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Abstract. In this paper, we study the maximum likelihood estimator (MLE) of the
parameter vector of a discrete multivariate crash frequencies model used in the
statistical analysis of the effectiveness of a road safety measure. We derive the
closed-form expression of the MLE afterwards we prove its strong consistency and
we obtain the exact variance of the components of the MLE except one component
whose variance is approximated via the delta method.

Résumé. Dans cet article, nous étudions l’estimateur du maximum de vraisem-
blance (EMV) du vecteur de paramètres d’un modèle discret multivarié utilisé
dans l’analyse statistique de l’efficacité d’une mesure de sécurité routière. Nous
obtenons l’expression analytique exacte de l’EMV après quoi nous prouvons sa
forte consistance et nous obtenons la variance exacte des composantes de l’EMV,
sauf pour une composante dont la variance est approximée par la méthode delta.
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1. Introduction and motivation

Let n and r be two positive integers and X = (X11, . . . , X1r, X21, . . . , X2r) ∈ R2r be
a discrete random vector with multinomial distribution M(n,π) where π = (π11,
. . . , π1r, π21, . . . , π2r)T is a vector of cell probabilities such that the sum of its
components equals one. Such a modelling is particularly used in the field of
road safety to estimate how much crash frequencies have been affected by a
road safety measure (design change or intervention) on a given treatment site
(N’Guessan and Langrand, 1993; N’Guessan et al., 2001, 2006a,b; N’Guessan and
Truffier, 2008). In that case, r represents the total number of accident severity
levels (for example, if accidents are categorized by severity level as property
damage only, minor injury, severe injury and fatal accident, then r = 4), n is
the total number of crashes in both periods and for all j = 1, . . . , r, Xij (resp.
πij ) represents the number (resp. the risk) of crashes of severity level j on the
site in time period i (i = 1 for the period before the application of the road
safety measure and i = 2 for the period after). One of the benefits of this kind
of before-after studies is that they allow cause-effect interpretations (Hauer, 2010).

The estimation of the parameters πij ’s is not of direct interest to researchers or
decision-makers. One is more interested in answering the following question:
how did the measure affect the number of accidents? To this purpose, it seems
interesting to estimate the measure’s efficiency index that is a positive real number
denoted α and defined by N’Guessan et al. (2006a) as the ratio of the total number
of accidents observed in the after period to the total number of accidents expected
in the same period if the measure had no effect i.e. if the treatment site behaved
like its control area. The interpretation of the mean effect α can be done by
comparing α to 1 through a statistical test (see N’Guessan and Truffier (2008) for
more details). For example, if α < 1, then it could be concluded that the measure
has enabled to reduce the number of accidents occurring on the treatment site.
The main challenge is then to find a link function between the parameters πij and α.

In order to take into account any underlying trend in crash frequencies which
may erroneously be attributed to the measure, the treatment site is paired with a
control site of similar conditions (geometric characteristics, traffic flow, accident
exposure, roadside conditions, etc.) and where the measure was not applied
(Ogden, 1997). The accidents data of the control site over both periods of time are
represented by a non-random vector Z = (z1, . . . , zr)

T where zj is the ratio of the
number of crashes of severity level j in the ”after” period to the number of crashes
of the same severity level in the ”before” period.
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The simultaneous consideration of different severity levels and control site data
introduces several secondary parameters. N’Guessan et al. (2001) proposed the
link functions

π1j =
βj

1 + α
∑r

k=1 zkβk
, π2j =

αβjzj

1 + α
∑r

k=1 zkβk
, j = 1, . . . , r. (1)

where β1, . . . , βr are positive additional secondary parameters such that
∑r

i=1 βi = 1
and for all j = 1, . . . , r, βj represents the probability that a crash occurring in an
area similar to the treatment site has a severity level j. Later, N’Guessan et al.
(2006a) proposed the link functions

π1j =
βj

1 + α
∑r

k=1 zkβk
, π2j =

αβj
∑r

k=1 zkβk

1 + α
∑r

k=1 zkβk
, j = 1, . . . , r. (2)

The main difference between link functions (1) and (2) is the definition of π2j,
motivated in model (2) by the fact that the mean value

∑r
k=1 zkβk is considered as

more stable and less sensitive to errors than the control coefficients z1, . . ., zr taken
individually. The models thus defined have a parameter vector θ = (α, β1, . . . , βr)
such that α > 0, βi > 0 for all i = 1, . . . , r and h(θ) = 0 where h is the function from
Rr+1 to R defined by h(θ) =

∑r
i=1 βi − 1.

Model (1) has been the subject of several works. N’Guessan (2010) studied the
analytical existence of the maximum likelihood estimator (MLE) θ̂ = (α̂, β̂1, . . . , β̂r)
of θ = (α, β1, . . . , βr) and proved that, although an explicit closed-form expression
of θ̂ cannot be obtained, it is possible to write α̂ as a function of the β̂j ’s and
vice versa. N’Guessan and Langrand (2005) have obtained the explicit asymp-
totic variance-covariance matrix of θ̂. A cyclic algorithm has been developed
by N’Guessan and Geraldo (2015) for the numerical estimation of θ̂ and the
convergence of this algorithm has been proved by Geraldo et al. (2018). Geraldo
et al. (2015) have demonstrated the strong consistency of the MLE, that is, θ̂
converges almost surely (a.s.) to the true value θ = (α, β1, . . . , βr) of the vector
parameter when the sample size n tends to infinity.

Although the MLE for model (2) has been shown to perform well in the numerical
simulation studies of N’Guessan et al. (2006a), the exact expression of the MLE
and the theoretical justification of its strong consistency have not been established
yet. So the aim of this paper is to fill this gap by making a comprehensive study of
the maximum likelihood estimator for the model (2).

To achieve our goal, we prove in Section 2 that the likelihood equations (obtained
by setting the partial derivatives of the log-likelihood to zero) have a unique
closed-form solution. Afterwards, in Section 3, we prove the strong consistency of
the MLE θ̂. We also derive the approximated variance of α̂ using the delta method
and the exact variance of the β̂j ’s in Section 4. In the last section of the paper
(Section 5), we discuss the possible extension of our work to the case where the
road safety measure is applied, no longer on a single site but on s (s > 1) different
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sites.

To make it easier for the reader to identify the elements involved in the matrix
operations carried out in the paper, the multidimensional objects (vectors and ma-
trices) are denoted in bold. The almost sure (a.s.) convergence is denoted by the
symbol a.s.−→. The vector π and its components πij will be denoted sometimes π(θ)
and πij(θ) to emphasize their dependence on the parameter vector θ.

2. Closed-form expression of the maximum likelihood estimator

Let us start with the following lemma.

Lemma 1. Let x = (x11, . . . , x1r, x21, . . . , x2r) be a vector of observed data from model
(2) such that

∑2
i=1

∑r
j=1 xij = n. The MLE θ̂ = (α̂, β̂1, . . . , β̂r), if it exists, is solution to

the system of non-linear equations

r∑
j=1

(
x2j −

αz(β)x·j

1 + αz(β)

)
= 0

x·j −
nβj(1 + αzj)

1 + αz(β)
−
x2·βj(z(β)− zj)

z(β)
= 0, j = 1, . . . , r

(3)

where x·j = x1j + x2j , x2· =
∑r

k=1 x2k and z(β) =
∑r

k=1 zkβk.

Proof. It is inspired from (N’Guessan et al., 2006a, Appendix B). One shows that
the log-likelihood is given, up to an irrelevant additive constant, by

`(θ) =

r∑
j=1

{
x·j log(βj) + x2j log(α)− x·j log

(
1 + α

r∑
k=1

zkβk

)
+ x2j log

( r∑
k=1

zkβk

)}
.

The maximization of `(θ) under the constraint h(θ) = 0 (where h(θ) =
∑r

j=1 βj − 1)
is equivalent to the maximization of L(θ, λ) = `(θ) − λh(θ) where λ is a Lagrange
multiplier. The first line of (3) is easily obtained from ∂L/∂α = 0. For all j = 1, . . . , r,
we also have,

∂L
∂βj

=
1

βj

(
x·j −

nαβjzj
1 + αz(β)

+
x2·βjzj
z(β)

− λβj
)

= 0. (4)

After multiplication by βj and summation on the index j, we get

λ =
n

1 + αz(β)
+ x2·

and the second line of (3) is then obtained by substitution of the expression of λ
in (4).

Let us now give the first main result of the paper.
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Theorem 1. Let X = (X11, . . . , X1r, X21, . . . , X2r) be a random vector with multino-
mial distributionM(n,π(θ)) where π(θ) is defined by (2) and θ = (α, β1, . . . , βr). The
MLE θ̂ = (α̂, β̂1, . . . , β̂r) of θ is given by

α̂ =
n
∑r

k=1X2k(∑r
k=1X1k

)(∑r
k=1 zk(X1k +X2k)

) (5)

β̂j =
X1j +X2j

n
, j = 1, . . . , r. (6)

Proof. From the first line of (3), we have the following equivalences:

r∑
j=1

(
x2j −

αz(β)x·j

1 + αz(β)

)
= 0 ⇐⇒

r∑
j=1

x2j −
nαz(β)

1 + αz(β)
= 0

⇐⇒
r∑

j=1

x2j −
(
n− n

1 + αz(β)

)
= 0

⇐⇒ n

1 + αz(β)
=

r∑
j=1

x1j

because
∑r

j=1(x1j + x2j) = n. Thus

z(β) =

∑r
j=1 x2j

α
∑r

j=1 x1j
=

x2·
α(n− x2·)

. (7)

After substitution of (7) in the second line of (3), we get, for all j = 1, . . . , r,

x·j −
nβj(1 + αzj)

1 +
x2·

n− x2·

− x2·βj +
x2·βjzj
x2·

α(n− x2·)
= 0

which yields

x·j − βj(1 + αzj)(n− x2·)− x2·βj + αβjzj(n− x2·) = 0.

After simplification, we get

x·j − nβj = 0

hence the expression of β̂j. The expression of α̂ is then easily obtained after sub-
stitution of β̂j in (7).

Remark 1. It is easy to check that the MLE θ̂ satisfies the conditions α̂ > 0, 0 <
β̂j < 1 for j = 1, . . . , r and

∑r
i=1 β̂i = 1.
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3. Strong consistency of the MLE

The strong consistency of the estimator θ̂ is a very desirable property. This property
guarantees that, if X = (X11, . . . , X1r, X21, . . . , X2r) originates from the model (2)
with true unknown vector parameter θ, then θ̂ converges almost surely (a.s.) to θ
when the sample size n tends to +∞. Since the MLE θ̂ is available in closed-form,
the study of its strong convergence can be done directly by using its closed-form
expression and the properties of the underlying multinomial distribution.

We first recall the continuous mapping theorem that will be very useful in the proof
of the main theorem on the strong consistency of the MLE.

Lemma 2 (Van der Vaart (1998)). Let Yn = (Yn,1, . . . , Yn,k) and Y = (Y1, . . . , Yk) be
k−dimensional random vectors and g be a mapping from Rk to Rm continuous at
every point of a set A such that P(Y ∈ A) = 1. If Yn

a.s.−→ Y then g(Yn)
a.s.−→ g(Y).

Let us now give the consistency theorem.

Theorem 2. Let X = (X11, . . . , X1r, X21, . . . , X2r) be a random vector with the multi-
nomial distribution M(n;π(θ)) where π(θ) is defined by (2) and θ = (α, β1, . . . , βr).
Then, the MLE θ̂ defined by Theorem 1 converges a.s. to θ as n tends to +∞.

Proof. We know that the almost sure (a.s.) convergence of a random vector is
equivalent to the a.s. convergence of each of its components. To prove that θ̂ =
(α̂, β̂1, . . . , β̂r) converges a.s. to θ = (α, β1, . . . , βr), it is sufficient to prove that: (1)
α̂

a.s.−→ α and, (2) for all j = 1, . . . , r, β̂j
a.s.−→ βj.

(1) We can write

α̂ =

r∑
k=1

X2k

n(
r∑

k=1

X1k

n

)
×

r∑
k=1

zk

(
X1k

n
+
X2k

n

) = g

(
X11

n
, . . . ,

X1r

n
,
X21

n
, . . . ,

X2r

n

)

where g is the continuous function defined from R2r to R by

g(b1, . . . , br, a1, . . . , ar) =

∑r
k=1 ak

(
∑r

k=1 bk) (
∑r

k=1 zk(ak + bk))
. (8)

As X/n
a.s.−→ π when n→∞, we apply Lemma 2 and get

α̂
a.s.−→ g(π11(θ), . . . π1r(θ), π21(θ), . . . , π2r(θ)) = α.

(2) For all j = 1, . . . , r, we have

β̂j = gj

(
X11

n
, . . . ,

X1r

n
,
X21

n
, . . . ,

X2r

n

)
where gj is the continuous mapping defined from R2r to R by
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gj(b1, . . . , br, a1, . . . , ar) = bj + aj .

As X/n
a.s.−→ π when n→∞, we apply Lemma 2 here too and get

β̂j
a.s.−→ gj(π11(θ), . . . , π1r(θ), π21(θ), . . . , π2r(θ)) = π1j(θ) + π2j(θ) = βj .

4. Computation of the variance of the MLE’s components

The estimation of the parameters of the model cannot be complete without the
estimation of the variance of the estimators α̂, β̂1, . . . , β̂r which allows to have an
idea on their variability.

Theorem 3. Let θ̂ = (α̂, β̂1, . . . , β̂r) be the MLE defined by Theorem 1. Then, for all
j = 1, . . . , r, the exact variance of the MLE β̂j is

var(β̂j) =
βj(1− βj)

n
. (9)

Proof. For any j = 1, . . . , r, the random variable X1j + X2j follows the binomial
distribution B(n, π1j + π2j). This simple property of the multinomial distribution
will not be demonstrated here and we rather refer the reader to (Wasserman, 2004,
pages 53-54, 235-237). We then have

var(β̂j) = var

(
X1j +X2j

n

)
=

1

n2
var(X1j +X2j)

=
1

n2

(
n(π1j + π2j)(1− π1j − π2j)

)
where π1j + π2j = βj.

Direct calculation of the variance of the estimator α̂ seems impossible because α̂
is expressed as a quotient of random variables whose exact distribution cannot be
determined accurately. However, an approximate variance can be obtained using
the delta method (Lo et al., 2016, Proposition 35). This method enables to approx-
imate the variance of a function of a random variable (or a random vector) whose
exact variance is known. The delta method is recalled by the following lemma.

Lemma 3 ((Lo et al., 2016, Proposition 35)). Let Y ∈ Rd be a random vector with
mathematical expectation µ ∈ Rd and variance-covariance matrix Σ of order d × d.
For any differentiable function g : Rd → R,

var(g(Y)) ≈ (∇g(µ))
TΣ(∇g(µ)) (10)

where ∇g(µ) ∈ Rd is the gradient of g (the vector of first partial derivatives) evaluated
at the point µ.

Before giving the approximate variance of α̂, we recall the first-order and second-
order moments of the multinomial distribution through the following lemma.
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Lemma 4. Let X = (X11, . . . , X1r, X21, . . . , X2r) be a random vector with multinomial
distribution M(n;π) where π = (π11, . . . , π1r, π21, . . . , π2r)

T. Let π1 = (π11, . . . , π1r)
T ∈

Rr and π2 = (π21, . . . , π2r)
T ∈ Rr. The mathematical expectation of X/n is E (X/n) = π

and its variance-covariance matrix is

Σ =
1

n

(
∆− ππT

)
where

∆ =

(
∆1 0r,r

0r,r ∆2

)
,

∆1 (resp. ∆2) is the diagonal matrix of order r × r whose diagonal elements are the
components of π1 (resp. π2) and 0r,r is the null matrix of order r × r.

Proof. From the classical results on the multinomial distribution (see for example
(Wasserman, 2004, page 53)), we know that E(X) = nπ and var(X) = n

(
∆− ππT

)
.

Lemma 4 is then easily deduced from the equalities E (X/n) = E(X)/n and Σ =
var (X/n) = var(X)/n2.

The following lemma gives some intermediate results that will be needed to prove
the theorem on the approximate variance of α̂. For simplicity, z(β) is denoted z.

Lemma 5. Let g be the continuous function defined from R2r to R by Equation (8).
For any vector y ∈ Rr, let ‖y‖2∆1

= yT∆1y and ‖y‖2∆2
= yT∆2y. Let γ =

1

1 + αz
and

z2 =
∑r

j=1 βjz
2
j .

(1)

∇g(π) =
1

γz

(
−αγZT − αz1T

r︸ ︷︷ ︸
∈Rr

,1T
r − αγZT︸ ︷︷ ︸
∈Rr

)
T

where 1r = (1, . . . , 1)T ∈ Rr,

−αγZT − αz1T
r = (−αγz1 − αz, . . . ,−αγzr − αz)T ∈ Rr

1T
r − αγZT = (1− αγz1, . . . , 1− αγzr)T ∈ Rr.

(2) ‖αγZ + αz1r‖2∆1
= α2γ3z2 + α2γz2 + 2α2γ2z2.

(3) ‖1r − αγZ‖2∆2
= αγz + α3γ3zz2 − 2α2γ2z2.

(4) ∇g(π)
Tπ = −α.

Proof.

(1) For all i = 1, . . . , r, we have
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∂g

∂bi
=
− (
∑r

k=1 ak)
[(∑r

k=1 zk(ak + bk)
)
+ zi

∑r
k=1 bk

]
(
∑r

k=1 bk)
2
(∑r

k=1 zk(ak + bk)
)2

∂g

∂ai
=

(
∑r

k=1 bk)
(∑r

k=1 zk(ak + bk)
)
− zi (

∑r
k=1 bk) (

∑r
k=1 ak)

(
∑r

k=1 bk)
2
(∑r

k=1 zk(ak + bk)
)2

and, therefore,

∂g

∂bi
(π) =

− (
∑r

k=1 π2k)
[(∑r

k=1 zk(π2k + π1k)
)
+ zi

∑r
k=1 π1k

]
(
∑r

k=1 π1k)
2
(∑r

k=1 zk(π2k + π1k)
)2

∂g

∂ai
(π) =

(
∑r

k=1 π1k)
(∑r

k=1 zk(π2k + π1k)
)
− zi (

∑r
k=1 π1k) (

∑r
k=1 π2k)

(
∑r

k=1 π1k)
2
(∑r

k=1 zk(π2k + π1k)
)2 .

Since π2k + π1k = βk and

r∑
k=1

zk(π2k + π1k) =

r∑
k=1

zkβk = z,

r∑
k=1

π1k = γ,

r∑
k=1

π2k = αγz,

we can write

∂g

∂bi
(π) =

−αγz (z + ziγ)

γ2z2
=
−α (z + γzi)

γz
,

∂g

∂ai
(π) =

γz − ziγαγz
γ2z2

=
1− αγzi

γz
.

(2)

‖αγZ + αz1r‖2∆1
= α2 ‖γZ + z1r‖2∆1

= α2
(
γZT + z1T

r

)
∆1 (γZ + z1r)

= α2
r∑

j=1

π1j(γzj + z)2 = α2γ

r∑
j=1

βj(γzj + z)2

= α2γ

γ2
r∑

j=1

βjz
2
j + z2

r∑
j=1

βj + 2γz

r∑
j=1

βjzj


= α2γ

(
γ2z2 + z2 + 2γz2

)
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(3)

‖1r − αγZ‖2∆2
=
(
1T
r − αγZT

)
∆2 (1r − αγZ)

=

r∑
j=1

π2j(1− αγzj)2

=

r∑
j=1

π2j + α2γ2
r∑

j=1

π2jz
2
j − 2αγ

r∑
j=1

π2jzj

=

r∑
j=1

αγzβj + α2γ2
r∑

j=1

αγzβjz
2
j − 2αγ

r∑
j=1

αγzβjzj

= αγz + α3γ3zz2 − 2α2γ2z2.

(4)

∇g(π)
Tπ =

1

γz

(
− αγZT − αz1T

r ,1
T
r − αγZT

)(π1

π2

)
=

1

γz

{
−αγZTπ1 − αz1T

r π1 + 1T
r π2 − αγZTπ2

}
=

1

γz

{
−αγ

r∑
k=1

zkπ1k − αz
r∑

k=1

π1k +

r∑
k=1

π2k − αγ
r∑

k=1

zkπ2k

}

=
1

γz

{
−αγ

r∑
k=1

zk(π1k + π2k)− αz
r∑

k=1

π1k +

r∑
k=1

π2k

}

=
1

γz

{
−αγ

r∑
k=1

zkβk − αz
r∑

k=1

π1k +

r∑
k=1

π2k

}

=
1

γz
{−αγz − αγz + αγz}

= −α

Theorem 4. Let θ̂ = (α̂, β̂1, . . . , β̂r) be the MLE defined by Theorem 1. The approxi-
mate variance of α̂ is

var(α̂) ≈ α

nγ2z
+
α2z2

nz2
− α2

n
(11)

where γ =
1

1 + αz
and z2 =

∑r
i=1 βiz

2
i .

Proof. Recall that

α̂ = g

(
X

n

)
= g

(
X11

n
, . . . ,

X1r

n
,
X21

n
, . . . ,

X2r

n

)
where g is defined by (8). From Lemmas 3 and 4,
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var(α̂) ≈ 1

n
∇g(π)

T
(
∆− ππT

)
∇g(π)

=
1

n
∇g(π)

T∆∇g(π)−
1

n
∇g(π)

TππT∇g(π)

=
1

n
∇g(π)

T∆∇g(π)−
1

n
∇g(π)Tπ

(
∇g(π)

Tπ
)T

=
1

n
∇g(π)

T∆∇g(π)−
1

n

(
∇g(π)

Tπ
)2

because ∇g(π)
Tπ ∈ R. On the one hand, we have

∇g(π)
T∆∇g(π) =

1

γ2z2

(
− αγZT − αz1T

r ,1
T
r − αγZT

)(∆1 0r,r

0r,r ∆2

)(
−αγZ− αz1r

1r − αγZ

)
=

1

γ2z2

{
‖αγZ + αz1r‖2∆1

+ ‖1r − αγZ‖2∆2

}
and, from Lemma 5,

∇g(π)
T∆∇g(π) =

1

γ2z2

{
α2γ3z2 + α2γz2 + 2α2γ2z2 + αγz + α3γ3zz2 − 2α2γ2z2

}
=

1

γ2z2

{
α2γ3z2 + α2γz2 + αγz + α3γ3zz2

}
=

α

γz2

{
αγ2z2 + αz2 + z + α2γ2zz2

}
=

α

γz2

{
(αγ2z2 + z)(1 + αz)

}
=

α

γz2

{
(αγ2z2 + z)

1

γ

}
=
α2z2

z2
+

α

γ2z
.

On the other hand, by Lemma 5, ∇g(π)
Tπ = −α. Finally, we have

var(α̂) ≈ 1

n

{
α2z2

z2
+

α

γ2z

}
− 1

n
(−α)2

and the proof is completed.

Remark 2. As the variance of a random variable is always positive, some authors
(see for example (Casella and Berger, 2002, Theorem 5.5.28)) add the condition
∇g(µ)

TΣ∇g(µ) > 0 in Lemma 3. This should be straightforward if the matrix Σ
was positive definite, but this is not the case here because the variance-covariance
matrix Σ of the multinomial distribution is not even invertible (the sum of its el-
ements by row or by column is zero). Fortunately, for the approximation of the
variance of α̂, we have
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α

nγ2z
+
α2z2

nz2
− α2

n
=

α

nγ2z
+
α2

n

(
z2

z2
− 1

)
and

0 6
r∑

i=1

βi(zi − z)2 =

r∑
i=1

βiz
2
i + z2

r∑
i=1

βi − 2z

r∑
i=1

βizi

= z2 + z2 − 2z2

= z2 − z2

hence the quantity (11) is strictly positive.

5. Discussion

In this paper, we derived the closed-form expression of the constrained maximum
likelihood estimator (MLE) θ̂ = (α̂, β̂) of the parameter vector θ = (α,β) of a
multivariate discrete crash data model where α > 0 is the parameter of interest
and β = (β1, . . . , βr) is a vector of probabilities such that

∑r
j=1 βj = 1. We proved

that the MLE is strongly consistent and we derived the approximated variance of α̂
using the delta method and the exact variance of the components of β̂. The model
considered in this paper is motivated by the statistical analysis of the effectiveness
of a road safety measure applied to a given target site paired with a control site
where the measure was not applied.

It should be interesting to consider the general case (N’Guessan et al., 2006a) where
the road safety measure is applied, no longer on a single site but on s (s > 1)
different treatment sites, each being paired with a control site. In this case, the
parameter vector still has the form θ = (α,β) but β = (β1, . . . ,βs) where, for all
k = 1, . . . , s, βk = (βk1, . . . , βkr) and

∑r
j=1 βkj = 1. This simultaneous consideration

of several treatment sites considerably increases the complexity of the model and,
a priori, does not allow to envisage obtaining a closed-form expression of the MLE.
However, one could consider studying the strong consistency directly from the like-
lihood equations as in Geraldo et al. (2015) and obtain the approximate variance
of the components of the MLE using other methods like the analytical inversion of
the Fisher information matrix (Aitchison and Silvey, 1958; Neuenschwander and
Flury, 1997; N’Guessan and Langrand, 2005).
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statistique appliquée, 49(2):85–102.

N’Guessan, A., Essai, A., and N’zi, M. (2006a). An estimation method of the average
effect and the different accident risks when modelling a road safety measure: A
simulation study. Computational Statistics & Data Analysis, 51(2):1260–1277.

N’Guessan, A. and Geraldo, I. C. (2015). A cyclic algorithm for maximum likelihood
estimation using Schur complement. Numerical Linear Algebra with Applications,
22(6):1161–1179.

N’Guessan, A. and Langrand, C. (1993). Sur la distribution asymptotique de cer-
taines statistiques utilisées dand le domaine de la sécurité routière. C. R. Acad.
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d’une méthode statistique pour évaluer l’impact de certaines modifications des
conditions de la route : étude de cas. PUB IRMA Lille, 66(III):1–20.

Ogden, K. W. (1997). The effects of paved shoulders on accidents on rural highways.
Accident Analysis and Prevention, 29(3):353–362.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



I. C. Geraldo, Afrika Statistika, Vol. 15 (2), 2020, pages 2335 - 2348. On the maximum
likelihood estimator for a discrete multivariate crash frequencies model 2348

Proschan, M. A. and Shaw, P. A. (2016). Essentials of Probability Theory for Statis-
ticians. Chapman and Hall/CRC Texts in Statistical Science. CRC Press, New
York.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press,
Cambridge (United Kingdom).

Wasserman, L. (2004). All of Statistics: a concise course in statistical inference.
Springer, New York.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst


	Introduction and motivation
	Closed-form expression of the maximum likelihood estimator
	Strong consistency of the MLE
	Computation of the variance of the MLE's components
	Discussion

