1, Y0:k]
(10)

for any f ∈ Fb(X ).

Proof. See Cappé, Moulines and Ryden 2005, p.70. �

Under this backward dynamic, one can make use of smoothing recursions.

2.2.1. Marginal smoothing

The problem in concern is to compute backward and recursively in time the
smoothed distribution

φν,k|n(f) := E [f(Xk)|Y1:n] , k < n

for any f ∈ Fb(X ).

Lemma 1. For any 1 ≤ k < n, the smoothed distribution factorizes as :

φν,k|n(f) =

∫
X
f(xk)

[∫
X

φν,k(xk)m(xk, xk+1)∫
X φν,k(xk)m(xk, xk+1)dxk

φν,k+1|n(dxk+1)

]
dxk

=

∫
X 2

f(xk)Bν,k(xk+1, dxk)φν,k+1|n(dxk+1)

where Bk,ν(Xk+1, .) is the Backward kernel for any function f ∈ Fb(X ).
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Consider the generic particle filter gathering the weighted samples
{
ξ
(i)
k , ω

(i)
k

}N
i=1

that target the filtering distributions p(dxk|y1:k) in the sense of (9), at time k
with k = 1, 2, . . . , n. In addition, assume at time k + 1 one has weighted sample{
ξ
(i)
k+1, ω

(i)
k+1|n

}N
i=1

targeting the distribution φk+1|n in the sense:

φ̂ν,k+1|n(dxk+1) =

N∑
j=1

ω
(j)
k+1|nδξ(j)k+1

(dxk+1).

Combining the former and latter outputs, one can achieve a particle estimate of
the smoothed distribution given by:

φ̂ν,k|n(f) =

N∑
i=1

ω
(i)
k|nf(ξ

(i)
k ), for k < n

where the smoothed importance weights are given by :

ω
(i)
k|n = ω

(i)
k

 N∑
j=1

ω
(j)
k+1|n

m
(
ξ
(i)
k , ξ

(j)
k+1

)
∑N
r=1 ω

(r)
k m

(
ξ
(r)
k , ξ

(j)
k+1

)


The summary of the procedure is given below:

Algorithm 2 Forward-Backward algorithm
1: Forward filtering step : For k = 0, . . . , n

– run the particles filtering algorithm to get the weighted particles
{
ξ
(i)
k , ω

(i)
k

}N
i=1

.
2: Backward smoothing step

– For i = 1, . . . , N set ω(i)

n|n = ω
(i)
n

– For k = n− 1 down to 0 and i = 1, . . . , N set

ω
(i)

k|n = ω
(i)
k

 N∑
j=1

ω
(j)

k+1|n

m
(
ξ
(i)
k , ξ

(j)
k+1

)
∑N
r=1 ω

(r)
k m

(
ξ
(r)
k , ξ

(j)
k+1

)


Remark 1. As one can notice, the F-B algorithm is nothing but a weigh update since
particle positions generated in the forward pass are kept. Moreover, it is an O(N2)
expensive algorithm at each time step.

2.2.2. Joint smoothing

An extension of the F-B algorithm is reachable for the joint posterior density
p(xk:n|y1:n). Using similar argument as in the marginal smoothing, one can obtain
the following recursions:
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Lemma 2. Under (10), for any k < n the joint smoothed density p(xk:n|y1:n) factorizes
backward in time as :

p(xk:n|y1:n) = p(xk|xk+1, y1:k)p(xk+1:n|y1:n)

which iterates to:

p(xk:n|y1:n) = p(xn|y1:n)

n−1∏
r=k

p(xr|xr+1, y1:r).

From this result, one is able to compute the conditional expectation

φk:n|n(f) := E [f(Xk:n)|Y1:n]

=

∫
Xn−k+1

f(xk:n)p(xn|y1:n)

n−1∏
r=k

p(xr|xr+1, y1:r)dxk:n
(11)

for any f ∈ Fb(Xn−k+1). Note at first that :

p(xr|xr+1, y1:r) ∝ p(xr|y1:r)p(xr+1|xr)

From a particle estimate of the density p(xr|xr+1, y1:r) :

p̂(xr|xr+1, y1:r) =

N∑
ir=1

κ(ir)r δ
ξ
(ir)
r

(xr)

where

κ(ir)r =
ω
(ir)
r p(ξ

(ir+1)
r+1 |ξ

(ir)
r )∑N

l=1 ω
(l)
r p(ξ

ir+1

r+1 |ξ
(l)
r )

, r = k, k + 1, . . . , n− 1

one can achieve a particle estimate of (11):

φ̂ν,k:n|n(f) =

N∑
ik=1

N∑
ik+1=1

. . .

N∑
in=1

ωinn

n−1∏
r=k

ω
(ir)
r p(ξ

(ir+1)
r+1 |ξ

(ir)
r )∑N

l=1 ω
(l)
r p(ξ

ir+1

r+1 |ξ
(l)
r )

× f(ξ
(ik)
k , ξ

(ik+1)
k+1 , . . . , ξ(in)n ),

(12)

where
{
ξ
(ir)
r , ω

(ir)
r

}N
ir=1

, r = k, . . . , n − 1 are sets of weighted particles targeting
the filtering distribution φν,r. Note that (12) has not a practical interest since it’s
complexity is exponential. Nevertheless, it is of great interest in a theoretical per-
spective. In fact, the deriving marginal smoother estimates inherit the convergence
properties of the latter.
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2.2.3. Particle smoother

One of the limitations of the F-B algorithm is its computational cost. In fact, it
requires O(N2) operations at each time step to compute the smoothed weights.
Following Godsill et al. 2004 it is easy to get smoothed distribution estimate with
a linear computational effort at each time step under (10). Extending Lemma 2 to
whole time indexes one get:

Lemma 3. The joint posterior density factorizes as:

p(x0:n|y1:n) = p(xn|y1:n)

n−1∏
k=0

p(xk|xk+1, y1:k).

Consider a particle estimate of the distribution p(dxk|xk+1, y1:k) :

p̂(dxk|xk+1, y1:n) =

N∑
i=1

κ
(i)
k δ

ξ
(i)
k

(dxk)

where

κ
(i)
k =

ω
(i)
k p(xk+1|ξ(i)k )∑N

j=1 ω
(j)
k p(xk+1|ξ(j)k )

Using the particle revision, one can draw consecutive states backward in time as
follows. Assume ξ̃k+1:n to be a random sample drawn from p(xk+1:n|y1:n). Step back
in time and draw ξ̃k from p(xk|ξ̃k+1:n, y1:n). The sample (ξ̃k, ξ̃k+1:n) is an approximate
random realization from p(xk:n|y1:n). Iterating the mechanism down to k = 0, one
get a random sample from the joint smoothing density. The overall algorithm is
given bellow.

Algorithm 3 Smoothing algorithm
1: For i = 1, 2, . . . , N choose ξ̃n = ξ

(i)
n with probability ω(i)

n

2: For k = n− 1 down to 0 and i = 1, 2, . . . , N
– Evaluate κ(i)

k ∝ ω
(i)
k p(ξ̃k+1|ξ(i)k );

– Choose ξ̃k = ξ
(i)
k with probability κ(i)

k ;
3: ξ̃0:n is an approximate random realization from p(x0:n|y0:n).

This algorithm is an O(N) expensive at each time step.
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Allaya M.M., Coulibaly A., Dème E.H., Kâ M.M. and Sène B., Afrika Statistika, Vol. 14 (2),
2019, 1977 - 1998. On some Extensions of the Sequential Monte Carlo methods in
high-order Hidden Markov Models. 1986

3. SMC methods in High-order HMM

Consider the following state space model{
Xk = ak(Xk−`:k−1, Vk)
Yk = bk(Xk−`:k,Wk)

where ak(·) and bk(·) are possibly nonlinear functions, {Xk} is an `−order Markov
chain with initial state sequences X−`:−1 distributed according to a diffuse prior
distribution ν(·) and transition kernel M from (X `,B(X )⊗`) to (X ,B(X )). We assume
that M admits a density function m w.r.t a dominating measure λ. (Vk)k≥0 and
(Wk)k≥0 are i.i.d disturbance noises possibly correlated with corr(Vi,Wj) = ρ1i=j
and independent of X−`:−1. We also assume that the observation process {Yk},
constructed on the measurable space (Y,B(Y)) is conditionally independent given
{Xk} with a marginal distribution admitting a density function g such that

∀A ∈ B(Y), P(Yk ∈ A|Xk−`:k−1, Xk) =

∫
A

g(Xk−`:k−1, Xk, y)µ(dy),

where µ is a σ−finite measure on (Y,B(Y)). For the sake of simplicity, the data
are fixed that is, Yk = yk for all time indexes. We also omit the dependence of
likelihood function g to the data by using the short hand notation gk(xk−1, xk) :=
g(xk−`:k−1, xk, ·), with xk−1 := xk−`:k−1. To sum up X−`:−1 ∼ ν(·)

Xk|Xk−1 ∼ m(xk−1, ·) k ≥ 0
Yk|Xk−1, Xk ∼ gk(xk−1, xk)

3.1. `−order Filtering recursions

Consider the problem of computing recursively in time the following quantity :

φν,k:k+`−1|k+`−1(f) := Eν [f(Xk:k+`−1)|Y0:k+`−1]

where −`+ 1 ≤ k ≤ n− `, for any f ∈ Fb(X `). Notice that on taking ` = 1 and ρ = 0,
we fall in the classical nonlinear filtering problem in 1−order HMM. Since we deal
with state sequences, we shall call it in the sequel an `-filtering problem and the
resulting particle solution as an `− particle filter to emphasize the overlapping l−
size vectors in concern. A common way to approximate such a distribution is to

use a cloud of weighted particles
{
ξ
(i)
k:k+`−1, ω

(i)
k+`−1

}N
i=1

through the estimate :

φ̂ν,k:k+`−1|k+`−1(dz1:`) = Ω−1k+`−1

N∑
i=1

ω
(i)
k+`−1δξ(i)k:k+`−1

(dz1:`)

where Ωk+`−1 =
∑N
i=1 ω

(i)
k+`−1 and ω(i)

k+`−1 is obtained within an importance sampling
procedure. The following result give a way to solve the `-filtering problem recursively
in time.
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Allaya M.M., Coulibaly A., Dème E.H., Kâ M.M. and Sène B., Afrika Statistika, Vol. 14 (2),
2019, 1977 - 1998. On some Extensions of the Sequential Monte Carlo methods in
high-order Hidden Markov Models. 1987

Proposition 2. For any index −` ≤ k ≤ n − ` and f ∈ Fb(X `), the distribution
φν,k:k+`−1|k+`−1 satisfies the recursive relation :

φν,k:k+`−1|k+`−1(f) ∝
∫
X `+1

f(xk:k+`−1)φν,k−1:k+`−2|k+`−2(xk+`−2)

×m(xk+`−2, xk+`−1)gk+`−1(xk+`−2, xk+`−1)dxk−1:k+l−1

with the convention φν,−`:−1|−1 := ν.

Proof. It suffices to see that:

p(xk:k+`−1|y0:k+`−1)

=

∫
X
p(xk−1:k+`−1|y0:k+`−1)dxk−1 ∝

∫
X
p(xk−1:k+`−1, y0:k+`−1)dxk−1

∝
∫
X
p(xk−1:k+`−2|y0:k+`−2)m(xk+`−2;xk+`−1)gk+`−1(xk+`−2, xk+`−1)dxk−1

so that,

φν,k:k+`−1|k+`−1(f)

∝
∫
X `
f(xk:k+`−1)

(∫
X
p(xk−1:k+`−1, y0:k+`−1)dxk−1

)
dxk:k+`−1

∝
∫
X `+1

f(xk:k+`−1)φν,k−1:k+`−1|k+`−2(xk−1:k+`−2)

×m(xk+`−2;xk+`−1)gk+`−1(xk+`−2, xk+`−1)dxk−1:k+`−1.

(13)

which leads to the result. �

In order to highlight the two-step procedure mentioned above, the following oper-
ator formulation is given :

φν,k:k+`−1|k+`−2 = φν,k−1:k+`−2|k+`−2M

as the prediction step and

φν,k:k+`−1|k+`−1(f) =
φν,k:k+`−1|k+`−2(fgk+`−1)

φν,k:k+`−1|k+`−2(gk+`−1)
(14)

as the correction step, for any f ∈ Fb(X `) and −`+ 1 ≤ k ≤ n− `. At time (k+ `− 2),

assume one has a cloud of weighted sample
{
ξ
(i)
k−1:k+`−2, ω

(i)
k+`−2

}N
i=1

approximating
the `-filter distribution φν,k−1:k+`−2|k+`−2 in the sense
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φ̂ν,k−1:k+`−2|k+`−2(dxk−1:k+`−2) = Ω−1k+`−2

N∑
i=1

ω
(i)
k+`−2δξ(i)k−1:k+`−2

(dxk−1:k+`−2)

where Ωk+`−2 =
∑N
i=1 ω

(i)
k+`−2. A particle estimate at the next time step (k + `− 1) of

the `-filter distribution is achieved by :

φ̂ν,k:k+`−1|k+`−1(f)

∝
∫
X

Ω−1k+`−2

N∑
i=1

f(ξ
(i)
k:k+`−2, xk+`−1)ω

(i)
k+`−2m(ξ

(i)
k−1:k+`−2, xk+`−1)

× gk+`−1(ξ
(i)
k−1:k+`−2, xk+`−1)dxk+`−1

= Ω−1k+`−2

N∑
i=1

ω
(i)
k+`−2

∫
X
f(ξ

(i)
k:k+`−2, xk+`−1)m(ξ

(i)
k−1:k+`−2, xk+`−1)

× gk+`−1(ξ
(i)
k−1:k+`−2, xk+`−1)dxk+`−1.

(15)

where the last integral of (15) can be thought as expectation under either the
transition density function or the likelihood density function. Note also that a
mixture argument can be considered to evaluate it. Notice that these recursive
weights are obtained within a classical bootstrap filter (see Gordon et al. 1993) or
the general framework of the auxiliary particle filter (see Pitt and Shephard 1999).

3.2. `-order smoothing recursions

Before stating `-order smoothing, we precise some smoothing quantities that can
be easily handled :

φν,k|n(f) := Eν
[
f(Xk)

∣∣∣Y0:n] , k < n, (16)

φν,m,p|n(g) := Eν
[
g(Xp, Xm)

∣∣∣Y0:n] , | p−m |≤ `+ 1, (17)

φν,−`:n|n(h) := Eν
[
h(X−`:n)

∣∣∣Y0:n] , (18)

for any f ∈ Fb(X ), g ∈ Fb(X 2) and h ∈ Fb(Xn+`+1). Since (16) and (17) are particular
cases of (18) we do not mention them here. In order to derive similar recursions as
in 1−order HMM, one needs to give the reversed time dynamic of the Markov chain
through backward transition kernels. The following result shows that the hidden
process still Markovian backward in time given the data.
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Proposition 3. Let ν be an initial distribution on X−`:−1, f ∈ Fb(X ), n > 0 and
−` + 1 ≤ p ≤ n − `. Then {Xn−k}k≥0 is a Markov chain with backward transition
kernels defined by:

Bν,p+`−1(Xp+1:p+`, f) := Eν
[
f(Xp)

∣∣∣Xp+1:n, Y0:n

]
= Eν

[
f(Xp)

∣∣∣Xp+1:p+`, Y0:p+`−1

] (19)

Proof. see Appendix A:. �

3.2.1. Joint smoothing

To deal with (18) one needs the following factorization.

Lemma 4. For any function f ∈ Fb(Xn+`+1), the joint smoothing distribution satisfies
the backward kernels decomposition:

φν,−`:n|n(f) =

∫
Xn+`+1

f(x−`:n)Bν,−1(x−`+1:0, dx−`)φν,−`+1:n|n(dx−`+1:n)

=

∫
Xn+`+1

f(x−`:n)φν,n−`+1:n|n(dxn−`+1:n)

×
n−∏̀
p=−`

Bν,p+`−1(xp+1:p+`, dxp).

(20)

To get a particle estimate of (18), one needs to run the following two steps. In the
first step, the `−filter distributions are approximated by

φ̂ν,p:p+`−1|p+`−1(dxp:p+`−1) = Ω−1p+`−1

N∑
ip=1

ω
(ip)
p+`−1δξ(ip)p:p+`−1

(dxp:p+`−1), (21)

with
{
ω
(ip)
p+`−1, ξ

(ip)
p:p+`−1

}N
ip=1

being the targeting weighted samples of the `−filter dis-

tributions φν,p:p+`−1|p+`−1(dz1:`), p = −`,−` + 1, . . . , n − `. The second step consists
in approximating the backward kernels Bν,p+`−1(xp+1:p+`, dxp) by:

B̂ν,p+`−1(xp+1:p+`, dxp) =

N∑
ip=1

ω
(ip)
p+`−1m(ξ

(ip)
p:p+`−1, xp+`)∑N

r=1 ω
(r)
p+`−1m(ξ

(r)
p:p+`−1, xp+`)

δ
ξ
(ip)
p

(dxp) (22)

p = −`,−`+ 1, . . . , n− `.

Plugging (21) and (22) into (20), a particle estimate of (18) is given by:
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φ̂ν,−`:n|n(f) = Ω−1n
∑
in=1

 N∑
i−`=1

. . .

N∑
in−`=1

f(ξ
(i−`)
−` , . . . , ξ

(in−`)
n−` , ξ

(in)
n−`+1:n)

×
n−∏̀
p=−`

ω
(ip)
p+`−1m(ξ

(ip)
p:p+`−1, ξ

(ip+`)
p+` )∑N

r=1 ω
(r)
p+`−1m(ξ

(r)
p:p+`−1, ξ

(ip+`)
p+` )

ω(in)
n ,

(23)

for f ∈ Fb
(
Xn+`+1

)
. Before moving towards the theoretical properties of this esti-

mator, we give a summary description of the former procedure.

Algorithm 4 Smoothing in `−order HMM
1: Forward pass: For p = −`,−`+ 1, . . . , n− `+ 1 approximate φν,p:p+`−1|p+`−1 by

φ̂ν,p:p+`−1|p+`−1(dxp:p+`−1) = Ω−1
p+`−1

N∑
i=1

ω
(i)
p+`−1δξ(i)

p:p+`−1

(dxp:p+`−1)

2: Backward pass: For p = n− ` down to −` approximate Bν,p+`−1 by:

B̂ν,p+`−1(xp+1:p+`, dxp) =

N∑
ip=1

ω
(ip)

p+`−1m(ξ
(ip)

p:p+`−1, xp+`)∑N
r=1 ω

(r)
p+`−1m(ξ

(r)
p:p+`−1, xp+`)

δ
ξ
(ip)
p

(dxp)

Once the two passes performed, one can approximate (18) using (23) and deduce
approximation for (16) and (17) as marginal of the latter.

3.2.2. Particle smoother

One may also achieve similar particle smoother to those of Godsill et al. 2004 using
the following identity.

Lemma 5. Under Prop.3, the joint smoothing density factorizes as

p(x−`:n|y0:n) = p(xn−`+1:n|y0:n)

n−∏̀
k=−`

p(xk|xk+1:n; y0:n)

where

p(xk|xk+1:n, y0:n) = p(xk|xk+1:k+`, y0:k+`−1)

∝ p(xk+`|xk:k+`−1)p(xk:k+`−1|y0:k+`−1).
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Assume one has run the `−order filter mentioned previously to get the weighted
particles {

ω
(i)
k+`−1, ξ

(i)
k:k+`−1

}N
i=1

, − `+ 1 ≤ k ≤ n− `

approximating the `−filter densities p(xk:k+`−1|y0:k+`−1). Using the previous
weighted sample one could get a particle estimate of p(xk|xk+1:k+`, y0:k+`−1):

p(dxk|xk+1:k+`, y0:k+`−1) ≈
N∑
i=1

κ
(i)
k δ

ξ
(i)
k

(dxk)

where the modified weights are given by

κ
(i)
k =

ω
(i)
k+`−1m(ξ

(i)
k:k+`−1, xk+`)∑N

j=1 ω
(j)
k+`−1m(ξ

(j)
k:k+`−1, xk+`)

With these modified weights, one can simulate consecutive states in the reverse-
time as follows. Let x̃k+1:n be a random sample drawn from p(xk+1:n|y0:n), step back
in time and draw x̃k from p(xk|x̃k+1:n, y0:n). The pair (x̃k, x̃k+1:n) is an approximate
random realization of p(xk:n|y0:n). Iterating this mechanism backward in time one
gets the smoothing algorithm.

Algorithm 5 Particle smoother in `−order HMM
1: Choose ξ̃n−`+1:n = ξ

(i)
n−`+1:n with probability ω(i)

n

2: For k = n− ` down to −` do
– Evaluate κ(i)

k ∝ ω
(i)
k+`−1m(ξ

(i)
k:k+`−1, ξ̃k+`), for i = 1, . . . , N ;

– Choose ξ̃k = ξ
(i)
k with probability κ(i)

k

3: EndFor
4: ξ̃−`:n = (ξ̃−`, ξ̃−`+1, . . . , ξ̃n) is an approximate random realization from p(x−`:n|y0:n).

The computational complexity is O(N) at each time step which compares favorably
to the O(N2) of the marginal smoothing.

4. Parameter estimation

MCEM as a combination of the GEM with SMC is a tool that can be used to
estimate HMM when dealing with latent process. We do not fully detail the GEM
algorithm since it is well documented (see Dempster, Laird and Rubin 1977 or
McLachlan and Krishnan 2008 for a review). However, the main idea is depicted
bellow :
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Algorithm 6 Generalized EM algorithm
1: Choose an initial guess θ(0)

2: For m = 1, 2, . . . do
1. E-Step : Compute Q(θ,θ(m−1))
2. M-Step : Find θ(m) s.t Q(θ(m),θ(m−1)) ≥ Q(θ(m−1),θ(m−1))

3: EndFor.

The E-step consists in computing the intermediate quantity, that is the conditional
expectation of the logarithm of the complete data likelihood given the data and the
current value of the parameter vector θ(m−1) :

Q(θ(m), θ(m−1)) = Eθ(m−1) [log pθ(m) (X−2:n, Y0:n) |Y0:n]

where (n + 1) is the sample size of the data indexed from 0 to n, pθ(m) a generic
notation for densities depending on parameter θ(m) and X is a hidden signal ini-
tialized to a diffuse prior distribution ν on X−2:−1 and Y the observation process.
As a first illustration, consider the following toy example Xk = π1Xk−1 + π2Xk−2 + σWWk

Yk = Xk + σV Vk,
(24)

We assume that (Vk,Wk)k≥0 are i.i.d and independent of X−2:−1 with (Vk,Wk) ∼

N
((

0
0

)
,

(
1 0
0 1

))
,

where |π1± π2| < 1 and |π2| < 1 ensuring the stationarity of X. At iteration m of the
GEM, the parameters are updated through the recursive scheme

π
(m)
1 =

∑n
k=2 E

θ(m−1)

[(
Xk−1Xk−π(m)

2 Xk−1Xk−2

)∣∣∣Y ′0:n]∑n
k=1 E

θ(m−1) [X2
k−1|Y

′
0:n]

π
(m)
2 =

∑n
k=2 E

θ(m−1)

[(
Xk−2Xk−π(m)

1 Xk−1Xk−2

)∣∣∣Y ′0:n]∑n
k=2 E

θ(m−1) [X2
k−2|Y

′
0:n][

σ
(m)
V

]2
= 1

n

∑n
k=2 Eθ(m−1)

[
(Yk −Xk)

2
∣∣∣Y0:n]

[
σ
(m)
W

]2
= 1

n

∑n
k=2 Eθ(m−1)

[(
Xk − π(m)

1 Xk−1 − π(m)
2 Xk−2

)2 ∣∣∣Y0:n]

As a second illustration, consider the following discrete stochastic volatility model

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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Fig. 1. MCEM iterations for (24) with true parameter θ∗ = (0.7,−0.15, 0.2, 0.3)

 Xk = π1Xk−1 + π2Xk−2 + σWk

Yk = β exp (Xk/2)Vk,
(25)

under the same assumptions as in the former model. Since (Vk) and (Wk) are in-
dependent and Gaussian it’s common to use a linearized version of (25) given by:

 Xk+1 = π1Xk + π2Xk−1 + σWk+1

Y ′k+1 = α+Xk+1 + ηk+1 − ζ
(26)

where Y ′k+1 := log Y 2
k+1, ηk := log V 2

k are i.i.d noises independent of (Wk) with a
logχ2(1) distribution, ζ := E(log V 2

k ) = −1.27049, α := log β2 + ζ and θ := (π1, π2, σ, α)
is the parameter vector. On taking the derivatives of Q(θ(m), θ(m−1)) with respect to
each parameter on gets the recursive following parameter update :
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Allaya M.M., Coulibaly A., Dème E.H., Kâ M.M. and Sène B., Afrika Statistika, Vol. 14 (2),
2019, 1977 - 1998. On some Extensions of the Sequential Monte Carlo methods in
high-order Hidden Markov Models. 1994



α(m) = log
[
1
n

∑n
k=0 Eθ(m−1) [exp(Yk −Xk + ζ)|Y ′0:n]

]

π
(m)
1 =

∑n
k=2 E

θ(m−1)

[(
Xk−1Xk−π(m)

2 Xk−1Xk−2

)∣∣∣Y ′0:n]∑n
k=1 E

θ(m−1) [X2
k−1|Y

′
0:n]

π
(m)
2 =

∑n
k=2 E

θ(m−1)

[(
Xk−2Xk−π(m)

1 Xk−1Xk−2

)∣∣∣Y ′0:n]∑n
k=2 E

θ(m−1) [X2
k−2|Y

′
0:n]

σ(m) =

√
1
n

∑n
k=2 Eθ(m−1)

[(
Xk − π(m)

1 Xk−1 − π(m)
2 Xk−2

)2 ∣∣∣Y ′0:n]

As a synthetic example, Fig.(2) is generated using the true parameter vector (π∗1 =
0.8, π∗2 = 0.10, σ∗ =

√
0.3, log[β∗]2 = −0.8612).

Fig. 2. MCEM iterations for (26) with θ∗ = (0.8, 0.10, 0.3,−0.8612)

As point perspective, the adjustment of the smoothing weights is required. Indeed,
one can notice that the estimates are not entirely satisfactory for some parameters
in this example. More attention is needed to correct this shortcoming.

5. Conclusion

In this paper, we were interested in extending classical sequential Monte Carlo
Methods in high-Order hidden Markov models in a methodological perspective. We
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have shown that it is possible to have similar recursive solutions when dealing
with posterior distributions in HMM whether for smoothing or filtering purposes.
We also illustrate some applications via parameters inference of linear Gaussian
model and stochastic volatility model using EM algorithm. This work is far from
over. We did not discuss the convergence of smoothing and filtering quantities.
However, there is a good chance of being able to adapt certain convergence results
existing in the literature of the SMC methods, notably those in Del Moral 2004,
Olsson et al. 2008 or Jasra 2015 among others.

Appendix A: Proof of Proposition 3

One may use the following intermediate result.

Lemma 6. For any function f ∈ Fb(X `) and index k ≥ 1− `,

φν,k:k+`−1|k+`−1(f)Lk+`−1 =∫
Xk+2`

f(xk:k+`−1)ν(x−`:−1)

k+`−1∏
i=0

m(xi−1;xi)gi(xi−1, xi)dx−`:k+`−1

where Lk+`−1 denotes the likelihood density of y0:k+`−1.

Proof. It suffices to see that:

p(xk:k+`−1|y0:k+`−1) =

∫
Xk+`

p(x−`:k+`−1|y0:k+`−1)dx−`:k−1

=

∫
Xk+`

p(x−`:k+`−1, y0:k+`−1)

p(y0:k+`−1)
dx−`:k−1

= L−1k+`−1

∫
Xk+`

p(x−`:k+`−1, y0:k+`−1)dx−`:k−1 (A1)

Using (A1), the expectation of f(Xk:k+`−1) conditional on Y0:k+`−1 is given by :

φν,k:k+`−1|k+`−1(f)

=

∫
X `
f(xk:k+`−1)

(
L−1k+`−1

∫
Xk+`

p(x−`:k+`−1, y0:k+`−1)dx−`:k−1

)
dxk:k+`−1

= L−1k+`−1

∫
Xk+2`

f(xk:k+`−1)p(x−`:k+`−1, y0:k+`−1)dx−`:k+`−1

= L−1k+`−1

∫
Xk+2`

f(xk:k+`−1)ν(x−`:−1)

k+`−1∏
i=0

m(xi−1, xi)gi(xi−1, xi)dx−`:k+`−1
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which leads to the identity. �

Note that this identity is extensible up to the final time index n :

φν,k:n|n(f)Ln =

∫
Xn+`+1

f(xk:n)ν(x−`:−1)

n∏
i=0

m(xi−1;xi)gi(xi−1, xi)dx−`:n

for any function f ∈ Fb(Xn−k+1).

Proof. From previous lemma, for any functions e ∈ Fb(X `−1), f ∈ Fb(X ) and h ∈
Fb(Xn−k−`+1),

E
[
f(Xk)e(Xk+1:k+`−1)h(Xk+`:n)

∣∣∣Y0:n]
=

∫
Xn−k+1

f(xk)e(xk+1:k+`−1)h(xk+`:n)φν,k:n|n(dxk:n)

= L−1n

∫
Xk+2`+1

f(xk)e(xk+1:k+`−1)ν(x−`:−1)

k+`−1∏
i=0

m(xi−1, xi)gi(xi−1, xi)

×m(xk+`−1, xk+`)gk+`(xk+`−1, xk+`)

×

[∫
Xn−k−`

h(xk+`:n)

n∏
i=k+`+1

m(xi−1, xi)gi(xi−1, xi)dxk+`+1:n

]
dx−`:k+`

=
Lk−`+1

Ln

∫
X `+1

f(xk)e(xk+1:k+`−1)φν,k:k+`−1|k+`−1(dxk:k+`−1)m(xk+`−1;xk+`)

× gk+`(xk+`−1, xk+`)

[∫
Xn−k−`

h(xk+`:n)

n∏
i=k+`+1

m(xi−1;xi)gi(xi−1, xi)dxk+`+1:n

]
dxk+`

using the implicit definition of the backward kernel (19) applied to the function

r(xk:k+`−1, xk+`) = f(xk)e(xk+1:k+`−1)gk+`(xk+`−1, xk+`)

×

[∫
Xn−k−`

h(xk+`:n)

n∏
i=k+`+1

m(xi−1;xi)gi(xi−1, xi)dxk+`+1:n

]
dxk+`

one could get
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E
[
f(Xk)e(Xk+1:k+`−1)h(Xk+`:n)

∣∣∣Y0:n]
=
Lk−`+1

Ln

∫
X `+1

Bν,k+`−1(xk+1:k+`, dxk)f(xk)e(xk+1:k+`−1)

× φν,k+1:k+`|k+`−1(dxk+1:k+`)gk+`(xk+`−1, xk+`)

×

[∫
Xn−k−`

h(xk+`:n)

n∏
i=k+`+1

m(xi−1;xi)gi(xi−1, xi)dxk+`+1:n

] (A2)

taking f ≡ 1, for any functions h′ ∈ Fb(Xn−k−`+1) and e′ ∈ Fb(X `−1)

E
[
e′(Xk+1:k+`−1)h′(Xk+`:n)

∣∣∣Y0:n]
=
Lk−`+1

Ln

∫
X `
e′(xk+1:k+`−1)φν,k+1:k+`|k+`−1(dxk+1:k+`)gk+`(xk+`−1, xk+`)

×

[∫
Xn−k−`

h′(xk+`:n)

n∏
i=k+`+1

m(xi−1, xi)gi(xi−1, xi)dxk+`+1:n

]

Identifying e′h′ with e(xk+1:k+`−1)h(xk+`:n)
∫
X Bν,k+`−1(xk+1:k+`, x)f(x)dx, (A2) may be

rewritten as

E
[
f(Xk)e(Xk+1:k+`−1)h(Xk+`:n)

∣∣∣Y0:n]
= E

[
e(Xk+1:k+`−1)h(Xk+`:n)

∫
X
Bν,k+`−1(xk+1:k+`, x)f(x)dx

∣∣∣Y0:n]

which leads to the result. �
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Allaya M.M., Coulibaly A., Dème E.H., Kâ M.M. and Sène B., Afrika Statistika, Vol. 14 (2),
2019, 1977 - 1998. On some Extensions of the Sequential Monte Carlo methods in
high-order Hidden Markov Models. 1998

Del Moral, P. and Guionnet, A. (1998). On the stability of measure valued processes. Appli-
cations to nonlinear filtering and interacting particle systems, Publication du laboratoire
de Statistique et Probabilités 3-98, Université Paul Sabatier, Toulouse,
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