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Abstract. We empirically compared a Bayesian estimation method (Integrated
Nested Laplace Approximation, INLA) to three classical estimation methods (Pe-
nalized Quasi-Likelihood, PQL; Hierarchical Likelihood Method, HLM and Adap-
tive Gauss-Hermite Quadrature, AGHQ) under six random effect distributions in
binary logistic mixed models. Results revealed that AGHQ and HLM had best per-
formance for all distributions considered in the case of fixed effects. For the random
effects, classical methods showed best performance for the symmetric distributions
(normal, uniform and mixture-normal). AGHQ, HLM and INLA outperform PQL for
normal and uniform distributions whatever the sample considered.
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Résumé. Nous avons comparé, à l’aide de la simulation, une méthode d’estimation
Bayésienne (INLA) à trois méthodes classiques d’estimation (PQL, HLM et AGHQ)
sous six distributions des effets aléatoires dans le cadre des modèles logistiques
binaires mixtes. Les résultats ont montré la supériorité de AGHQ et HLM sur
les autres pour toutes les distributions considérées dans le cas des effets fixes.
Pour les effets aléatoires, les méthodes classiques ont montré les meilleures
performances pour les distributions symétriques considérés. AGHQ, HLM et INLA
ont donné de meilleurs résultats par rapport à PQL pour les distributions normale
et uniforme pour tous les échantillons considérés.
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1. Introduction

Over the years, linear models have been widely used to provide mathematical basis
to explain and describe phenomena, extract important information, make future
predictions as well as draw inferences (Faraway, 2006). Logistic mixed models are
more recently developed to overcome the limits of linear models (Gbur et al., 2012)
in the situation where it comes to link categorical outcomes to fixed and random
variables. One of the assumptions of the logistic mixed models concerns random
effects distribution. The parameter estimates are commonly calculated by max-
imizing the marginal likelihood obtained by integrating out the random effects.
For computational convenience, random effects are assumed to be normally dis-
tributed. However, since they are not observed, the validity of this assumption is
difficult to verify (McCulloch and Neuhaus, 2011). A natural concern is related to
the impact of misspecification of the random effects distribution on the estimators.

For linear mixed models, Verbeke and Lesaffre (1997) showed that the maximum
likelihood estimators of the fixed effects and variance components, obtained under
the assumption of normal random effects, are consistent and asymptotically nor-
mal, even with non-normality of random-effects. However, recent research works
suggest that this does not hold for logistic mixed models. Neuhaus et al. (1992)
conducted a logistic mixed effect model in which gamma, t-Student and nor-
mal distributions were considered for the random effects. They estimated the
model using a quasi-Newton algorithm and found that the estimated parameters
were asymptotically biased. Heagerty and Kurland (2001), Agresti et al. (2004) and
Litière et al. (2008) studied the impact of misspecification on parameters estimated

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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through Gauss–Hermite Quadrature (GHQ) approximation. They found that incor-
rect assumptions regarding the random effects could lead to substantial bias in
the estimates. McCulloch and Neuhaus (2011) and Hernandez et al. (2014) used
respectively Proc NLMIXED in SAS and Laplace Approximation with lme4 package
in their study of random effect misspecification and reached the same conclusions.

As shown, previous studies investigating the impact of misspecification of random
effects distribution predominantly focused on one class of parameters estimation
methods, the likelihood-based principle and the other classes of estimation meth-
ods are rarely used. Limited studies have considered the extended likelihood and
the Bayesian approaches to estimate the parameters when the random effects dis-
tribution is misspecified. The present study aims to contribute to fill this gap by as-
sessing the impact of random effects distribution misspecification on the likelihood
based method, the extended likelihood principle and the Bayesian methods. Adap-
tive Gauss-Hermite Quadrature, Hierarchical Likelihood Method and Integrated
Nested Laplace Approximation were used respectively as likelihood based method,
extended likelihood approach and Bayesian estimation method. These methods
have been chosen since they are the most improved and the most accurate in each
class (Kim et al., 2013; Casals et al., 2015; Lokonon et al., 2019). However, we also
include Penalized Quasi-Likelihood (PQL) because it is the simplest and most
widely used approximation method (Bolker et al., 2009, Lokonon et al., 2019).

2. Model specification

Let yij be the ith observation for the jth cluster and Y be a vector of the observations
yij following a Binomial distribution in the random intercept model written as:

logit(p (yij = 1|uj)) = β0 + β1x1j + β2x2ij + uj (1)

where, i = 1, . . . , n (n represents number of observations within cluster j) and
j = 1, . . . , N , (N represents is number of clusters). The random intercept uj
(u1, . . . , uq) has zero mean and variance σ2. The fixed effects were set from previous
studies (Hernandez et al., 2014; Hernandez and Giampaoli, 2018): β0=1, β1=2 and
β2=1. The between-cluster covariate (x1) and the within-cluster covariate (x2) were
generated from Standard Normal distribution N(0, 1). The number of clusters and
the number of observations per cluster were set respectively as N= 5, 10, 25,
50 and n= 30, 50, 100 in order to obtain sample sizes from 150 to 5000. The
variances of the random intercept uj were set at σ2=0.5, 1, 2. Variances greater
than 2 were not considered because they caused larger values of the random
intercept (Hernandez and Giampaoli, 2018).

For the random intercept uj, six different distributions were considered: normal,
uniform, exponential, log-gamma, log-normal and symmetric mixture of two nor-
mal densities that were defined as in Hernandez and Giampaoli (2018). The dis-
tributions were transformed such that the zero-mean condition was satisfied, and
the corresponding variances were equal to the prespecified values for σ2. The den-
sity function for each distribution is plotted in Figure 1 for the case of unit vari-
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ance. With this choice, we cover a range of densities varying from very symmetric
(normal, mixture of two normals and uniform) to very skewed distributions (expo-
nential, log-gamma and log-normal).

Fig. 1. Random effects distribution considered with zero mean and unit variance.

3. Estimation methods considered

In binary logistic mixed models, parameters are estimated using maximum likeli-
hood estimation. By the local independence assumption, the conditional density
of Y given uj has the form:

g (yij |uj ;β) =

n∏
i=1

p (yij = 1|uj)
yij p (yij = 0|uj)

1−yij (2)

The multivariate density function of uj is f (uj ; Σ) and has the following likelihood
(Casals et al., 2015):

f (uj ; Σ) =

N∏
j=1

f (uj ; Σ) (3)

The model parameters are estimated by maximising the marginal likelihood ob-
tained by integrating the joint distribution of (Y , uj ) over the random effects. The
result is the marginal likelihood function given by (Kim et al., 2013):

l (β,Σ) =

∫
g (yij |uj ;β) f (uj ; Σ) duj (4)

=

N∏
j=1

∫ n∏
i=1

p (yij = 1|uj)yij p (yij = 0|uj)1−yij f (uj ; Σ) duj
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The distributions of both random effects and response variable differ. Thus, the
Equation (4) is analytically intractable (Casals et al., 2015). As a result, various
approximation methods have been developed with different degrees of accuracy
(Capanu et al., 2013). Four of them are considered in this study. These methods
were selected due to their robustness, their recent improvement in R software and
their accessibility for applied researchers (Casals et al., 2015).

3.1. Adaptative Gauss-Hermite quadrature (AGHQ)

AGHQ is an approximation method that partitions the marginal likelihood (Equa-
tion 4) into multiple components (McNeish, 2016). The number of partitions and
the accuracy of the approximation are determined by Q+ 1 where Q is the number
of quadrature. Equation (4) can be rewritten as:

l (β,Σ) =

∫
g (yj |vj ;β,Γ) Φ(vj)dvj (5)

where, uj = Γvj ,ΓΓ
′

= Σ, and vj has the standard normal density Φ(vj). Let nq
denote a vector of quadrature points with the same dimension as uj and w(nq)
the corresponding weight. The marginal likelihood can then be approximated as
follows:

l (β,Σ) ≈
Q∑
q=1

g (yj |nq;β,Γ)w(nq) (6)

3.2. Penalized Quasi-Likelihood (PQL)

Whereas AGHQ approximates the integral of the likelihood function, PQL linearizes
its nonlinear components (McNeish, 2016). The general form of logistic mixed ef-
fects model is obtained through a linear link k(.) that relates the linear predictor
ηij = xijβ + zijuj to the mean of the response variable such that:

E (yij |xij , uj) = µj = k−1 (xijβ + zijuj) = k−1(ηij) (7)

where k is logit link function.

A first order Taylor series expansion of Equation (7) about β̃ and ũj, the current,
fixed values of β and uj, has the following form (Codd, 2014):

k−1(ηij) ≈ k−1
(
xij β̃ + zij ũj

)
(8)

+ ∆̃ij

[
xij

(
β − β̃

)
zij (uj − ũj)

]
where ∆̃ij, is a diagonal matrix of derivatives of E (yij |xij , uj) assessed at the ex-

pansion points β̃ and ũj. In other words, ∆̃ij =
∂
(
g−1(ηij)

)
∂ηij

|β̃,ũj

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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The model for the data, yij, can then be defined as:

yij = k−1
(
xij β̃ + zij ũj

)
(9)

+ ∆̃ij

[
xij

(
β − β̃

)
+ zij (uj − ũj)

]
+ εi

From Equation (9) a pseudo response vector, ỹij, can be formed as:

ỹij = ∆̃−1
ij

(
yij − k−1

(
xij β̃ + zij ũj

))
+ xij β̃ + zij ũj (10)

Next, define a weight matrix, W̃ij , as W̃ij = Ṽ −1
ij ∆̃2

ij where Ṽij is a matrix of the
diagonal elements of var

(
εij |β̃, ũj

)
. A linear mixed effects model of the form:

ỹij = xijβ + zijuj + W̃−1
ij ε

∗
ij (11)

can then be fitted to the pseudo data, assuming that ε∗ij ∼ N
(
0,Λ∗

ij

)
. Because

the Equation (11) is linear in the random-effects, the likelihood function has a
closed-form solution. The model can then be adjusted by pseudo likelihood.

Once the parameter estimates from the model in the Equation (11) are obtained,
β̃ and ũj are updated and the next iteration is initiated. This method is called
penalized quasi-likelihood (PQL) due to the use of Taylor series expansions. It is
a doubly iterative procedure, where the Taylor series expansion about the current
estimates of β̃ and ũj is the first step, and the fitting of a linear mixed model to the
pseudo data is the second step. Iteration between these steps continues until the
difference between the parameter estimates in successive iterations is sufficiently
small.

3.3. Hierarchical likelihood method (HLM)

HLM is also called hierarchical generalized linear model (Collins, 2008). It is
an extension of GLMs using hierarchical (h-) likelihood (Lee and Nelder, 2001;
Nelder et al., 2006). The h-likelihood is the log joint likelihood of the extended like-
lihood LE written as follows (Casals et al., 2015):

h = log (LE(y;β, v)) = log (f(y;β|v)) + log (f(v)) (12)

with log (f(y;β|v)) being the log of the density function of the response variable and
β the parameters. u is a vector of random effects and v(.) is an appropriate link
function defining the h-likelihood such that v = v(u). Using the score functions of
the h-likelihood, the parameters β and v are estimated as follows:

∂h

∂β
= 0,

∂h

∂v
= 0 (13)

The adjusted profile h-likelihood is maximized to obtain the variance components
as follows:
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Pβ,u =

(
h+

1

2
log
(
2πH−1

))
|β=β̂, u=û (14)

where H is a Hessian matrix of the h-likelihood and ∂Pβ,u
∂λ = 0, with λ a vector

including both variance components (random effects and residuals), λ = (σ2
u, σ

2
e).

3.4. Integrated Nested Laplace Approximation (INLA)

INLA is a Bayesian procedure and in Equation (4), a prior distribution must be
specified for β and u (the random effects). A non-informative normal distribution
is defined as prior distribution for β in this study following Casals et al. (2015). Let
γ = (u, β)T be the G × 1 vector of Gaussian parameters. The random component
u is supposed to follow a multivariate normal distribution, u|Γ ∼ N(0,Γ−1), where
the precision matrix Γ = Γ(φ) depends on parameters φ. Let φ also be the vector of
the random components with P (φ) as the prior. The posterior density is given by:

π (γ, φ|y) ∝ π(γ|φ)π(φ)

m∏
i=1

f (yi|γ, φ) (15)

where, i=1,...,m (number of observations).

The posterior density is computed such that π (γ, |y) =
∫
π (γ|φ, y)π(φ|y)dφ, where

Laplace approximation is applied to carry out the integrations required for the
evaluation of π (γ|φ, y). INLA provides a good approximation while reducing com-
putational costs substantially (Rue et al., 2009; Rue et al., 2017).

4. Simulation plan

The simulation was performed in R software in following steps:

Step 1 : Set values for the parameters β0, β1, β2 and σ2;
Step 2 : Generate the covariates x1 and x2 from the Standard Normal

distributions and the true distribution of random effects respectively
from normal, mixture of normals, uniform, exponential, log-gamma and
log-normal distributions;

Step 3 : Set the coefficients and obtain logit such that:
logit(p (yij = 1|uj)) = β0 + β1x1j + β2x2ij + uj;

Step 4 : Calculate the predicted probabilities of experiencing an event
such that:
pij = invlogit(p (yij = 1|uj));

Step 5 : Obtain the binary outcome yij such that:
yij = rbinom(nij , 1, pij),
where sample size nij is the combination of the clusters N= 5, 10, 25,
50 and n= 30, 50, 100;

Step 6 : For each combination of nij, σ2 and true random effects dis-
tribution, run the model (Equation (1)) using the following estimation
methods a) PQL; b) AGHQ; c) HLM; d) INLA;
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Step 7 : Repeat the step 6 S times (S=500).
R packages MASS, lme4, hglm and INLA were respectively used for PQL, AGHQ,
HLM and INLA.

5. Comparison criteria

The simulation study included 864 settings, given by 6 distributions, 3 variances
for the random intercept, 4 values of N , 3 values of n and 4 estimation methods.
The parameters vector in the simulation is given by θ = (β0, β1, β2, σ

2)T . For each
simulation setting and estimation method, the empirical bias was calculated for the
fixed effects (between-cluster and within-cluster effects) and the random effects as
the mean bias over the 500 data sets as follows:

B =
1

S

S∑
j=1

(
|β − β̂j |

)
(16)

where β̂j is the estimated parameter, β is the true value and j = 1, . . . , S, S is
the number of simulations (S=500). The relative distance (RD) was also used to
quantify the impact of the misspecification on the estimates. The RD is defined as:

RD =
||θ̂ − θ||
||θ||

(17)

where θ̂ is the estimated parameter vector and θ the true parameter vector
(||θ|| =

√
β2
0 + β2

1 + β2
2 + σ4).

The smaller the values of B and RD, the lower is the impact and better is the
estimation method used. Moreover, for each setting, we recorded the computational
times with R function system.time and the convergence rate.

6. Results

6.1. Mean bias for AGHQ, INLA, HLM and PQL under varying distribution of
random effects

Figure 2 presents boxplots of the mean bias of the four estimation methods for both
fixed and random effects according to the random effects distribution. AGHQ and
HLM showed the lowest median values of the mean bias for all distributions con-
sidered in the case of fixed effects (between and within cluster effects). Moreover,
for these estimation methods, the maximum values of the mean bias are smaller
compared to the other estimation methods when considering the fixed effects. For
random effects, there was no estimation method showing lower median values of
the mean bias in all situations. However, except the exponential distribution, the
classical methods (PQL, HLM and AGHQ) showed smaller median values of the
mean bias compared to the Bayesian estimation method. In addition, the symmet-
ric distributions (normal, uniform and mixture-normal) showed lower mean bias
compared to the asymmetric distributions (log-normal, log-gamma, exponential)
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for all estimation methods considered. Moreover, the dispersion around the me-
dian values is less pronounced for classical estimation methods and symmetric
distributions in the case of random effects.

Fig. 2. Boxplots of mean bias for AGHQ, INLA, HLM and PQL under varying distri-
bution of the random effect.

NOR=Normal distribution; UNIF=uniform distribution; LN=Log-normal distribution; LG=Log-gamma
distribution; EXP= Exponential distribution; MN=Mixture of two normal distributions

6.2. Relative distance between estimated and true parameter vectors

6.2.1. Case of σ2=0.5 and n=30

In Figure 3, the median of the relative distance between the estimated parameter
vector and the true parameter vector for the estimation methods and the random
effects distribution is presented. This figure showed that the relative distance de-
creases as N increases and this is noted for all estimation methods and random
effects distributions. Furthermore, the relative distance is smaller (less than 0.4)
when the random effects distribution is symmetric (normal and uniform). Overall,
AGHQ and HLM outperformed the other methods in all situations considered. For
normal and uniform distributions, AGHQ, HLM and INLA showed the lower rela-
tive distances and outperform PQL in all situations. For exponential, log-normal,
log-gamma and mixture-normal distributions, the classical estimation methods
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performed better than the Bayesian method when the number of the clusters is
less than 10. On the other hand, for the number of the clusters greater or equal to
10, AGHQ, HLM and INLA performed better than PQL.

Fig. 3. Median of relative distance between and for σ2=0.5 and n=30

6.2.2. Case of σ2=2 and n=30

Figure 4 shows the median of the relative distance between the estimated param-
eter vector and the true parameter vector for the estimation methods according
to the random effects distribution when σ2=2 and n=30. This figure showed that
for all estimation methods and random effects distributions, the relative distance
decreases as N increases. A relatively similar pattern to that found when σ2=0.5 is
observed, however, the relative distances are greater than in the case of σ2=0.5. Uni-
form and exponential distributions showed similar results where INLA, HLM and
AGHQ outperformed PQL. The other distributions showed similar results where
PQL, INLA and AGHQ outperformed INLA for N less than 10 while INLA, HLM and
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AGHQ outperformed PQL for N greater or equal to 10. Moreover, similar pattern to
that found in Figures 3 and 4 is observed for the other combinations between the
variances and n. For this reason, these combinations were not presented.

Fig. 4. Median of relative distance between and for σ2=2 and n=30

6.3. Convergence rate and computation time

Table 1 presents the convergence rate and the computation time (in brackets) of
the four methods according to the random intercept distribution. Overall, the clas-
sical methods showed relatively low convergence rates for small values of n and
N while the Bayesian method presented highest convergence rates (100 %) except
one setting where the rate of convergence was 33 %. Regarding the computational
time, PQL method requires less time. AGHQ requires relatively lower computational
times, whereas the INLA and HLM are the slowest methods.
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Table 1. Convergence rate in percentage (%) and computational time in second (in
brackets) of the estimation methods (PQL, AGHQ, INLA and HLM)

N; n
PQL AGHQ

NO UN LN LG EX MN NO UN LN LG EX MN

5; 30 33.33(0.09) 33.33(0.09) 33.33(0.14) 33.33(0.14) 33.33(0.08) 66.67(0.31) 66.67(0.36) 66.67(0.41) 100(0.36) 66.67(0.35) 66.67(0.33) 66.67(0.41)

5; 50 100(0.10) 33.33(0.10) 66.67(0.15) 33.33(0.17) 33.33(0.08) 66.67(0.18) 66.67(0.40) 100(0.62) 100(0.48) 100(0.50) 100(0.46) 100(1.02)

5; 100 66.67(0.14) 66.67(0.11) 66.67(0.18) 66.67(0.18) 66.67(0.12) 66.67(0.24) 100(0.78) 100(0.92) 66.67(0.71) 100(0.82) 100(0.78) 100(0.79)

10; 30 66.67(0.13) 66.67(0.13) 66.67(0.17) 66.67(0.17) 66.67(0.11) 66.67(0.23) 100(0.60) 100(0.74) 100(0.60) 100(0.60) 100(0.57) 100(0.67)

10; 50 66.67(0.13) 66.67(0.15) 66.67(0.19) 66.67(0.19) 66.67(0.12) 66.67(0.26) 100(0.84) 100(1.06) 100(0.85) 100(0.88) 100(0.80) 100(0.88)

10; 100 66.67(0.19) 66.67(0.17) 66.67(0.25) 66.67(0.25) 66.67(0.16) 66.67(0.35) 100(1. 43) 100(1.69) 100(1.40) 100(1.49) 100(1.49) 100(1.45)

25; 30 66.67(0.17) 66.67(0.16) 66.67(0.24) 66.67(0.27) 66.67(0.16) 66.67(0.29) 100(1. 23) 100(1.48) 100(1.25) 100(1.26) 100(1.19) 100(1.32)

25; 50 66.67(0.22) 66.67(0.20) 100(0.31) 66.67(0.34) 100(0.20) 66.67(0.36) 100(1. 86) 100(2.21) 100(1.90) 100(1.95) 100(1.82) 100(1.88)

25; 100 100(0.34) 66.67(0.33) 100(0.51) 66.67(0.57) 66.67(0.34) 66.67(0.57) 100(3.68) 100(4.17) 100(3.47) 100(3.41) 100(3.55) 100(3.54)

50; 30 100(0.26) 100(0.24) 100(0.41) 66.67(0.56) 100(0.24) 100(0.43) 100(2.33) 100(2.72) 100(2.35) 100(2.36) 100(2.25) 100(2.37)

50; 50 66.67(0.39) 100(0.32) 100(0.59) 66.67(0.80) 100(0.59) 100(0.43) 100(3.55) 100(4.09) 100(3.54) 100(3.78) 100(3.56) 100(3.59)

50; 100 66.67(0.66) 100(0.55) 100(1.01) 66.67(1.48) 100(0.63) 100(0.96) 100(7.37) 100(7.18) 100(6.86) 100(6.63) 100(6.64) 100(7.13)

INLA HLM

NO UN LN LG EX MN NO UN LN LG EX MN

5; 30 33.33(1.03) 100(0.96) 100(0.86) 100(0.88) 100(0.94) 100(0.94) 98.6(2.03) 99.3(2.09) 98.7(3.6) 98.5(5.1) 98.8(12.95) 97.7(1.9)

5; 50 100(2.53) 100(1.13) 100(1.08) 100(1.04) 66.67(1.14) 100(3.69) 97.6(1.22) 98.7(4.53) 99.3(4.1) 99.4(22) 98.77(15.24) 99.4(2.6)

5; 100 100(1.80) 100(1.61) 100(1.44) 100(1.48) 100(1.62) 100(1.43) 98.2(1.22) 99.4(9.19) 99.4(0.6) 99.4(2.1) 99.2(6.2) 99.4(1.2)

10; 30 100 (1.40) 100(1.24) 100(1.11) 100(1.14) 100(1.23) 100(1.21) 99.4(1.36) 99.7(6.27) 99.9(0.6) 99.5(13.9) 99.5(10.4) 99.7(1.1)

10; 50 100(2.14) 100(1.60) 100(1.48) 100(1.51) 100(1.63) 100(1.43) 99.9(0.87) 99.7(0.86) 99.9(0.4) 100(1.5) 100(1.9) 100(1.6)

10; 100 100(2.70) 100(2.46) 100(2.33) 100(2.18) 100(2.52) 100(2.80) 99.8(1.55) 99.6(1.4) 100(0.8) 99.8(1.1) 99.7(1.5) 100(1.8)

25; 30 100(2.33) 100(2.08) 100(1.85) 100(1.90) 100(2.12) 100(1.90) 100(2.02) 100(1.22) 100 (0.9) 100(1.66) 100(1.9) 100(4)

25; 50 100(4.10) 100(3.17) 100(2.77) 100(2.87) 100(3.18) 100(2.77) 100(3.32) 100(2.1) 100(2) 100(2.7) 100(1.4) 100(6)

25; 100 100(6.38) 100(5.61) 100(4.80) 100(4.78) 100(5.59) 100(4.72) 100(10.16) 100(4.95) 100(7.1) 100(3.2) 99.6(12.2) 100(10)

50; 30 100(4.25) 100(3.86) 100(3.27) 100(3.49) 100(3.80) 100(3.35) 100(8.60) 100(5.41) 100(6.6) 100(4.6) 100(5.8) 100(12.3)

50; 50 100(6.96) 100(5.74) 100(4.82) 100(5.18) 100(5.70) 100(10.29) 100(16.46) 100(11.53) 100(11.1) 100(19.1) 100(16.7) 100(19)

50; 100 100(14.99) 100(13.47) 100(11.33) 100(41.09) 100(13.79) 100(11.53) 100(53.96) 100(15.55) 100(23.4) 100(26.8) 100(38.9) 100(20.4)

n=Number of observation per group; N=Number of groups; NO=Normal distribution; UN=uniform distribution; LN=Log-
normal distribution; LG=Log-gamma distribution; EX= Exponential distribution; MN=Mixture of two normal distribu-
tions

7. Discussion

This study assessed the effect of misspecification of the random effects distribution
on the performance of four estimation methods in frame of binary logistic mixed
models. We also investigated the impact of the increased random effects variance
and varying sample size at both group and individual level on the performance of
these methods. A natural concern in using logistic mixed models is misspecifying
the model for random effects. For computational convenience, random effects
are almost routinely assumed to be normal (McCulloch and Neuhaus, 2011).
Many authors have found that likelihood-based inference can be severely af-
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fected if the random effects distribution is misspecified (Neuhaus et al., 1992;
Agresti et al., 2004; Litière et al., 2008; Hernandez and Giampaoli, 2018). What
happens with Bayesian approach? And what methods are less or more sensitive to
the misspecification of the random effects distribution? That is what we addressed
in this study. Overall, the misspecification of the random effect distribution
impacts the performance of the estimation methods according to the simulation
conditions.

The four estimation methods considered in our study approximate in different
ways the marginal likelihood in order to estimate the parameters. AGHQ use a
numerical integration while PQL is based on linearization technique (Codd, 2014).
INLA and HLM respectively use Bayesian framework and h-likelihood procedure
(Casals et al., 2015). Vonesh (2012) showed that, for fixed effect parameters
estimation in the case of binary data, numerical integration methods tend to be
more accurate than the linearization methods. Similarly, Collins (2008) found a
concordance between h-likelihood procedure and numerical integration in his
study. Our study reveals that the results from Collins (2008) and Vonesh (2012)
can be extended to non-normal random effects. We also found that the shape
of the random effects distribution (symmetric or asymmetric) has an impact on
the bias resulting from the distribution misspecification similarly to results from
Hernandez et al. (2014) indicating that the bias was less when the random effects
distribution is symmetric.

The classical estimation methods especially AGHQ and HLM performed better than
the Bayesian method as the number of the clusters is less than 10. This result
does not confirm those from previous studies stating that classical methods tend
to perform well for large number of subjects (Breslow and Lin, 1995) and are less
accurate for small clusters. Our result can be explained by the fact that Bayesian
approach is more sensitive to non-normality of random effects distribution than
the classical methods in the case of small samples. Furthermore, AGHQ, HLM and
INLA performed better than PQL for the number of the clusters greater or equal
to 10 whatever the distribution considered and this could be explained by the fact
that PQL is generally less accurate for fitting binary data (Jang et al., 2007).

8. Conclusions

The present study reveals that the misspecification of the random effects dis-
tribution in binary logistic mixed models differently impacts the performance of
the estimation methods considered. The choice of an estimation method in bi-
nary logistic mixed models should be done based on the characteristics of each
data set. In practice, we recommend to users to firstly check the random ef-
fects distribution using a diagnostic test as proposed by Efendi et al. (2014) and
Drikvandi et al. (2017) based on graphical checking which can be performed with
the function check model of the R package performance. Then, for smaller sample
and number of the clusters (less than 10), classical estimation methods (AGHQ
and HLM) can be used to estimate the parameters. In contrary, for greater sam-
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ple (number of clusters greater or equal to 10), Bayesian method (INLA) as well as
classical methods (AGHQ and HLM) could be chosen. However, for the big data re-
questing long time for running, AGHQ could be the first choice since INLA and HLM
are slower methods. Moreover, the current study used binary logistic mixed models
to compare the estimation methods; it would be useful that future researches com-
pare these methods for multinomial logistic mixed models since several researches
often involve categorical outcome variables with more than two levels.
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