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Abstract. In this paper, we study a bias reduced kernel density estimator and
derive a nonparametric φ-divergence estimator based on this density estimator. We
investigate the asymptotic properties of these two estimators and we formulate an
asymptotically standard normal test for model selection.

Résumé. (Abstract in French). Dans cet article, nous étudions l’estimateur de den-
sité à noyau avec un biais réduit et nous dérivons un estimateur nonparamétrique
de la φ-divergence basé sur cet estimateur de densité. Nous investiguons les pro-
priétés asymptotiques de ces deux estimateurs et nous formulons un test asymp-
totiquement normal standard pour la sélection de modèle.
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1. Introduction

Let X1, ..., Xn be independent and identically distributed (iid) random variables
and assume that the common distribution function of these variables has an
unknown density f . On can use non-parametric approach for the estimation
of f . A widely used non-parametric estimator is the kernel density estimator
given by Rosenblatt (1956) and Parzen (1962). The asymptotic properties of
this estimator have been intensively investigated and many kernel-types es-
timators have been proposed. Dony and Einmahl (2006) showed the uniform
consistency of kernel density estimator with general bandwidth sequences.
Bouzebda and Elhattab (2011) established the uniform in bandwidth consis-
tency of kernel-type estimators of Shannon Entropy. Einmahl and Mason (2005)
proved the uniform in bandwidth consistency of kernel-type function estimators.
Dhaker et al. (2016) proposed a strong uniformly consistent kernel-type estimator
of divergence measures. Rudemo (1982) and Bowman et al. (1984) introduced
a convenient method for the choice of optimal bandwidth in practice for kernel
density estimator using cross-validation. Xiaoran and Jingjing (2014) focused
on improving the convergence rate of the kernel density estimator by formulat-
ing a bias reduced kernel density estimator. In this paper, we investigate the
properties of this estimator and prove its asymptotic normality and its strong
consistency. Next, we use the bias reduced kernel density estimator to derive
a nonparametric estimator of the φ-divergence proposed by Csiszár (1963) and
developed by Ali and Silvey (1966). This general family of divergences which
include the Kullback and Leibler (1951) divergence (KLD) and the Hellinger (1977)
divergence , measures the dissimilarity between those two probability distri-
butions and is a key tool for model selection. For more details on divergence
measures, see Pardo (2006) and Basu et al. (1998). In Ba et al. (2017) , a general
normal asymptotic theory for divergence measures estimators has been provided.
Ba et al. (2018) also extended the aforementioned results to symmetrized forms of
divergence measures and investigated in details the Tsallis and Renyi divergence
measures as well as the Kullback-Leibler measures. Last the proofs of some
results and the applicability to usual distribution functions have been addressed
in Ba et al. (2019) .
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We show the asymptotic normality and the strong consistency of this estimator
and construct an asymptotically normal test for model selection using φ-divergence
type statistics.

The rest of the paper is organized as follows. We study the bias reduced kernel
density estimator and its asymptotic properties in Section 2 and we derive the
nonparametric φ-divergence estimator and its asymptotic properties in Section 3. In
Section 4, the test for model selection are proposed and the computational results
are presented in Section 5. Finally the conclusion appears in Section 6.

2. Some important results on bias reduced kernel density estimator

Let X1, ..., Xn be iid random variables of unknown density, which we shall denote
by f . Consider a probability density function K defined on R (the kernel) and a
positive parameter hn, the bandwidth. Assuming that the random variable of den-
sity K is centered with finite variance µ2, the kernel density estimator proposed by
Rosenblatt (1956) and Parzen (1962) of f is given by

f̂n,hn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
. (1)

The optimal performance of the kernel density estimator has been
widely studied. For more details see Samiuddin and El-Sayyad (1990) and
Samiuddin and El-Sayyad (1992). Xiaoran and Jingjing (2014) proposed an in-
tuitive and feasible kernel density estimator which reduces the bias and the
mean squared error (MSE) significantly compared to the ordinary kernel density
estimator. It is defined by

f̂ bn,hn(x) = f̂n,hn(x)− h2n
2
µ2f̂

(2)
n,hn

(x)

=
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
− µ2

2nhn

n∑
i=1

K(2)

(
x−Xi

hn

)
,

where µ2 :=
∫
u2K(u)du. Under the following conditions on f , K and hn:

•
∫
uK(u)du = 0;

• f is fourth differentiable in a neighborhood of x;
• hn → 0 and nhn →∞ as n→∞;

they evaluated the bias, the variance of this estimator and came up with a
convergence rate O

(
n−6/7

)
. But the conditions used are not sufficient to get their

results.
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For example the passage 1
h2
n

∫
K(2)(u)f(x − uhn)du =

∫
K(u)f (2)(x − uhn)du is not

verified. The Epanechnikov kernel defined by K(u) =
3

4
(1 − u2)1|u|≤1 is a counter

example. Hence we add some regularity conditions on the kernel K to obtain the
convergence rate O

(
n−6/7

)
for f̂ bn,hn . Therefore the proofs of following propositions

follow the proofs proposed by Xiaoran and Jingjing (2014) in Theorem 1.

Proposition 1. Suppose that f is four times differentiable in a neighborhood of x
and let K be the density of a centered random variable with finite second and third
order moment denoted by µ2 and µ3 respectively, satisfying the following assumption

A.1 : K(x) = K1(x)1A(x), A ⊆ R such that lim
x→inf A

x>inf A

K(i)(x) = lim
x→supA

x<supA

K(i)(x) = 0, ∀i = 0, 1.

Then for all n ∈ N∗ and hn > 0 we have

Bias
(
f̂ bn,hn(x)

)
= −h

3
n

6
µ3f

(3)(x) +O(h4n), (2)

and

Bias
(
f̂ bn,hn(x)

)
−→ 0 as n→∞ if limn→∞hn = 0.

Proposition 2. Assume that f is four times differentiable in a neighborhood of x.
Let K be the density of a centered random variable with finite second and third
order moment denoted by µ2 and µ3 respectively satisfying the assumption A.1. If in
addition, the condition

A.2 :

∫
K2(u)du <∞;

∫
(K(2)(u))2du <∞;

∫
u(K(2)(u))2du = 0

is satisfied. Then for all n ∈ N∗ and hn > 0 we have

V ar
(
f̂ bn,hn(x)

)
≤ 1

2nhn
µ2
2f(x)

∫
(K(2)(u))2du+O((n)−1). (3)

Consequently the optimal MSE (Mean Squared Error) is of order n−6/7. If K is a sym-
metric kernel, µ3 = 0; hence the optimal MSE for the bias reduced kernel density
estimator is of order n−8/9.
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Write now the bias reduced kernel density estimator of f as follows

f̂ bn,hn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
− µ2

2nhn

n∑
i=1

K(2)

(
x−Xi

hn

)

=
1

nhn

n∑
i=1

ϕ

(
x−Xi

hn

)

with ϕ = K − µ2

2 K
(2). The following result gives the asymptotic distribution of the

bias reduced kernel density estimator.

Theorem 1. Suppose that conditions on f and K in Proposition 1 hold and assume
further that:

1. f(x) > 0 and in the neighborhood of x, f (i), i = 0, 1, 2 are bounded;
2. the function ϕ satisfies:

∫
ϕ(u)du <∞,

∫
ϕ2(u)du <∞ and

∫
|ϕ(u)|3du < +∞;

3. nhn → +∞ and
√
nh7/2n → 0 as n→∞.

Then√
nhn

(
f̂ bn,hn(x)− f(x)

)
−→ N

(
0, f(x)

∫
ϕ2(u)du

)
. (4)

To prove this theorem, we need the Lyapunov central limit theorem
(Mbuba et al. (1984)) and the dominated convergence theorem (Arzelà (1885)).

Now, we shall obtain the uniform in bandwidth consistency of f̂ bn,hn by considering
the following conditions.

(H1) K is a density of a centered random variable with finite variance µ2.

(H2)
∫
ϕ(x)dx := ζ <∞, ‖ϕ‖∞ = supx∈R |ϕ(x)| := γ < +∞ and ‖ϕ‖2 :=

(∫
ϕ2(u)du

)1/2
<

+∞.

(H3) Consider the class of functions:

Φ = {t 7→ ϕ ((x− t)/hn) : hn > 0, x ∈ R} .

For ε > 0, let N(ε,Φ) = supQN(γε,Φ, d2Q) where the supremum is taken over all
probability measures Q on (R,B), d2Q is the L2(Q)-metric and N(γε,Φ, d2Q) is the
minimal number of balls of radius γε needed to cover Φ.
For some C > 0 and ν > 0, N(ε,Φ) ≤ Cε−ν , 0 < ε < 1.
(H4) Φ is a pointwise measurable class, that is, there exists a countable subclass
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Φ0 of Φ such that we can find for any function φ ∈ Φ a sequence of functions φm in
Φ0 for which φm(y)→ φ(y), y ∈ R.

(H5) f is four-times differentiable in neighbourhood of x.

Remark 1. The condition (H3) holds whenever ϕ is a function of bounded varia-
tion (Nolan and Pollard ( 1987)) and the condition (H4) is satisfied whenever ϕ is
right continuous as showen by Van der Vaart and Wellner (1996). For instance the
Gaussian, biweight and triweight kernels satisfy the conditions (H1)-(H4) above.

Theorem 2. Assuming (H1-H5) are satisfied. For each pair of sequences (an)n≥1 and
(bn)n≥1; and choosing a suitable bandwidth sequence hn → 0 and 0 < an < bn ≤ 1
we have with probability 1,

lim sup
n→∞

sup
an≤hn≤bn

√
nhn

∥∥∥f̂ bn,hn − Ef̂ bn,hn
∥∥∥
∞√

log (1/hn) ∨ log log n
=: ω <∞. (5)

The proof of this theorem follows along the lines of the proof of theorem 1 obtained
by Einmahl and Mason (2005).

Remark 2. Theorem 2 implies for any sequences 0 < an < bn ≤ 1, satisfying
nan/ log(n)→∞, that

sup
an≤hn≤bn

∥∥∥f̂ bn,hn − Ef̂ bn,hn
∥∥∥
∞

= O

√ log(1/an) ∨ log log n

nan

 ; (6)

with probability 1. This in turn implies

lim
n→∞

sup
an≤hn≤bn

∥∥∥f̂ bn,hn − Ef̂ bn,hn
∥∥∥
∞

= 0 a.s.

Theorem 3. Let f be Lipschitz function on R. Assume that the conditions (H.1) and
(H.5) are satisfied; and the derivatives of order j of f are bounded, ∀j = 2, 3, 4. For
each pair of sequences (an)n≥1 and (bn)n≥1; choosing a suitable bandwidth sequence
hn → 0 and for 0 < an < bn ≤ 1 together with bn → 0 as n → ∞, we have with
probability 1

sup
an≤hn≤bn

∥∥∥Ef̂ bn,hn − f∥∥∥∞ = O (bn) .

The proof of theorem 3 is a combination of lemma 1 ( Einmahl and Mason (2005))
and of proposition 1.5 ( Tsybakov (2008)).
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3. Nonparametric φ-divergence estimator

Let X1, ..., Xn be a random sample of unknown density function f defined on R
and let g be a candidate model. Here we consider g as a strictly positive density.
The discrepancy between f and g can be measured by a φ-divergence proposed by
Csiszár (1963) and also independently defined by Ali and Silvey (1966). Let φ(.) be
a convex function over (0,∞) such that φ(1) = 0. The φ-divergence is associated to
φ(.) is:

Dφ(f, g) =

∫
φ

(
f(x)

g(x)

)
g(x)dx. (7)

Many common divergences are special cases of φ-divergence like the Kullback-
Leibler divergence (KLD) for φ(t) = t ln(t), the Hellinger divergence for φ(t) = (

√
t−1)2,

t2 − 1 for X 2− divergence and tα−αt+(α−1)
α(α−1) for α-divergence.

Since f is unknown, Dφ(f, g) has to be estimated. Bouzebda and Elhattab (2011)
proved the uniform in bandwidth consistency of kernel-type estimator of Shan-
non’s entropy.

This work was based on Rosenblatt kernel density estimator. In this paper, we
propose a nonparametric estimator of Dφ(f, g) based on bias reduced kernel density
estimator and defined by

D̂φ(f, g) =

∫
An

φ

(
f̂ bn,hn(x)

g(x)

)
g(x)dx, (8)

where f̂ bn,hn is the bias reduced kernel density estimator andAn = {x ∈ R; f̂ bn,hn(x) ≥
εn} with εn a sequence of positive constants such that εn → 0 as n→∞. Similarly
to lemma 1 ( Dhaker et al. (2017)), we obtain the asymptotic normality of this esti-
mator.

Theorem 4. Let Dφ(f, g) be the φ-divergence between f and g; and D̂φ(f, g) its es-
timator. Suppose that φ ∈ C1 ([0,∞)) and there exists a measurable and integrable
function G such that forall x ∈ An,

∣∣∣φ′
(
f(x)
g(x)

)∣∣∣ < G(x). If in addition the conditions of
theorem 1 are satisfied, then

√
nhn

(
D̂φ(f, g)−Dφ(f, g)

)
−→ N

(
0,

(∫
An

σ∗(x)φ
′
(
f(x)

g(x)

)
dx

)2
)
,

with σ2
∗(x) = f(x)

∫
ϕ2(u)du.

We further establish the strong uniform in bandwidth consistency of nonparamet-
ric φ-divergence estimator.
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Theorem 5. Let f be Lipschitz function on R and let φ be a convex function over (0,∞)
and satisfying φ(1) = 0. Assume that the conditions (H.1-H.5) are satisfied; and the
derivatives of order j of f are bounded, ∀j = 2, 3, 4. For each pair of sequences (an)n≥1
and (bn)n≥1; choosing a suitable bandwidth sequence hn → 0 and 0 < an < bn ≤ 1
together with bn → 0 and nan/ log(n)→∞ as n→∞, we have with probability 1;

sup
an≤hn≤bn

∣∣∣D̂φ(f, g)−Dφ(f, g)
∣∣∣ = O

√ log(1/an) ∨ log log n

nan
∨ bn

 .

The proof of this theorem is a combination of two following lemmas. Define ÊD̂φ(f, g)
by

ÊD̂φ(f, g) :=

∫
An

φ

(
Ef̂ bn,hn(x)

g(x)

)
g(x)dx.

Lemma 1. Let φ be a convex function over (0,∞) and satisfying φ(1) = 0. Suppose
that the conditions (H.1-H.5) hold. For each pair of sequences (an)n≥1 and (bn)n≥1;
choosing a suitable bandwidth sequence hn → 0 and 0 < an < bn ≤ 1 together with
nan/ log(n)→∞ as n→∞, we have with probability 1;

sup
an≤hn≤bn

∣∣∣D̂φ(f, g)− ÊD̂φ(f, g)
∣∣∣ = O

√ log(1/an) ∨ log log n

nan

 .

Proof. Set ∆n1 := D̂φ(f, g)− ÊD̂φ(f, g). We have

|∆n1| =

∣∣∣∣∣
∫
An

[
φ

(
f̂ bn,hn(x)

g(x)

)
− φ

(
Ef̂ bn,hn(x)

g(x)

)]
g(x)dx

∣∣∣∣∣
≤
∫
An

∣∣∣∣∣φ
(
f̂ bn,hn(x)

g(x)

)
− φ

(
Ef̂ bn,hn(x)

g(x)

)∣∣∣∣∣ g(x)dx.

Since φ is a convex function, it is locally Lipschitz; so there exists a constant k > 0
such that for n large enough (by Proposition 1), we have

|∆n1| ≤ k

∫
An

∣∣∣∣∣ f̂ bn,hn(x)

g(x)
−

Ef̂ bn,hn(x)

g(x)

∣∣∣∣∣ g(x)dx

≤ k

∫
An

∣∣∣f̂ bn,hn(x)− Ef̂ bn,hn(x)
∣∣∣ dx.
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Since∫
An

dx ≤
∫
An

f̂ bn,hn(x)

εn
dx ≤ 1

εn

∫
R
f̂ bn,hn(x)dx ≤ ζ

εn
, (9)

|∆n1| ≤
ζk

εn
sup
x∈An

∣∣∣f̂ bn,hn(x)− Ef̂ bn,hn(x)
∣∣∣

≤ ζk

εn
sup
x∈R

∣∣∣f̂ bn,hn(x)− Ef̂ bn,hn(x)
∣∣∣ .

Hence by Remark 2,

sup
an≤hn≤bn

|∆n1| = O

√ log(1/an) ∨ log log n

nan

 . �

Lemma 2. Let f be Lipschitz function on R and let φ be a convex function over (0,∞)
and satisfying φ(1) = 0. Assume that the conditions (H.1) and (H.5) are satisfied; and
the derivatives of order j of f are bounded, ∀j = 2, 3, 4. For each pair of sequences
(an)n≥1 and (bn)n≥1; choosing a suitable bandwidth sequence hn → 0 and 0 < an <
bn ≤ 1 together with bn → 0 as n→∞, we have with probability 1;

sup
an≤hn≤bn

∣∣∣ÊD̂φ(f, g)−Dφ(f, g)
∣∣∣ = O (bn) .

Proof. Set ∆n2 := ÊD̂φ(f, g)−Dφ(f, g). We have

|∆n2| =

∣∣∣∣∣
∫
An

[
φ

(
Ef̂ bn,hn(x)

g(x)

)
− φ

(
f(x)

g(x)

)]
g(x)dx

∣∣∣∣∣
≤
∫
An

∣∣∣∣∣φ
(
Ef̂ bn,hn(x)

g(x)

)
− φ

(
f(x)

g(x)

)∣∣∣∣∣ g(x)dx.

By the convexity of φ, for n large enough, there exists α > 0 such that:

∣∣∣ÊD̂φ(f, g)−Dφ(f, g)
∣∣∣ ≤ α

∫
An

∣∣∣∣∣Ef̂ bn,hn(x)

g(x)
− f(x)

g(x)

∣∣∣∣∣ g(x)dx

≤ α

∫
An

∣∣∣Ef̂ bn,hn(x)− f(x)
∣∣∣ dx.

Using (9), we get
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|∆n2| ≤
ζα

εn
sup
x∈An

∣∣∣Ef̂ bn,hn(x)− f(x)
∣∣∣

≤ ζα

εn

∥∥∥Ef̂ bn,hn(x)− f(x)
∥∥∥
∞
.

By Theorem 3,

sup
an≤hn≤bn

|∆n2| = O(bn). �

4. Test for model selection

Having two candidate models g1 and g2, we propose to choose the model which is
close to the true probability density f using a φ-divergence. Consider the following
model selection test
H0 : Dφ(f, g1) = Dφ(f, g2) means that the two models g1 and g2 are equivalent,
H1 : Dφ(f, g1) 6= Dφ(f, g2) means that g1 is not equivalent to g2.
The statistic of this test is:

Λn :=

√
nhn

ξ̂

[
D̂φ(f, g1)− D̂φ(f, g2)

]
(10)

where ξ̂ is an estimator of ξ =
∫
An

σ∗(x)
[
φ

′
(
f(x)
g1(x)

)
− φ′

(
f(x)
g2(x)

)]
dx obtained by re-

placing f by f̂ bn,hn . Next, we give the asymptotic distribution of Λn.

Theorem 6. (Asymptotic distribution of the Λn-statistic).
Suppose that the conditions of theorems 1 and 4 are satisfied. Under the null hy-
pothesis H0, Λn −→ N (0, 1).

Proof. Under the theorem 4, we have

D̂φ(f, g1) = Dφ(f, g1) +

∫
An

(
f̂ bn,hn(x)

g1(x)
− f(x)

g1(x)

)
φ

′
(
f(x)

g1(x)

)
g1(x)dx+

+

∫
An

o

(∥∥∥∥∥ f̂ bn,hng1
− f

g1

∥∥∥∥∥
)
g1(x)dx,

D̂φ(f, g2) = Dφ(f, g2) +

∫
An

(
f̂ bn,hn(x)

g2(x)
− f(x)

g2(x)

)
φ

′
(
f(x)

g2(x)

)
g2(x)dx+

+

∫
An

o

(∥∥∥∥∥ f̂ bn,hng2
− f

g2

∥∥∥∥∥
)
g2(x)dx.
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Then

D̂φ(f, g1)− D̂φ(f, g2) = Dφ(f, g1)−Dφ(f, g2) +

∫
An

(
f̂ bn,hn(x)

g1(x)
− f(x)

g1(x)

)
φ

′
(
f(x)

g1(x)

)
g1(x)dx+

−
∫
An

(
f̂ bn,hn(x)

g2(x)
− f(x)

g2(x)

)
φ

′
(
f(x)

g2(x)

)
g2(x)dx.

Under H0, Dφ(f, g1) = Dφ(f, g2), we therefore have

D̂φ(f, g1)− D̂φ(f, g2) =

∫
An

(
f̂ bn,hn(x)

g1(x)
− f(x)

g1(x)

)
φ

′
(
f(x)

g1(x)

)
g1(x)dx+

−
∫
An

(
f̂ bn,hn(x)

g2(x)
− f(x)

g2(x)

)
φ

′
(
f(x)

g2(x)

)
g2(x)dx, (11)

and

√
nhn

[
D̂φ(f, g1)− D̂φ(f, g2)

]
=

∫
An

√
nhn

(
f̂ bn,hn(x)− f(x)

)[
φ

′
(
f(x)

g1(x)

)
− φ

′
(
f(x)

g2(x)

)]
dx.(12)

Finally, applying the theorem 1 in the relation (12), we immediately obtain Λn −→
N (0, 1). �

5. Computational results

5.1. Performance of φ-divergence estimator

In this subsection, we investigate the behaviour of the φ-divergence estimator
by considering φ(t) = t ln(t) (Kullback-Leibler divergence) and φ(t) =

(√
t− 1

)2
(Hellinger divergence). The reference model used is the mixture of gamma

distribution Gamma(4.02, 0.05) of density fGA(x) =
0.05(4.02)

Γ(4.02)
x(4.02−1)e−0.05x1x≥0

and log-normal distribution Log − normal(4.15, 0.52) of density fLN (x) =
1

0.52
√

2πx
e
− 1

2(0.52)2
(ln(x)−4.15)21x≥0. Therefore the reference distribution of density

fMix(x) = πfGA(x) + (1− π)fLN (x) is defined by

Mix(x) := πGamma(4.02, 0.05) + (1− π)Log-normal(4.15, 0.52) (13)

where π ∈ (0, 1) is specific to each set of experiments. We choose two values of
π which are π = 0.5 and π = 0.75. Note that the value π = 0.5 is the value for
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which the Gamma and Log-normal distributions are approximately at equal dis-
tance to the reference distribution and for π = 0.75, the reference distribution is
gamma but slightly contaminated by the log-normal distribution. Further the log-
normal distribution as the candidate model is considered Log − normal(4.15, 0.52).
The Kullback-Leibler divergence and the Hellinger divergence are respectively

DKL ≡ DKL(fMix, fLN ) =

∫
fMix(x) ln

(
fMix(x)

fLN (x)

)
dx

DH ≡ DH(fMix, fLN ) =

∫ (√
fMix(x)−

√
fLN (x)

)2
dx.

Dhaker et al. (2016) showed that the Kullback-Leibler and Hellinger diver-
gences estimators based on the kernel density estimator are strongly consistent
estimators. We consider the Kullback-Leibler and the Hellinger divergences based
on the bias reduced kernel density estimator ( D̂KL1 and D̂H1) and we further
consider the case of Kullback-Leibler and Hellinger divergences based on the
kernel density estimator ( D̂KL2 and D̂H2).

Therefore, the corresponding estimators are

D̂KL1 ≡ D̂KL1(f, fLN ) =

∫
An

f̂ bn,hn(x) ln

(
f̂ bn,hn(x)

fLN (x)

)
dx (14)

D̂H1 ≡ D̂H1(f, fLN ) =

∫
An

(√
f̂ bn,hn(x)−

√
fLN (x)

)2

dx (15)

and

D̂KL2 ≡ D̂KL2(f, fLN ) =

∫
An

f̂n,hn(x) ln

(
f̂n,hn(x)

fLN (x)

)
dx (16)

D̂H2 ≡ D̂H2(f, fLN ) =

∫
An

(√
f̂n,hn(x)−

√
fLN (x)

)2

dx. (17)

We generate 1000 samples of various sizes (20 to 2000) from the mixture defined
by (13) and compute the estimates D̂KL1, D̂KL2, D̂H1 and D̂H2 using the Gaussian
kernel K(u) = 1√

2π
e−

1
2u

2 since it has infinitely many (nonzero) derivatives. The
optimal bandwidth hn for the bias reduced kernel density estimator is obtained by
cross-validation method as proposed by Rudemo (1982) and Bowman et al. (1984).

The numerical results ( average values) and graphs are given below. The values in
parenthesis are standard errors.
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Kullback-Leibler estimates for various sample size and π.

For π = 0.5, DKL = 8.0778.
n→ 20 150 250 500 1000 1500 2000

D̂KL1 → 9.4851 9.0564 9.0208 8.2494 8.1225 8.1094 8.0971
(1.7853) (0.4980) (0.3831) (0.1738) (0.1156) (0.0905) (0.0800)

D̂KL2 → 9.8744 9.3816 9.1965 8.4118 8.3298 8.2408 8.1514
(1.7888) (1.1161) (0.8846) (0.3292) (0.2079) (0.1568) (0.1310)

For π = 0.75, DKL = 7.4725.
n→ 20 150 250 500 1000 1500 2000

D̂KL1 → 9.1055 8.6951 8.4011 8.3301 7.9239 7.8536 7.5175
(1.7480) (0.5194) (0.3099) (0.2199) (0.1096) (0.0876) (0.0686)

D̂KL2 → 9.3142 8.7812 8.4920 8.4003 7.9931 7.9592 7.5946
(1.9332) (1.0715) (0.8049) (0.4886) (0.2093) (0.1612) (0.1086)
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Graphs of D̂KL1, D̂KL2 and DKL, Graphs of D̂KL1, D̂KL2 and DKL,
for π = 0.50. for π = 0.75.
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Hellinger divergence estimates for various sample size and π.

For π = 0.5, DH = 1.3818.
n→ 20 150 250 500 1000 1500 2000

D̂H1 → 1.4106 1.3968 1.3920 1.3907 1.3842 1.3832 1.3822
(0.2190) (0.0892) (0.0744) (0.0511) (0.0333) (0.0266) (0.0245)

D̂H2 → 1.6324 1.4793 1.4577 1.4275 1.4066 1.3899 1.3833
(0.8468) (0.3194) (0.2523) (0.1913) (0.1390) (0.0856) (0.0711)

For π = 0.75, DH = 1.2213.
n→ 20 150 250 500 1000 1500 2000

D̂H1 → 1.4058 1.3220 1.3116 1.3087 1.2900 1.2693 1.2390
(0.2891) (0.0822) (0.0601) (0.0439) (0.0276) (0.0188) (0.01455)

D̂H2 → 1.5520 1.4280 1.4000 1.3570 1.3184 1.2983 1.2584
(0.6863) (0.2369) (0.2012) (0.1411) (0.1072) (0.0426) (0.0212)
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Graphs of D̂H1, D̂H2 and DH , Graphs of D̂H1,D̂H2 and DH

for π = 0.50. for π = 0.75.

The estimates of D̂KL1, D̂KL2, D̂H1 and D̂H2 decrease along with the sample
size. The Kullback-Leibler statistic D̂KL1 converge more rapidly than D̂KL2 to the
Kullback-Leibler divergence DKL.

We also observe similar behavior for D̂H1 and D̂H2. We mention that the estimators
D̂KL(f, g) and D̂H(f, g) were calculated using Monte Carlo method under a given
distribution g.

5.2. Model selection

To illustrate well our model selection procedure, we consider Gamma and Log-
normal distributions as our candidate models. Note that the Gamma and Log-
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normal distributions are the most popular distributions for analyzing lifetime data.
The Data Generating Process (DGP) considered has density

Mix(x) ≡ l(π) = πGamma(4.02, 0.05) + (1− π)Log-normal(4.15, 0.52)

where π ∈ (0, 1) is specific to each set of experiments. In each set, 1000 samples
of various sizes varies from 20 to 1000 are drawn from this mixture. We choose
different values of π which are 0.00, 0.25, 0.5, 0.75, 1.00. Although our proposed
model selection procedure does not require that the data generating process
belongs to either of the candidate models. We consider the two limiting cases
π = 0.00 and = 1.00 for they correspond to the correctly specified cases. For
π = 0.25 and π = 0.75 both candidate models are misspecified but not at equal
distance from the DGP. These cases correspond to a DGP which is Gamma
or Log-normal distributions but slightly contaminated by the other distribu-
tion. The value π = 0.5 is the value for which the Gamma and Log-normal
distributions are approximately at equal distance to the mixture l(π) accord-
ing to statistics D̂KL(f, fLN ) and D̂KL(f, fGA) for Kullback-Leibler statistics;
and D̂H(f, fLN ) and D̂H(f, fGA) for Hellinger statistics, where D̂KL(f, fLN ) and

D̂H(f, fLN ) are defined in (15) and D̂KL(f, fGA) =
∫
An

f̂ bn,hn(x) ln

(
f̂bn,hn (x)

fGA(x)

)
dx and

D̂H(f, fGA) =
∫
An

(√
f̂ bn,hn(x)−

√
fGA(x)

)2
dx.

Our model selection statistic are now given by

Λn1 :=

√
nhn

ξ̂

[
D̂KL(f, fLN )− D̂KL(f, fGA)

]

and

Λn2 :=

√
nhn

ξ̂

[
D̂H(f, fLN )− D̂H(f, fGA)

]
.

Here we consider the choice of kernel and of the practical optimal bandwidth as
done in subsection 5.1. The correct model represents the ”true” distribution of
observations while the incorrect model represents an approximation of the true
model. The results of our five sets of experiments are presented as follows.
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Table 1. DGP=Gamma(4.02, 0.05 )
n 20 150 250 500 600 1000
Λn1 0.9558 2.8411 3.6250 5.0711 5.6306 6.6091

(0.0491) (0.0169) (0.0130) (0.0093) (0.0083) (0.0012)

Λn2 0.2211 3.4511 4.8747 7.2027 8.2243 11.8156
(0.0949) (0.0182) (0.0128) (0.0086) (0.0075) (0.0052)

Model selection Correct 16.3% 80.6% 96.4% 99.9% 100% 100%
based on Λn1 Indecisive 83.7% 19.4% 3.6% 0.1% 0.0% 0.0%

Incorrect 0.0% 0.0% 0.0% 0.0 % 0.0% 0.0%
Model selection Correct 4.7% 92.9% 99.2% 100% 100% 100%
based on Λn2 Indecisive 93.3% 7.1% 0.8% 0.1% 0.0% 0.0%

Incorrect 2.0% 0.0% 0.0% 0.0 % 0.0% 0.0%

Table 2. DGP= Log-normal (4.15, 0.52 )
n 20 150 250 500 600 1000
Λn1 -0.9555 -2.8248 -3.6424 -5.2139 -5.5865 -7.2653

(0.0604) (0.0211) (0.0164) (0.0114) (0.0107) (0.0065)

Λn2 -0.1340 -1.5514 -2.1026 -3.0582 -3.4307 -6.1096
(0.1002) (0.0263) (0.0194) (0.0130) (0.0119) (0.0083)

Model selection Correct 15.7% 81.8% 95.3% 99.9% 100% 100%
based on Λn1 Indecisive 83.3% 18.2% 4.7% 0.1% 0.0% 0.0%

Incorrect 1.0% 0.0% 0.0% 0.0 % 0.0% 0.0%
Model selection Correct 4.4% 34.7% 59.0% 88.4% 92.4% 100%
based on Λn2 Indecisive 93.9% 65.1% 40.8% 11.6% 7.6% 0.0%

Incorrect 1.7% 0.2% 0.2% 0.0 % 0.0% 0.0%

Table 3. DGP= 0.25 Gamma(4.02, 0.05 ) + 0.75 Log-normal (4.15, 0.52 )
n 20 150 250 500 600 1000
Λn1 -1.0807 -2.8587 -3.6493 -4.3181 -4.8903 -7.2653

(0.0467) (0.0167) (0.0130) (0.0093) (0.0084) (0.0065)

Λn2 -0.2249 -2.1477 -3.0367 -3.0582 -3.4307 -6.1096
(0.0928) (0.0239) (0.0169) (0.0118) (0.0104) (0.0083)

Model selection Favor Log-Norm 19.6% 82.5% 96.4% 99.9% 100% 1000%
based on Λn1 Equivalent 80.4% 17.5% 3.6% 0.1% 0.0% 0.0%

Favor Gamma 1.0% 0.0% 0.0% 0.0 % 0.0% 0.0%
Model selection Favor Log-Norm 4.1% 60.4% 87.4% 98.6% 99.6% 100%
based on Λn2 Equivalent 92.7% 39.4% 12.6% 1.4% 0.4% 0.0%

Favor Gamma 3.2% 0.2% 0.0% 0.0 % 0.0% 0.0%
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Table 4. DGP= 0.5 Gamma (4.02, 0.05 ) + 0.5 Log-normal (4.15, 0.52 )
n 20 150 250 500 600 1000
Λn1 0.6892 1.9597 2.6216 3.7084 4.0396 5.2276

(0.0432) (0.0162) (0.0119) (0.0085) (0.0078) (0.0060)

Λn2 0.2641 2.5695 3.5106 5.5109 5.6545 7.5232
(0.0900) (0.0221) (0.0163) (0.0103) (0.0101) (0.0075)

Model selection Favor Log-Norm 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
based on Λn1 Equivalent 89.2% 51.7% 25% 3.8% 1.4% 0.0%

Favor Gamma 10.7% 48.3% 75% 96.2 % 98.6% 100%
Model selection Favor Log-Norm 4.0% 0.1% 0.0% 0.0% 0.0% 0.0%
based on Λn2 Equivalent 92.4% 24.9% 5.9% 0.3% 0.0% 0.0%

Favor Gamma 3.6% 75.0% 94.1% 99.7 % 100% 100%

Table 5. DGP= 0.75 Gamma (4.02, 0.05)+ 0.25 Log-normal (4.15, 0.52)
n 20 150 250 500 600 1000
Λn1 0.7870 2.1240 2.6727 3.7705 4.1492 5.5733

(0.0463) (0.0161) (0.0126) (0.0089) (0.0081) (0.0060)

Λn2 0.2092 3.2673 4.4884 6.7044 7.1286 9.4481
(0.0926) (0.0187) (0.0136) (0.0091) (0.0085) (0.0064)

Model selection Favor Log-Norm 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
based on Λn1 Equivalent 87.0% 44.4% 24.3% 3.5% 1.4% 0.0%

Favor Gamma 12.8% 55.6% 75.7% 96.5% 98.6% 100%
Model selection Favor Log-Norm 1.1% 0.0% 0.0% 0.0% 0.0% 0.0%
based on Λn2 Equivalent 94.0% 7.8% 1.3% 0.0% 0.0% 0.0%

Favor Gamma 4.9% 92.2% 98.7% 100% 100% 100%

The first half of each table gives the average values of the statistics Λn1 and Λn2.
The values in parenthesis are standard errors. The second half of each table gives
the probability of correct selection (PCS) which is in percentage the number of
times our proposed model selection procedure based on Λn1 or Λn2 favors the
Gamma model, the Log-normal model and indecisive. The tests are conducted at
5% nominal significance level. In the first two sets of experiments (π = 0.00 and
π = 1.00 ) where one model is correctly specified Table 1-2, we use the labels
correct, incorrect and indecisive when a choice is made. The first halves of Tables
1-5 confirm our asymptotic results. The values of statistics Λn1 and Λn2 increase
along with the sample size in Tables 1, 4 and 5; and decrease along with the
sample size in Tables 2 and 3 when the models are correctly specified and when
the models are mis-specified.

Turning to the second halves of Tables 1 and 2, we note that the percentage of cor-
rect choice using model selection statistic steadily increases and ultimately con-
verge to 100% expected in Tables 1 with a short domination of the model selection
based on Λn1 over the Λn2.
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This preceding comments can be applied to the second halves of Tables 3, 4 and
5. In all tables, as sample size increases, the percentages of rejection (incorrect
model) tends to zero (for Λn2 ) and still having the same value .i.e. 0.0% (for Λn1 ).

For n = 500, we plot the histogram of datasets and overlay the curves for Gamma
and Log-normal distributions.
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Fig. 1. DGP =
Gamma(4.02, 0.05)
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Fig. 2. DGP = Log-normal
(4.15, 0.52).

As can be observed in Figure 2 and 3 , the Log-normal distribution is distinguished
from Gamma distribution and closely approximates the data sets. In Figure 1 and
5 the Gamma distributions is much closer to the data sets. When π = 0.5 ( Figure
4 ) the Gamma distribution and Log-normal distribution try to be closer to the
data set. This follows from the fact that they are equidistant from the DGP.

6. Conclusion

We studied in this paper a bias reduced kernel density estimator and we derived
a nonparametric φ-divergence estimator and their asymptotic properties such
as the asymptotic normality limits and the strong consistencies. We further
considered an informational criterion for model selection based on nonparametric
φ-divergence estimator. This method allows us to take into account the stochastic
nature of variations inherent in the values of the nonparametric φ-divergence
estimator. Specifically, we have proposed some convenient asymptotically standard
normal and hypothesis testing based on the φ-divergence which is a general case
of Kullback-Leibler and Hellinger divergence estimators constructed in terms of
the bias reduced kernel density estimator.
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Fig. 3. DGP = 0.25
Gamma(4.02, 0.05) + 0.75
Log-normal (4.15, 0.52 ).
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Fig. 4. DGP = 0.5
Gamma(4.02, 0.05 ) +
0.5 Log-normal (4.15, 0.52
).
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Fig. 5. DGP = 0.75 Gamma(4.02, 0.05 ) + 0.25 Log-normal (4.15, 0.52).

We test whether the candidate models are equally close to the true distribution
against the alternative hypothesis that one model is closer than the other where
closeness of a model is measured according to the discrepancy implicit in the φ-
divergence type statistics used. This model selection procedure is especially suit-
able for testing the null hypothesis that some competing models are equally close
to the observed data and performs very well even in small sample problems.
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C. Arzelà (1885). Sulla integrazioneper serie, Atti Acc. Lincei Rend. Rome, Vol 4, pp. 532-537.
D. Nolan and D. Pollard ( 1987). U-processes: Rate of Convergence. The Annals of Statistics,

Vol 15(2), pp. 780-799.
D. Van and J. Wellner (1996). Weak Convergence and Empirical. Processes: With Applica-

tions to Statistics. Springer, New York, 1996.
A. Tsybakov (2008). Introduction to Nonparametric Estimation. Springer Series in Statistics,

ISBN: 978-0-387-79051-0, doi. 10.1007/978-0-387-79052-7.
H. Dhaker., P. Ngom., P. Mendy and E. Dème (2017). Generalized divergence criteria for

model selection between random walk and AR(1) model. Journal of Statistics: Advances
in Theory and Applications, Vol 17(2), pp.83-109. doi.org/10.18642/jsata−7100121830.
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