
Afrika Statistika
Vol. 7 (2), 2020, pages 2511 - 2528.
DOI: http://dx.doi.org/10.16929/as/2020.2511.170

Afrika Statistika

ISSN 2316-090X
Adaptive Hyperbolic Asymmetric Power
ARCH (A-HY-APARCH) model: Stability and
Estimation
Charline Uwilingiyimana (1,∗) , Abdou Kâ Diongue (2), Carlos Ogouyandjou (3)
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Abstract. In this paper, a new asymmetric GARCH type model that generalizes the
Hyperbolic Asymmetric Power ARCH (HY-APARCH) process is proposed. The pro-
posed model takes into consideration some characteristics of financial time series
data like volatility clustering, long memory and structural changes. The neces-
sary and sufficient conditions for the asymptotic stability of the model are derived
and parameter estimation methods are proposed. The Monte Carlo Simulations are
done to prove the performance of the estimation method.
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Résumé. (Abstract in French) Nous proposons un modèle GARCH symmétrique qui
généralise le modèle asymétrique hyperbolique Power ARCH. Notre modèle prend
en compte des caractéristiques de séries chronologiques financières telles que la
volatilité du grappage, les longues mémoires et les changement structurels. Nous
obtenons des conditions nécessaires et suffisantes de statilité asymptotiques et
procédons à une estimation paramétrique pour valider le modèle. Une étude de
simulation vient en appui aux résultats théoriques.
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1. Introduction

The Autoregressive conditional heteroscedasticity of order p, or ARCH(p), was
first introduced by Engle, R. F. (1982) and generalized by Bollerslev, T. (1986) to
model the conditional variance or the volatility in financial time series with a
heavy tail. Based on their work several models have been developed to capture
the main features of financial time series data like leptokurtic, skewness, and
Volatility clustering. In past years, there has been an increasing interest in intro-
ducing models that have been dealing with the asymmetric effect due to negative
and positive shocks on the conditional variance like the EGARCH proposed by
Nelson, D. B. (1991), the APARCH of Ding, Z.et al.(1993) and the GJR GARCH
proposed by Glosten, L. R. et al.(1993). Baillie, R. T.et al.(1996) extend GARCH
model by introducing FIGARCH model to capture long memory features in assets
returns. Tse, Y. K. (1998) has introduced an asymmetric long memory volatility
model as an extension of FIAPARCH model by adding a function extracted from
the APARCH process.

Engle, R. F.et al.(2004) found that researchers should take into account other
important characteristics like leverage effect and long memory. However, more
studies have confirmed the existence of the long memory persistence and
the asymmetric effects in the volatility of financial returns (see for instance,
Davidson, J. (2004), Conrad, C. (2010), Pérez-Rodrı́guez, J. V.et al.(2019)). The
Hyperbolic Asymmetric Power ARCH (HY-APARCH) process was proposed by
Schoffer, O. (2003) and generalized by Diongue, A. K.et al.(2007) by proposing
seasonal Hyperbolic APARCH that take into consideration the long memory
and asymmetries in volatility. Dark, J. G. (2010) used HY-APARCH to model the
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conditional skewness and kurtosis, and this model has failed to capture the
structural changes known as a structural break when a time series abruptly
changes at a point in time. It is well known that the persistence shocks to
the conditional variance is measured by the long range dependence parameter,
Diebold, F. X. et al.(2001) in their work concluded that structural changes may
produce superious long memory effects. Hillebrand, E. (2005) found that ignoring
structural changes in volatility may cause the sum of the estimated autoregressive
to converge to one.

Recently, some studies have defined the new processes that ac-
counted for structural changes through the Fourier approximation see
Baillie, R. T.et al.(2009), Li, J et al.(2017), Shi, Y. et al.(2018). Another study
by Choi, K.et al.(2010) examined the structural changes in the daily exchange
rate and showed that the long memory is due to structural changes so it is
difficult to distinguish long memory and structural changes as proved by studies.
It has been demonstrated that structural changes can be partly described some
extremely persistent volatility models, and may also cause a time series to have
long memory characteristic, this has supported by Messow, P. et al.(2013) in the
study which reveals that structural change is related to long memory and can lead
to overestimated the long-range dependence parameter.

Motivated by the studies that examined the existence of both long memory and
structural changes, this study introduces a new framework that combines an HY-
GARCH structure for returns with an APARCH model and with a time-varying de-
termistic function intercept. The model within our framework is called an Adaptive
Hyperbolic Asymmetric Power ARCH (A-HY-APARCH) process. This model extends
the HY-APARCH model and it is designed for modeling both long memory and struc-
tural changes. This new model generalizes the HY-APARCH of Schoffer, O. (2003)
when wt = wo

1−β(1) and the Seasonal HY-APARCH of Diongue, A. K.et al.(2007)
when wt = wo

1−β(1) and s = 1. The necessary and sufficient conditions for
the stability of the second moment are investigated following the method of
Mohammadi, F. et al.(2017). The asymptotic behaviours of the Maximum Likeli-
hood Estimations are evaluated by Monte Carlo.
This paper is organized as follows: Section 2 presents the A-HY-APARCH pro-
cess. Section 3 derives the condition for the second moment to be asymptotically
bounded. Section 4 presents the Estimation of the parameters. Section 5 is dedi-
cated to simulation studies and concluding remarks are given in Section 6.

2. The model

2.1. HY-APARCH model

The HYGARCH process of Davidson, J. (2004) has failed to capture the asymmetric
effects observed in time series data, to overcome this problem, the HY-APARCH
model has been introduced and it combined the characteristics of the HYGARCH
model with those of the APARCH model. Assume zt is a sequence of independent
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identically distributed random variable (i.i.d) with E(zt) = 0 and Var(zt) = 1. The
process (xt)t∈Z is a HY-APARCH(p,d,q) process if it satisfies, for all t and some
strictly positive valued process ht, the following equations

xt = htzt

[1− α(B)− β(B)]

(
(1− τ) + τ(1−B)d

)
yt = w0 + (1− β(B))(vt), (1)

where α(B) =
∑p
j=0 αjB

j, β(B) =
∑q
j=0 βjB

j, yt =

(
|xt|−εxt

)φ
,

and vt = yt − hφt , for t ∈ Z, φ > 0, |ε|< 1, w0 > 0, 0 < d < 1 and τ ≥ 0.
By rearranging the equation (1), the HYAPARCH(p,d,q) can be written as the fol-
lowing equation:

hφt = w0

1−β(B) +

{
1− 1−Φ(B)

1−β(B)

(
(1− τ) + τ(1−B)d

)}(
|xt|−εxt

)φ
. (2)

where Φ(B) = 1− α(B)− β(B)
The HYAPARCH reduce to FIGARCH when ε = 0, φ = 2 and τ = 1; to HYGARCH
model for φ = 2 and ε = 0 and to FIAPARCH model for τ = 1. Consider the con-
ditonal variance of the HYAPARCH(p,d,q) model in (2), following Li, M.et al.(2015),
the process HYAPARCH(1,d,1) can be represented by the following equations:

hφt = (1− τ)hφ1,t + τhφ2,t (3)

where
hφ1,t =

w0

1− β(1)
+

(
1− 1− ΦB

1− βB

)
yt

and
hφ2,t =

w0

1− β(1)
+

(
1− 1− ΦB

1− βB
(1−B)d

)
yt

2.2. A-HY-APARCH model

Adaptive Hyperbolic Power Asymmetric ARCH (A-HY-APARCH) model proposed
in this study is designed for modeling long memory, asymmetric effects, and
structural changes in the conditional variance process. The modification in
the HY-APARCH consists of replacing the intercept w0

1−β(1) by a slowly varying
deterministics function wt in equation (2), developed by Gallant, A. R. (1984)’s
flexible functional form that models structural changes. There are other non-linear
models such as logistic smooth transition Autoregressive and Markov switching
GARCH types model that can capture smooth breaks as well but the logistic
smooth transition requires that the number of breaks should be known. The
advantage of the time-varying intercept is that we do need to assume the number
of breaks is to be known and its main purpose is to allow the structural change in
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the conditional variance.

The A-HY-APARCH(p,d,q,k) extends the HY-APARCH(p,d,q) process by allowing the
intercept wt in the conditional variance equation to be time slowly varying function,
but this new process does not allow all the parameters in the conditional variance
equation of the HY-APARCH model to be time-dependent. Note that a constant in-
tercept in the HY-APARCH model is replaced by equation (2) as demonstrated by the
studies of Baillie, R. T.et al.(2009), Pascalau, R. et al.(2011), Nasr, A. B.et al.(2010)
and recently shown by Shi, Y. et al.(2018). Let xt denote a real-valued discrete-time
stochastic process and assume zt is a sequence of independent identically dis-
tributed random variable (i.i.d) with E(zt) = 0 and Var(zt) = 1. The conditional
variance of the A-HY-APARCH(p,d,q,k) is defined as the following equations:

xt = htzt

hφt = wt +

{
1−

Φ(B)

(
(1− τ) + τ(1−B)d

)
β(B)

}(
|xt|−εxt

)φ
= wt + Ψ(B)yt

where

wt = w0 +
∑k
j=1

[
nj sin( 2πjt

T ) +mj cos( 2πjt
T )

]

and yt =

(
|xt|−εxt

)φ
, subject to the following constraints:

φ > 0, 0 < d < 1, −1 < ε < 1, wt > 0

β(B) = 1− β1B − β2B
2 − · · · − βqBq

Φ(B) = 1− α(B)− β(B)

and
α(B) = 1− α1B − α2B

2 − · · · − αpBp

provided that the roots of the characteristics polynomials Φ(B) and β(B) lie inside
or outside the unit circle.
The A-HYAPARCH reduce to the existing HY-APARCH(p,d,q)
when wt = w0

1−β(1) , or when nj = mj = 0 . The A-HYAPARCH(1,d,1,k) is of the form:

hφt = wt +

{
1− 1−ΦB

1−βB

(
(1− τ) + τ(1−B)d

)}
yt. (4)

Using the equation (3), the equation (4) can be represented as follows:

hφt = (1− τ)hφ1,t + τhφ2,t (5)
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where

hφ1,t = wt +

(
1− 1− ΦB

1− βB

)
yt

and

hφ2,t = wt +

(
1− 1− ΦB

1− βB
(1−B)d

)
yt.

It is well known that the hyperbolic memory of the model has the following repre-
sentation

(1−B)d = 1−
∞∑
i=1

πiB
i (6)

where

πi =
dΓ(i− d)

Γ(1− d)Γ(i+ 1)
=

d

Γ(i− d)
i−1−d.

Using equations (5),(6) and by employing the methodology of
Mohammadi, F. et al.(2017), the A-HYAPARCH(1,d,1,k) model can be rewrit-
ten as follows:

xt = htzt

hφt = (1− τ)hφ1,t + τhφ2,t, (7)

where

hφ1,t = wt + β

(
hφ1,t−1 − wt−1

)
+ (Φ− β)yt−1, (8)

hφ2,t = wt + β

(
hφ2,t−1 − wt−1

)
+ (β − Φ + π1)yt−1 +

∞∑
i=0

(
πi+2 − Φπi+1

)
Biyt−2, (9)

and

wt = w0 +

k∑
j=1

[
nj sin(

2πjt

T
) +mj cos(

2πjt

T
)

]
, (10)

where zt are iid standard normal variables. To guarantee the positivity of the con-
ditional variance, the condition to the constrants are imposed: β, (β − Φ) > 0,
0 < τ < Φ < β < d < 1 and wt is a time varying function bounded between 0
and c0.

3. Stability

In this section the stability of the the A-HY-APARCH model which point out to the
asymptotic finiteness of the variance of the series can be imposed by regarding
some conditions to ensure the asymptotic boundedness of unconditional second
moment. stability results are derived by considering the time varying function in-
tercept wt ∈ [0, c0].
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Lemma 1. If nj and mj are the nonnegative numbers with j ∈ {1, 2, . . . , k} such that∑k
j=1(nj +mj) < min(1, w0) then

0 6 w0 +

k∑
j=1

(
nj sin(

2πjt

T
) +mj cos(

2πjt

T
)

)
6 1 + w0 := c0.

Proof. We want to show that there exists a constant c0 such that for all t > 0, w0 > 0,

0 6 wt 6 1 + w0 := c0

where wt =
∑k
j=1

(
nj sin( 2πjt

T ) +mj cos( 2πjt
T )
)
. Knowing that −1 6 cos( 2πjt

T ) 6 1 and
−1 6 sin( 2πjt

T ) 6 1 hence

−
k∑
j=1

(nj +mj) 6
k∑
j=1

(
nj sin(

2πjt

T
) +mj cos(

2πjt

T
)

)
6

k∑
j=1

(nj +mj)

and
∑k
j=1(nj +mj) 6 min(1, w0) 6 1, therefore

w0 −
k∑
j=1

(nj +mj) 6 w0 +

k∑
j=1

(
nj sin(

2πjt

T
) +mj cos(

2πjt

T
)

)
6 1 + w0.

Using the assumption that
∑k
j=1(nj +mj) 6 min(1, w0), the

∑k
j=1(nj +mj) 6 w0 and

w0 −
∑k
j=1(nj +mj) > −w0 + w0 = 0.

We conclude that 0 6 wt 6 1 + w0 := c0.

Lemma 2. Let
(
V, ‖.‖

)
be a normed space such that, V =

{
(yt)t∈Z / supt∈Z E|yt| <∞

}
and let B be a linear operator on V defined by

B : V→ V
y 7→ By = (Byt)t∈Z = (yt−1)t∈Z

and ‖B‖∞ = supt∈Z E|yt|, then the delayed operator,

‖Bi‖∞ = 1, ∀i ∈ N

Proof.

‖B‖ = sup
y∈V

supt∈Z E(|Byt|)
supt∈Z E(|yt|)

.

= sup
y∈V

supt∈Z E(|yt−1|)
supt∈Z E(|yt|)

.

Since supt∈Z E(|yt−1|) = supt∈Z E(|yt|), therefore ‖Bi‖∞ = supyt∈V(1) = 1.
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For the rest of this section we consider nj, mj and w0 are such that,

0 6 wt 6 c0.

Theorem 1. The conditional variance ht of A-HY-APARCH model satisfies, for all
δ > 0,

E(hδt ) 6 c0 + βE(hδ1,t−1) + C(β + τπ1)E(hδt−1)

+ τβE(hδ2,t−1) + Cτ

∞∑
i=0

πi+2E(hδt−2)

where c0, and C are some constants.

Proof. Under the assumption that the distribution of zt is symmetric about zero,
the leverage effect is still taken into consideration and the second moment of A-
HY-APARCH model is computed as follows:

E(y2
t ) = E(|htzt|−εhtzt)2φ = CE(h2φ

t )

with C := E(|zt|−εzt)2φ. Since zt are iid, E(|zt|−εzt)2φ is a constant depend-
ing on the distribution of zt, the leverage parameter ε and the parameter φ
. This constant is specified for the Gaussian distribution, the Generalized
Error Distribution (GED) and for standardized Student t distribution with
mean zero, variance one and degree of freedom ν (where ν ∈ N \ [0, 2]), see
Ding, Z.et al.(1993), Laurent, S.et al.(2002), Lambert, P. et al.(2001), respectively.

Let δ = 2φ, using the equations (8),(9) and (10), the expectation of hδt in (7) is given
by:

E(hδt ) = E(wt) + βE(hδ1,t−1)− βE(wt−1) + (β − Φ)E(Y 2
t−1)− τE(wt)− τβE(hδ1,t−1) (11)

+τβE(wt−1)− τ(β − Φ)E(y2
t−1) + τE(wt) + τβE(hδ2,t−1)− τβE(wt−1)

+τ(Φ− β + π1)E(y2
t−1) + τ

∞∑
i=0

(πi+2 − Φπi+1)BiE(y2
t−2).

From equation (11), we get

E(hδt ) = E(wt) + (−β)E(wt−1) + (β − τβ)E(hδ1,t−1) (12)

+

(
(β − Φ)− τ(β − Φ) + τ(Φ− β + π1)

)
E(y2

t−1)

+ τβE(hδ2,t−1) + τ

∞∑
i=0

(πi+2 − Φπi+1)BiE(y2
t−2).

Let
k1 = β − τβ, k2 = (1− τ)(β − Φ) + τ(Φ− β + π1)

and
k3 = τβ.
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The equation (12) becomes

E(hδt ) = E(wt)− βE(wt−1) + k1E(hδ1,t−1) + k2E(y2
t−1) + k3E(hδ2,t−1) (13)

+ τ

∞∑
i=0

(πi+2 − Φπi+1)BiE(y2
t−2).

Since E(y2
t−1) = CE(hδt−1), using Lemma 1 and Lemma 2 , an upper bound of (13)

are calculated as follows:

E(wt) 6 c0 (14)
k1E(hδ1,t−1) 6 |k1|E(hδ1,t−1) 6 βE(hδ1,t−1)

k2E(y2
t−1wt) 6 C|k2|E(hδt−1) 6 C(β + τπ1)E(hδt−1)

k3E(hδ2,t−1wt) 6 |k3|E(hδ2,t−1) 6 τβE(hδ2,t−1)

τ

∞∑
i=0

(πi+2 − Φπi+1)BiE(y2
t−2) 6 Cτ

∞∑
i=0

πi+2E(hδt−2)

By substituting the obtained results above in (13), therefore the E(hδt ) is attained

E(hδt ) 6 c0 + βE(hδ1,t−1) + C(β + τπ1)E(hδt−1) + τβE(hδ2,t−1) + Cτ

∞∑
i=0

πi+2E(hδt−2) (15)

Consider the A-HY-APARCH process given by the the following relations

E(hδt ) 6 c0 + βE(hδ1,t−1) + C(β + τπ1)E(hδt−1) + τβE(hδ2,t−1) + Cτ

∞∑
i=0

πi+2E(hδt−2) (16)

E(hδ1,t) 6 c0 + βE(hδ1,t−1) + CΦE(hδt−1) (17)

E(hδ2,t) 6 c0 + C(Φ + π)E(hδt−1) + βE(hδ2,t−1) + C

∞∑
i=0

πi+2E(hδt−2) (18)

Consider the inequalities (16), (17), (18), that can be written in matrix form as

Ht ≤M +AHt−1,

the iterative method is expressed as

Ht ≤
t−1∑
i=0

AiM +AtH0,

that converges for each initial H−1 if and only if the spectral radius of matrix A is
smaller than one. The matrices Ht, M and A are defined as follows :

Ht =


E(hδt )
E(hδ1,t)
E(hδ2,t)
E(hδt−1)
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M =


c0
c0
c0
0



A =


C(β + τπ1) β τβ Cτ

∑∞
i=0 πi+2

CΦ β 0 0
C(Φ + π1) 0 β C

∑∞
i=0 πi+2

1 0 0 0


Lemma 3. Let τ,Φ and β be the parameters of A-HY-APARCH model such that

0 < τ < Φ < β < 1. If,C
[
β(1 + (τ + 1)Φ− β) + τ(π1 +

∑∞
i=0 πi+2)

]
+ β − 1 < 0

C(β + τπ1) + β < 2

then ρ(A) < 1.

Proof. Let first show that the spectrum Λ(A) is not empty set and its maximum
eigenvalue is strictry less than one. Given matrix A

A =


C(β + τπ1) β τβ Cτ

∑∞
i=0 πi+2

CΦ β 0 0
C(Φ + π1) 0 β C

∑∞
i=0 πi+2

1 0 0 0



For sake of simplicity, let us rewrite matrix A as : A =


a d e f
b β 0 0
c 0 β g
1 0 0 0


Note that for 0 < τ < φ < β < 1, we have egβ − fβ2 = 0, thus the characteristic
polynomial of A is

PA(x) = x4 − (a+ 2β)x3 + (−f − ec+ β(2a+ β)− bd)x2

+
(
2fβ − eg + ecβ − aβ2 + bdβ

)
x

By solving PA(x) = 0, the eigenvalues of matrix A are x1 = 0, x2 = β,
x3 = 1

2

(
(a+ β)−

√
a2 − 2aβ + β2 + 4(f + ec+ bd)

)
and x4 = 1

2

(
(a+ β) +

√
a2 − 2aβ + β2 + 4(f + ec+ bd)

)
,

obviously
(
a2 − 2aβ + β2 + 4(f + ec+ bd)

)
> 0.

By definition, the spectral radius of a matrix A is defined by

ρ(A) = sup
x∈Λ(A)

|x|.
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Since max{0, β, |x3|, |x4|} = x4 that is,

ρ(A) =
1

2

(
(a+ β) +

√
a2 − 2aβ + β2 + 4(f + ec+ bd)

)
.

The spectral radius of A is less than one if and only if the following condition is
satisfied: {

a− aβ − 1 + β + f + ec+ bd < 0

a+ β < 2.
(19)

We just have to replace a, b, c, d and e by their expressions in (19), where
a = C(β + τπ1), b = CΦ, c = C(Φ + π1), d = β and f = Cτ

∑∞
i=0 πi+2 and e = τβ,

therefore (19) is rewritten as followsC
[
β(1 + (τ + 1)Φ− β) + τ(π1 +

∑∞
i=0 πi+2)

]
+ β − 1 < 0

C(β + τπ1) + β < 2.
(20)

Theorem 2. Let τ,Φ and β be the parameters of A-HY-APARCH model such that
0 < τ < Φ < β < 1 andC

[
β(1 + (τ + 1)Φ− β) + τ(π1 +

∑∞
i=0 πi+2)

]
+ β − 1 < 0

C(β + τπ1) + β < 2,

then the time series {yt} following A-HYAPARCH model defined in relation (5)-(8) is
asymptotically stable with finite variance.

Proof. The recursive vector form of inequalities (16), (17), (18) can be written as

Ht ≤M +AHt−1 t > 0 (21)

The iteration of inequality (21) gives

Ht ≤
t−1∑
i=0

AiM +AtH0 t > 0 (22)

According to convergence matrice theorem Peter Lancaster, M. T. (1985), the iter-
ating inequality (22) converges if and only if the spectral radius is strictly less than
one, by Lemma 3, suppose that the spectral radius ρ(A) < 1, Now we want to show
that if (I − A) exists, its inverse exists and

∑t−1
i=0 A

i=(I − A)−1 as limt→∞AtH0 = 0.
The eigenvalues of (I−A) are (1−x(A)) where x(A) are the eigenvalues of matrix A.
The set of eigenvalues of (I −A) is not empty, hence matrix (1− x(A)) is invertible.
Let

Sn = I +A+A2 + . . .+An =

n−1∑
i=0

Ai

ASn = A+A2 + . . .+An+1
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hence,
(I −A)Sn = I −An+1,

we can prove that limn→∞(I − An+1) = I, by using limn→∞An+1 = 0, we get
(I − A) limn→∞ Sn = I, or limn→∞ Sn = (I − A)−1, that is

∑n−1
i=0 A

n = (I − A)−1, as
limt→∞At = 0, under Lemma 3, we conclude that

lim
t→∞

Ht ≤ (I −A)−1M

4. Estimation

The parameters of the new volatility model are estimated using the method of Maxi-
mum Likelihood Estimation under the assumption of normal distributed standard-
ized innovations. We assume that the second moment of the equation satisfying
the A-HY-APARCH model is asymptotically bounded.
The conditional likelihood function of A-HYAPARCH(p, d, q, k) process based on
the sample {x1, x2, · · · , xT } of T observations may be written as

LT (xt|Ft−1; θ) =

T∏
t=1

1√
2πht

exp(−1

2

x2
t

h2
t

).

Under the assumption that the resuduals follows a normal distribution, the Gaus-
sian log-likelihood function may be expressed as

log(LT (xt|Ft−1; θ)) = −T
2
log(2π)− 1

2

T∑
t=1

log(ht)−
1

2

T∑
t=1

x2
t

h2
t

= −1

2

T∑
t=1

[
log(2π) + log(ht) + z2

t

]
,

with T denotes the number of observations. The Gaussian log-likelihood is nu-
merically maximized with respect to the vector of the unknown parameters in the
model. The procedure simultaneously estimates all the parameters in the model,
including those in the flexible functional form of the intercept in the conditional
variance process. This study uses numerical techniques to approximate the deriva-
tives of the log-likelihood function with respect to the parameter vector θ, that is
θ = (w′,Φ, β, d′).

5. Simulation study

In this section, the performance of the A-HY-APARCH(1,d,1,k) model using Monte
Carlo Simulation is described for different data generating processes, and compar-
isons are made with the estimation of corresponding HYAPARCH models. The aim
is to investigate whether the A-HYAPARCH model is able to produce the best esti-
mates of the long memory parameter when the structural breaks are accounted.
Under the assumption that the residuals follow a normal distribution, the results
of simulation with and without structural changes are presented, for the condi-
tional variance process ht. To be sure that the conditional variance is positive, the
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conditions on the parameters of the A-HY-APARCH(1,d,1,k) model similar to those
holding in HYGARCH(1,d,1) are imposed following Conrad, C. (2010)’s simulation
study, that is, for Ψi ≥ 0 , β > 0

β − τd ≤ Φ ≤ 2− d
3

τd(Φ− 1− d
2

) ≤ β(Φ− β + τd).

The design of the simulation study follows that of Shi, Y. et al.(2018)’s simu-
lation of the A-HYEGARCH model. The time series are generated from the A-
HYAPARCH(1,d,1,k) model with the long memory parameter d= (0.35,0.45) and
Φ = 0.30 and β = 0.40. when the GARCH model is applied to financial time series
data, the persistence parameter tends to be high and this indicates that the struc-
tural breaks are present in data, that is the reason why this study also focus on the
impact of ignoring structural changes on the estimated short memory parameters
Φ and β. We consider frequencies up to four and the errors are assumed to follow
a normal distribution with mean zero and variance one. In each design, simula-
tions are carried out for two different sample T = 1000 and T = 3000 observations
and the first 1000 0bservations are discarded to avoid the errors in simulation.
For each k ∈ {0, 1, 2, 3, 4}, the 500 Monte Carlo replications were employed in all
of the designs. The A-HYAPARCH and the standard HYAPARCH with and without
structural changes were estimated. In all simulation, we limited in (p,q)= (1,1) and
the model is defined as follows:

xt = htzt zt ∼ NID(0, 1)

hφt = (1− τ)hφ1,t + τhφ2,t

where
hφ1,t = wt + β

(
hφ1,t−1 − wt−1

)
+ (Φ− β)yt−1,

hφ2,t = wt + β

(
hφ2,t−1 − wt−1

)
+ (β − Φ + π1)yt−1 +

∞∑
i=0

(
πi+2 − Φπi+1

)
Biyt−2,

wt = w0 +

k∑
j=1

[
nj sin(

2πjt

T
) +mj cos(

2πjt

T
)

]
and

yt =

(
|xt|−εxt

)φ
.

The advantage of this new model is that it can capture the essential characteristics
of one or more structural breaks by using only a small number of low-frequency
components through the deterministic time-varying component (wt). Three differ-
ent designs were investigated, for each parametrization, 500 replications are con-
ducted. The difference between the three designs is summarized as follows:
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• Design 1 (D1), the first design assumed the time-varying intercept function wt
to be corresponding to constant intercept w0 that is, wt = w0 = 0.1.
• Design 2 (D2), the second design imposed the time-varying function to have

only one step change, following Shi, Y. et al.(2018) in their research we consider
one breakpoint that is one step change where the intercept jumping from 0.1 to
0.5. Thus,

wt =

{
0.1, if t = 1, 2, · · · , T2
0.5, if t = T

2 + 1, · · · , T.

• Design 3 (D3) dealing with two step changes, where in the first step the intercept
moving from 0.1 to 0.5 at the first break point and turn back to 0.3 at the second
break point. Thus,

wt =


0.1, if t = 1, · · · , T3
0.5, if t = T

3 + 1, · · · , 2T
3 .

0.3, if t = 2T
3 + 1, · · · , T.

The performance measures like Monte Carlo bias (Bias), Standard Error(SE) and
the Root Means Square Error (RMSE) of the estimated long-range dependence
parameter d and short memory parameters (Φ and β) are computed to justify the
attainment of maximum likelihood estimators .

5.1. Simulation results

The simulation results are reported in table (1) and table (2) based on two different
values of long range dependance parameter(d). In each table D1 correspond to
the pure HYAPARCH, D2 and D3 correspond to the A-HYAPARCH model where
the intercept varies with time respectively. The values of Bias, standard error (SE)
and the root means square error (RMSE) of the estimated long-range dependence
parameter d and short memory parameters (Φ and β) are presented in each table.

Table (1) reports the estimation results of the A-HYAPARCH and the pure HY-
APARCH model for different data generating processes for all three designs (D1,
D2 and D3) where D1 corresponds to the standard HYAPARCH model with the
constant intercept and D2 and D3 corresponds to the new model where the
intercept is subjected to the structural breaks. Knowing that when k = 0 the
A-HYAPARCH model reduces to the ordinary HY-APARCH specification.

The Bias, RMSE and Standard Errors are summarized in table (1) for d = 0.35 ,
Φ = 0.30 and β = 0.40. We found that the obtained estimates of the long memory
parameter d and short memory parameters have smaller degree of bias , RMSE
and standard error and always reduced as the sample increased for all designs.
This result is consistent for the moderate persistence value of long memory pa-
rameter d=0.35 where the obtained bias in A-HYAPARCH with structural changes
is small across all two selected values of T compared to those obtained in the stan-
dard HYAPARCH. In general the RMSE and BIAS of the new model is lower from
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the standard A-HYAPARCH and decreases as the sample size increases, thus even
structural change is not present, the A-HYAPARCH performs well than the stan-
dard HYAPARCH but it works especially very well when breaks are not ignored.

Table 1. Simulation results for estimation of A-HYAPARCH(1,0.35,1,k) and HYA-
PARCH(1,0.35,1) models.

BiasΦ SEΦ RMSEΦ Biasβ SEβ RMSEβ Biasd SEd RMSEd
T=1000

k=0 D1 0.0406 0.3125 0.3107 0.0351 0.3823 0.2675 0.0545 0.2882 0.2890
D2 0.0171 0.2560 0.2584 0.0300 0.1574 0.1446 0.0410 0.2550 0.2567
D3 0.0159 0.2491 0.2462 0.0321 0.1663 0.1517 0.0352 0.2407 0.2416

k=1 D1 0.0376 0.1920 0.1896 0.0256 0.2043 0.1841 0.0235 0.2161 0.1975
D2 0.0232 0.1874 0.1852 0.0211 0.1930 0.1700 0.0112 0.1923 0.1769
D3 0.0299 0.1832 0.1792 0.0193 0.1937 0.1709 0.0227 0.1928 0.1742

k=2 D1 0.0137 0.2667 0.2589 0.0195 0.2201 0.1857 0.0363 0.2847 0.2346
D2 0.0044 0.1851 0.1853 0.0170 0.1847 0.1494 0.0279 0.2478 0.1702
D3 0.00118 0.2461 0.2402 0.0106 0.2025 0.1066 0.0124 0.1752 0.1517

k=3 D1 0.0131 0.2033 0.1748 0.0320 0.2718 0.1539 0.0269 0.2426 0.1740
D2 0.0093 0.2030 0.1684 0.0195 0.2510 0.1206 0.0048 0.2046 0.1322
D3 0.0063 0.2019 0.1714 0.0298 0.2649 0.1429 0.0188 0.2106 0.1508

k=4 D1 0.0309 0.2506 0.2046 0.0449 0.3070 0.1662 0.02673 0.2684 0.1840
D2 0.0159 0.1918 0.1824 0.0262 0.2061 0.1441 0.0115 0.1744 0.1477
D3 0.0113 0.2460 0.2036 0.0319 0.2810 0.1295 0.0114 0.2162 0.1226

T=3000
k=0 D1 0.0318 0.2422 0.2418 0.0244 0.3539 0.2370 0.0429 0.2829 0.2826

D2 0.0090 0.1969 0.1925 0.0154 0.1501 0.1365 0.0331 0.1714 0.1716
D3 0.0006 0.1394 0.1307 0.0144 0.1223 0.1030 0.0069 0.1180 0.1170

k=1 D1 0.0295 0.1505 0.1451 0.0168 0.1781 0.1441 0.0239 0.1832 0.1591
D2 0.0158 0.1432 0.1403 0.0089 0.1565 0.1191 0.0229 0.1744 0.1473
D3 0.0175 0.1479 0.1436 0.0162 0.1696 0.1337 0.0139 0.1634 0.1397

k=2 D1 0.0096 0.2234 0.1914 0.0115 0.2137 0.1276 0.0227 0.1979 0.1404
D2 0.0003 0.1494 0.1317 0.0063 0.1971 0.1197 0.0199 0.1936 0.1381
D3 0.00621 0.2036 0.1880 0.0045 0.2127 0.1182 0.0009 0.1535 0.0981

k=3 D1 0.0172 0.1893 0.1559 0.0150 0.2415 0.1151 0.0256 0.2281 0.1637
D2 0.0026 0.1797 0.1528 0.0139 0.2361 0.1132 0.0107 0.2057 0.1291
D3 0.0008 0.1858 0.1444 0.0116 0.2306 0.1046 0.0024 0.1885 0.1019

k=4 D1 0.0136 0.2018 0.1526 0.0161 0.2579 0.1119 0.0124 0.2154 0.1079
D2 0.0099 0.1868 0.1310 0.0042 0.2444 0.0916 0.0014 0.1507 0.1000
D3 0.0056 0.192 0.1432 0.0048 0.2498 0.0950 0.0106 0.2033 0.0989

Table (2) presents simulation results for estimates of the HY-APARCH( 1, 0.45, 1)
and A-HYAPARCH( 1, 0.45, 1, k ) models without and with structural changes in all
designs with d = 0.45, it can be seen that when the degree of persistence increases
and the structural breaks have acounted the A-HY-APARCH model performs well
than HY-APARCH model. Note that a constraint of d ¡ 0.5 was imposed in the
maximum likelihood estimation to ensure stationarity. When the true value of d is
approaching 0.5 (the case d = 0.45) it is shown that the A-HYAPARCH model has
small RMSE, Standard Error and Bias especially when sample size is T = 3000
that is the HYAPARCH is significantly outperformed by the A- HY-APARCH model,
hence our model needs a large enough sample more than T = 3000 and provide us
meaningfully better results.

In general, the Bias and RMSE computed for design 2 and design 3 are very small
compared to the results gotten when the value of k = 0. In summary, A-HYAPARCH
models outperform HYAPARCH when structural changes are accounted. The im-
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pact of allowing the structural changes in the conditional variance is clear, with
the data generating process having a downwards bias however all bias in all sam-
ples are smaller than 0.05. The results of the numerical simulation indicate that
the long memory parameter estimate is robust to this form of model specification.
Finally, the simulation results have confirmed that RMSE, BIAS and SE of long
memory, short memory autoregressive and short memory moving average param-
eters reduced when we take into account the possible structural breaks. Therefore,
Bias, standard error and root mean square error are small and reduced as the sam-
ple size increased. As result the A-HYAPARCH model seems to perform well than
HYAPARCH model.

Table 2. Simulation results for estimation of A-HY-APARCH(1,0.45,1,k) and HY-
APARCH(1,0.45,1) models.

BiasΦ SEΦ RMSEΦ Biasβ SEβ RMSEβ Biasd SEd RMSEd
T=1000

k=0 D1 0.0406 0.2931 0.2896 0.0330 0.2848 0.2794 0.0515 0.2922 0.2695
D2 0.0233 0.2833 0.2830 0.0301 0.1747 0.1668 0.0348 0.2864 0.2624
D3 0.0230 0.2359 0.2324 0.0253 0.1641 0.1549 0.0270 0.2112 0.1839

k=1 D1 0.0325 0.1797 0.1787 0.0237 0.1964 0.1810 0.0291 0.2845 0.2179
D2 0.0249 0.1725 0.1714 0.0163 0.1958 0.1799 0.0201 0.2488 0.1759
D3 0.0253 0.1715 0.1705 0.0114 0.1746 0.1570 0.0254 0.2391 0.1688

k=2 D1 0.0364 0.2363 0.2010 0.0352 0.2426 0.1626 0.0246 0.3067 0.2092
D2 0.0164 0.2106 0.1982 0.0250 0.2055 0.1552 0.0094 0.2500 0.1259
D3 0.0247 0.2039 0.1828 0.0183 0.2343 0.146 0.0242 0.2534 0.1670

k=3 D1 0.0162 0.2971 0.2226 0.0303 0.2803 0.1460 0.0141 0.2478 0.1603
D2 0.0061 0.2466 0.1866 0.0283 0.2517 0.1407 0.0106 0.2011 0.1551
D3 0.0147 0.2542 0.1885 0.0145 0.2267 0.1256 0.0074 0.1073 0.1433

k=4 D1 0.0243 0.2394 0.2148 0.0387 0.2683 0.1778 0.0194 0.2698 0.2570
D2 0.01980 0.2178 0.1724 0.0265 0.2376 0.1255 0.0100 0.2398 0.1680
D3 0.0060 0.2189 0.1846 0.0029 0.2630 0.1449 0.0151 0.2097 0.1571

T=3000
k=0 D1 0.0381 0.2834 0.2781 0.0262 0.2556 0.2457 0.0349 0.2912 0.2683

D2 0.0160 0.1824 0.1765 0.0244 0.1337 0.1222 0.0206 0.1959 0.1662
D3 0.0107 0.1823 0.1748 0.0244 0.1329 0.1207 0.0132 0.1764 0.1462

k=1 D1 0.0220 0.1782 0.1770 0.0283 0.1873 0.1643 0.0242 0.2338 0.1462
D2 0.0138 0.1564 0.1544 0.0138 0.1731 0.1447 0.0156 0.2196 0.1325
D3 0.01780 0.1488 0.1475 0.0258 0.1737 0.1440 0.00411 0.2120 0.1346

k=2 D1 0.0354 0.1993 0.1690 0.0199 0.2013 0.1153 0.0126 0.2511 0.1185
D2 0.0102 0.1794 0.1626 0.0166 0.1995 0.1127 0.0042 0.2403 0.1092
D3 0.0063 0.1770 0.1580 0.0072 0.1289 0.1029 0.0009 0.1105 0.1049

k=3 D1 0.0180 0.2229 0.1804 0.0127 0.2306 0.1265 0.0110 0.1905 0.1407
D2 0.0032 0.1865 0.1618 0.0073 0.2011 0.1140 0.0008 0.1524 0.1370
D3 0.0109 0.1922 0.1217 0.0099 0.1421 0.1049 0.0003 0.1060 0.1182

k=4 D1 0.0062 0.2122 0.1527 0.0420 0.2276 0.1487 0.0345 0.1640 0.2198
D2 0.0035 0.1828 0.1412 0.0199 0.2151 0.1241 0.0140 0.1205 0.1425
D3 0.00019 0.1595 0.1297 0.0064 0.2087 0.0792 0.0017 0.1107 0.1055

6. Conclusion

In this work, the extension of Hyperbolic APARCH to Adaptive Hyperbolic APARCH
process is considered. The proposed model nests a large of models in the liter-
ature and therefore facilitates in general to specify methodology. The necessary
condition of the A-HY-APARCH(1,d,1,k) to be asymptotically stable are derived and
the parameter estimation method was proposed to prove the performance of the
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new model. Numerical experiments prove that Maximum Likelihood Estimation
for the A-HYAPARCH performs reasonably well for sample size=3000 observations
with the estimate of fractional differencing parameter improving as the structural
breaks are accounted. Clearly, Bias, Standard Error(SE) and Root Mean Square
Error(RMSE) are generally small and decrease as the sample size increases thus
the A-HYAPARCH model with and without the structural changes outperform the
standard HYAPARCH. The A-HYAPARCH model proposed in this study is capable to
capture the main characteristics observed in financial time series data like volatil-
ity clustering, leptokurtosis, asymmetric effects, long memory as well as struc-
tural changes in the conditional variance. We plan to study in our future work, the
consistency and normality asymptotic of the A-HY-APARCH model as well as its
application to the real data and demonstrate its potential performance with other
existing Asymmetric long memory volatility models in the literature.
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