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Abstract

This paper investigates and evaluates an extension of the Akaike information crite-

rion, KIC, which is an approximately unbiased estimator for a risk function based

on the Kullback symmetric divergence. KIC is based on the observed-data empirical

log-likelihood which may be problematic to compute in the presence of incomplete-

data. We derive and investigate a variant of KIC criterion for model selection in

settings where the observed-data is incomplete. We examine the performance of our

criterion relative to other well known criteria in a large simulation study based on

bivariate normal model and bivariate regression modeling.
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1 Introduction

The Akaike information criterion, AIC (Akaike 1973), was designed as an asymptotically

unbiased estimator of a variant of Kullback’s (1968) directed divergence between the

true model and a fitted approximating model. The directed divergence is an asymmetric

measure, meaning that an alternative directed divergence may be obtained by reversing

the role of the two models in the definition of the measure. The sum of the two directed
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measures combines the information in both measures. Therefore, it functions as a gauge of

model disparity which is arguably more balanced than either of its individual components.

In the framework of linear models, Cavanaugh (2004) showed that directed divergence is

more sensitive in detecting overfitted models, whereas its counterpart is more sensitive

towards detecting underfitted models. Cavanaugh (1999) proposed an Akaike criterion,

called KIC (Kullback Information Criterion), as an asymptotically unbiased estimator of

Kullback’s (1968) symmetric divergence; the sum of the two directed divergences.

However, all these criteria are based on the observed-data empirical log-likelihood, which

may be problematic to compute in a large variety of practical problems in presence of

missing-data (cf. Cavanaugh & Shumway 1998). As pointed out by Shimodaira (1994),

in many applications it may be more natural or desirable to use a criterion based on

the complete-data, which assesses the separation between the fitted model and the true

model. Cavanaugh & Shumway (1998) provided some arguments to be made in defense of

this idea, and proposed a variant of AIC, denoted AICcd, as an approximately unbiased

estimator of the asymmetric measure based on complete-data. Another variant, denoted

PDIO, was proposed by Shimodaira (1994) which is based on the same principle as AICcd

but differs from it in its goodness of fit term.

In the present paper, we propose a novel criterion , which is a variant of KIC and denoted

KICcd, for model selection in the presence of incomplete-data. Like AICcd, our criterion

KICcd is based on complete-data rather than incomplete-data concepts, but differs from

AICcd in its penalty term.

In section 2, we present an overview of criteria based on Kullback’s asymmetric and

symmetric divergence, AIC and KIC. We derive our criterion KICcd in Section 3. In

Section 4, we investigate the performance of our criterion and compare it to AIC, KIC

and AICcd in a large simulation study involving modeling bivariate normal data and

bivariate regression modeling. We end the paper with a brief discussion in Section 5. All

the tables and the figures can be found at the end of paper in the last appendix.

2 AIC and KIC criteria

Let Yo be the vector of the observed-data or incomplete-data. Let θ0 be the true parameter

vector which is unknown and θ the parameter vector of the candidate model, so that

f(Yo|θ0) and f(Yo|θ) represent the generating and the candidate parametric densities for

the incomplete-data Yo, respectively. We denote by θ̂ the maximum likelihood estimator
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(MLE) of θ0, and by d the dimension of the vector θ. A measure of separation between

a candidate model f(Yo|θ) and the generating model f(Yo|θ0) is defined by (Kullback

1968)

IYo(θ0, θ) = DYo(θ0, θ)−DYo(θ0, θ0), (1)

where DYo(θ0, θ) = EYo|θ0{−2 ln f(Yo|θ)} and EYo|θ0 denotes the expectation under

f(Yo|θ0). The second term of (1) can be discarded, since it does not depend on θ.

Therefore, DYo(θ0, θ) which is called a discrepancy, provides a suitable measure of the

separation between the two models. Since θ0 is unknown, the evaluation of this quantity

is not possible. Akaike (1973,1974) showed that the criterion

AIC = −2 ln L(Yo|θ̂) + 2d, (2)

is an asymptotically unbiased estimator of ∆Yo|θ0 (d, θ0) = EYo|θ0

{
DYo(θ0, θ̂)

}
, where

L(Yo|θ̂) represents the empirical likelihood for the incomplete-data and

DYo(θ0, θ̂) = EYo|θ0

{
− 2 ln f(Yo|θ)

}
|θ=θ̂, (3)

is an asymmetric measure of separation between two statistical models.

An alternative directed divergence is Kullback’s symmetric divergence, defined as the sum

of two directed divergences (Kullback 1968), i.e.

JYo(θ0, θ) = IYo(θ0, θ) + IYo(θ, θ0). (4)

Note that JYo(θ0, θ) = JYo(θ, θ0), whereas IYo(θ0, θ) 6= IYo(θ, θ0) unless θ = θ0. It is well

known that JYo(θ0, θ) ≥ 0 with equality if and only if θ = θ0.

Cavanaugh (1999) showed that the criterion defined by

KIC = −2 ln L(Yo|θ̂) + 3d, (5)

is an asymptotically unbiased estimator of ΩYo(d, θ0) = EYo|θ0

{
KYo(θ0, θ̂)

}
, where

KYo(θ0, θ̂) = DYo(θ0, θ̂) +
{

DYo(θ̂, θ0)−DYo(θ̂, θ̂)
}

, (6)

DYo(θ̂, θ0) = EYo|θ{−2 ln f(Yo|θ0)}|θ=θ̂ and DYo(θ̂, θ̂) = EYo|θ{−2 ln f(Yo|θ)}|θ=θ̂.

Cavanaugh (1999) showed that the criterion KIC outperforms AIC. He suggested that

JYo(θ0, θ) is preferable to IYo(θ0, θ) as a directed divergence tool for model selection.
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3 Derivation of KICcd

We assume that the vector of complete-data has the following form Y = (Yo,Ym), where

Yo is the vector of the observed-data and Ym is the vector of the missing-data. Let

f(Y|θ0) and f(Y|θ) be the generating and the candidate parametric densities for the

complete-data Y, respectively. Following the derivation of KIC, we assume that the

candidate class of models includes the true model (Linhart and Zucchini, 1986). In this

setting, the complete-data density f(Y|θ) can be written as

f(Y|θ) = f(Yo|θ)f(Ym|Yo, θ). (7)

So, If the density f(Ym|Yo, θ) is substantially affected by deviations of θ from the true

parameter θ0, the model selection based on the discrepancy between the fitting model

f(Y|θ̂) and the generating model f(Y|θ0) would incorporate this information. Therefore,

it is not clear that model selection based on the discrepancy of incomplete-data would be

the same. In this section, we explore this argument and describe the evaluation of KICcd.

3.1 Complete-data discrepancy for the symmetric divergence

The complete-data discrepancy for the symmetric divergence between a fitting model

f(Y|θ̂) and the generating model f(Y|θ0) is defined by

JY(θ0, θ̂) = IY(θ0, θ̂) + IY(θ̂, θ0), (8)

where IY(θ0, θ̂) and IY(θ̂, θ0) are defined as before when we replace Yo by Y.

Although the two measures IY(θ0, θ̂) and IY(θ̂, θ0) judged the dissimilarity between f(Y|θ0)

and f(Y|θ̂), they are not redundant. The measure IY(θ0, θ̂) evaluates how well the fitted

candidate model performs on average on new samples generated under the true model.

Whereas, the measure IY(θ̂, θ0) evaluates how well the true model conforms on average

on new samples generated under the fitted candidate model. Since the symmetric diver-

gence, JY(θ0, θ̂), reflects the sensitivities of both directed divergences, it may serve as a

more balanced discrepancy measure than either of its individual components. Even if this

argument is not formal, numerical illustration supporting this fact is provided in Figure

1 and Tables 2 and 4 in the last appendix.

In the presence of missing-data, the following lemma justifies the use of the complete-data

discrepancy KY(θ0, θ̂) defined as in (6) where we replace Yo by Y.
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Lemma 3.1 We have

KY(θ0, θ) ≥ KYo(θ0, θ) + k(θ0),

where k(θ0) = EYo|θ0

{
DYm|Yo

(θ0, θ0)
}

is independent of θ.

Proof. Using equation (7), we have

DY(θ, θ0) = DYo(θ, θ0) + EY|θ

{
− 2 ln f(Ym|Yo, θ0)

}
. (9)

Similarly, we have

DY(θ, θ) = DYo(θ, θ) + EY|θ

{
− 2 ln f(Ym|Yo, θ)

}
. (10)

Let

DYm|Yo
(θ, θ0) = E(Ym|Yo ,θ)

{
− 2 ln f(Ym|Yo, θ0)

}
and

DYm|Yo
(θ, θ) = E(Ym|Yo ,θ)

{
− 2 ln f(Ym|Yo, θ)

}
,

where E(Ym|Yo ,θ) denotes the expectation under the density f(Ym|Yo, θ).

Again from (7), it can be shown that EY|θ

{
−2 ln f(Ym|Yo, θ0)

}
= EYo|θ

{
DYm|Yo

(θ, θ0)
}

,

and EY|θ

{
− 2 ln f(Ym|Yo, θ)

}
= EYo|θ

{
DYm|Yo

(θ, θ)
}

.

Now, substituting (9) and (10) in KY(θ0, θ̂) with θ̂ = θ, we obtain

KY(θ0, θ) = DY(θ0, θ) + DYo(θ, θ0)−DYo(θ, θ)

+

{
EYo|θ

{
DYm|Yo

(θ, θ0)
}
− EYo|θ

{
DYm|Yo

(θ, θ)
}}

.

Furthermore, Cavanaugh and Shumway (1998) showed that

DY(θ0, θ) ≥ DYo(θ0, θ) + k(θ0),

where k(θ0) = EYo|θ0

{
DYm|Yo

(θ0, θ0)
}

is independent of θ. This leads to

KY(θ0, θ) ≥ DYo(θ0, θ) + k(θ0) + DYo(θ, θ0)−DYo(θ, θ)

+ EYo|θ

{
DYm|Yo

(θ, θ0)−DYm|Yo
(θ, θ)

}
≥ KYo(θ0, θ) + k(θ0) + EYo|θ

{
DYm|Yo

(θ, θ0)−DYm|Yo
(θ, θ)

}
.

Now, let IYm|Yo
(θ, θ0) = DYm|Yo

(θ, θ0)−DYm|Yo
(θ, θ). Since IYm|Yo

(θ, θ0) ≥ 0 with equal-

ity if and only if θ = θ0, then we have for any θ

KY(θ0, θ) ≥ KYo(θ0, θ) + k(θ0),
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which ends the proof. �

From the inequality in lemma 3.1, we can conclude that the complete-data discrepancy

KY(θ0, θ) is always at least as great as the incomplete-data discrepancy KYo(θ0, θ). This

implies that in the presence of missing-data, an estimator of the expected complete-

data discrepancy may be preferable to an estimator of the expected incomplete-data

discrepancy as a model selection criterion. Numerical illustration supporting this fact is

provided in Figures 2 and 3 in the last appendix.

3.2 Derivation of KICcd

Our objective is to propose a version of KIC that will have an approximately unbiased

estimator of the expected complete-data discrepancy ΩY(d, θ0) = EYo|θ0

{
KY(θ0, θ̂)

}
. We

assume that θ0 is an interior point of the parameter space for the candidate model, and

that the usual regularity conditions needed to ensure the consistency and asymptotic

normality of θ̂ are satisfied. Let

Io(θ|Yo) =
−∂2 ln f(Yo|θ)

∂θ∂θt
, Io(θ|Y) =

−∂2 ln f(Y|θ)
∂θ∂θt

Q(θ1|θ2) =

∫
Ym

{ln f(Y|θ1)}f(Ym|Yo, θ2)dYm and

Ioc(θ|Yo) = E(Ym|Yo,θ0
)

{
−∂2 ln f(Y|θ)

∂θ∂θt

}
.

Cavanaugh and Shumway (1998) established that the criterion defined by

AICcd = −2Q(θ̂, θ̂) + 2trace{Ioc(θ̂|Yo)I
−1
o (θ̂|Yo)} (11)

is an asymptotically unbiased estimator of EYo|θ0

{
DY(θ0, θ̂)

}
.

The following proposition is an adaptation of this result for Kullback’s symmetric diver-

gence in the presence of missing-data.

Proposition 3.2 In the presence of missing-data, an asymptotically unbiased estimator

of ΩY(d, θ0) is given by

KICcd = −2Q(θ̂, θ̂) + 3trace{Ioc(θ̂|Yo)I
−1
o (θ̂|Yo)}. (12)

Proof. From (6) when we replace Yo by Y, we have

ΩY(d, θ0) = EYo|θ0

{
DY(θ0, θ̂)

}
+ EYo|θ0

{
DY(θ̂, θ0)−DY(θ̂, θ̂)

}
. (13)
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Next, taking a second-order expansion in the second term of DY(θ̂, θ0) about θ̂, one can

establish

DY(θ̂, θ0) = DY(θ̂, θ̂) + (θ̂ − θ0)
tEYo|θ̂

{
Ioc(θ̂|Yo)

}
(θ̂ − θ0) + r(θ0, θ̂), (14)

where r(θ0, θ̂) is Op(1), ()t stands for transpose. For n large, it is justifiable to re-

place f(Yo|θ̂) in the expression of EYo|θ̂

{
Ioc(θ̂|Yo)

}
with f(Yo|θ0) as in Cavanaugh and

Shumway (1998). This leads to the large-sample approximation

EYo|θ̂

{
Ioc(θ̂|Yo)

}
≈ EYo|θ0{Ioc(θ̂|Yo)}. (15)

Taking the expectation of (14) with respect to f(Yo|θ0) and using (15) yields

EYo|θ0

{
DY(θ̂, θ0)−DY(θ̂, θ̂)

}
≈ EYo|θ0

{
(θ̂ − θ0)

tEYo|θ0{Ioc(θ̂|Yo)}(θ̂ − θ0)
}

,

where ≈ stands for an asymptotic equality. Since the variance-covariance matrix of (θ̂−θ0)

is approximated by I−1
0 (θ̂|Yo) for the large sample, we have

EYo|θ0

{
(θ̂ − θ0)

tEYo|θ0{Ioc(θ̂|Yo)}(θ̂ − θ0)
}

= trace
{
EYo|θ0{Ioc(θ̂|Yo)}EYo|θ0{(θ̂ − θ0)(θ̂ − θ0)

t}
}

≈ trace
{
EYo|θ0{Ioc(θ̂|Yo)}I−1

0 (θ̂|Yo)
}

. (16)

An estimator for (16) is given by trace{Ioc(θ̂|Yo)I
−1
0 (θ̂|Yo)}. According to the result

of (11) and substituting the latter estimator in the second term of (13), we obtain the

estimator of ΩY(d, θ0) given in the proposition. �

The penalty term of KICcd involves the information matrix I−1
0 (θ̂|Yo) which is often hard

to provide. According to Meng and Rubin (1991), Cavanaugh and Shumway (1998) and

Shimodaira (1994), the penalty term can be written as

3trace(I−DM)−1 = 3d + 3trace{DM(I−DM)−1},

where the matrix DM is the operator of the EM algorithm, and I is the identity matrix.

Using this expression, (12) can be expressed as

KICcd = −2Q(θ̂, θ̂) + {3d + 3trace{DM(I−DM)−1}}. (17)

The first term in KICcd is easily evaluated from the EM algorithm. The matrix DM

may be calculated by the SEM algorithm (supplemented EM, Meng and Rubin 1991) or
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by numerical differentiation methods such as the RDM and FDM algorithms proposed by

Jamshidian and Jennrich (1999) (See Appendix for evaluation of the DM matrix and for

definition of the EM and SEM algorithms).

To compare the behavior of the KICcd criterion, an evaluation of its expression can serve as

a starting point. The expression (17) implies that the penalty term of KICcd is composed

of the penalty term of KIC with a term which assesses an additional penalty in accordance

with the impact of the missing-data on the fitted model. Since trace{DM(I−DM)−1}
is positive, the penalty term of KICcd is always at least as large as the penalty term

of KIC. Moreover, the goodness-of-fit term of KICcd, −2Q(θ1|θ2), can be written as

−2H(θ1|θ2)− 2 ln L(Yo|θ1), where H(θ1|θ2) = EYm|Yo,θ2
{ln f(Ym|Yo, θ1)}.

However, KICcd contains extra components in its goodness-of-fit term. The component

−2H(θ̂|θ̂) provides a missing-data supplement to the goodness-of-fit term of KIC. It is

nonetheless difficult to give a general characterization made by the sum of this extra

components to KICcd.

On the other hand, our criterion KICcd is different from AICcd in its penalty term.

The difference between these terms causes these criteria to behave quite differently, as

indicated by the numerical simulations in the next section.

4 Numerical experiments

We carried out a fairly large simulation study of the performance of the KICcd criterion

compared to KIC, AIC and AICcd criteria. This simulation study focuses on two impor-

tant modeling frameworks: the bivariate normal model and bivariate regression models.

4.1 Bivariate normal

We consider the same example used by Cavanaugh and Shumway (1998) in their simula-

tion study to investigate the performance of the AICcd criterion.

Let µ1, µ2, σ2
1, σ2

2, and σ12 be two means, two variances and the covariance of a bivariate

normal model respectively. The data set consists of observations on a pair of random

variables (y1, y2). The candidate class consists of four types of bivariate normal models

corresponding to certain parameters and summarized in the following table.
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Dimension Parameter Constraints Parameter to be estimated

5 None µ1, µ2, σ2
1, σ2

2, σ12

4 σ2
1 = σ2

2 ≡ σ2 µ1, µ2, σ2, σ12

3 σ2
1 = σ2

2 ≡ σ2, µ1 = µ2 ≡ µ µ, σ2, σ12

2 σ2
1 = σ2

2 ≡ σ2, µ1 = µ2 ≡ µ, σ12 = 0 µ, σ2

In each simulation set, 1000 samples of size 50 are generated using two bivariate normal

models of dimension 3 and 4 for the candidate class. In some sets, certain data pairs within

each sample are made incomplete by eliminating, according to specified probabilities,

either the first or the second observation. Let Pr(y1mis) be the probability that the first

observation is missing and the second is observed, and Pr(y2mis) the probability that the

second observation is missing and the first is observed. The discard probabilities are fixed

at four values: 0.0, 0.15, 0.30 and 0.40. For each generating model, four simulation sets

are considered:

Set True True

Numbers Dimension Parameter Values

1-4 3 µ1 = µ2 ≡ µ = 0, σ2
1 = σ2

2 ≡ σ2 = 10, σ12 = 6

5-8 3 µ1 = µ2 ≡ µ = 0, σ2
1 = σ2

2 ≡ σ2 = 10, σ12 = 8

9-12 4 µ1 = 0, µ2 = 2, σ2
1 = σ2

2 ≡ σ2 = 10, σ12 = 6

13-16 4 µ1 = 0, µ2 = 2, σ2
1 = σ2

2 ≡ σ2 = 10, σ12 = 8

For each of the 1000 samples in a set, all four models in the candidate class are fitted to

the data using the SEM algorithm. Over the 1000 data sets, the selections are summarized

in Table 1.

When there are no missing-data, the criteria KICcd and KIC (respectively AICcd and

AIC) give the same selection results (sets 1, 5, 9 and 13). In this setting, KIC outperforms

AIC. In the presence of missing-data, and when the correlation between y1 and y2 is

increased, the selection performance of the criteria improves. Each criterion performs

more effectively in sets 5 through 8 than in sets 1 through 4, and more effectively in sets 13

through 16 than in sets 9 through 12. According to Cavanaugh and Shumway (1998), this

behavior can be explained by the fact that when there is a large correlation, incomplete-

data pairs are less costly since it is possible to accurately impute the missing elements.

Moreover, KICcd outperforms AICcd and is more prone than AICcd to underfitting. In

every simulation set where data is missing, KICcd overfits to a slightly lesser degree than

other criteria. The same remark for AICcd and AIC is formulated by Cavanaugh and
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Shumway (1998). Thus, KICcd outperforms in sets 1 through 9, but is outperformed by

KIC in the other sets.

The results of Table 2 features the number of correct order selections obtained by each

divergence measure in both the first and second set. For both sets, JY(θ0, θ̂) obtains more

correct order selection than JYo(θ0, θ̂), IY(θ0, θ̂) and IYo(θ0, θ̂).

Figure 1 provides some insight as to why KICcd tends to outperform AICcd as a selection

criterion. The simulated values of ΩY(d, θ0) and ∆Y(d, θ0) for simulation set 3, with the

curves which represent the average values of KICcd and AICcd, are plotted against the

order d. The shape of the ΩY(d, θ0) and ∆Y(d, θ0) curves indicates that JY(θ0, θ̂) or

KY(θ0, θ̂) tends to be more effective than IY(θ0, θ̂) or DY(θ0, θ̂) in delineating between

fitted models of the true order and other fitted models. Thus, JY(θ0, θ̂) tends to grow to

a greater extent than IY(θ0, θ̂) when the dissimilarity between a fitted model and the true

model becomes more pronounced. This explains why model selection criterion based on

JY(θ0, θ̂) may be preferable to one based on IY(θ0, θ̂).

Figure 2 illustrates the changes in ΩY(d, θ0) and ΩYo(d, θ0) as the probabilities of missing-

data are increased. To simulate the expected discrepancies, we use the sample from sets

1 through 4. Each curve has been transformed so that its minimum is equal to zero at

d = 3. The curves in Figure 2 are scaled by dividing each value by the difference between

the maximum and the minimum of the ΩY(d, θ0) curve from set 1. The curves in Figure

3 are similarly scaled using ΩY(d, θ0). probabilities of missing-data are increased, ΩY(d, θ0)

and ΩYo(d, θ0) decrease for d = 2 and increase for d = 4, 5. Moreover, ΩY(d, θ0) decreases

much less quickly than ΩYo(d, θ0) for d = 2, and increases much more quickly for d = 4, 5.

Consequently the minimum of the ΩY(d, θ0) curve is well defined, whereas the minimum

of the ΩYo(d, θ0) is less pronounced. This explains thatt in the presence of missing-data,

an estimator of ΩY(d, θ0) may be preferable to an estimator of ΩYo(d, θ0).

Figure 3 summarizes the simulated ΩY(d, θ0) curve, for simulation set 3, with the curve

which represents the average values of KICcd. This latter curve has the same representa-

tion as the simulated ΩY(d, θ0) curve.

4.2 Multivariate regression

Another important setting of application of model selection is the multivariate regression

model defined by Y = Xβ + U, where the rows of Yn×p correspond to p response vari-

ables on each of n individuals. Xn×m is a known matrix of covariate values, and βm×p

is a matrix of unknown regression parameters. The rows of the error matrix Un×p are
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assumed to be independent, with identical Np(0, Σ) distribution. The number of unknown

parameters in this setting is d = pm + 0.5p(p + 1).

We consider a setting where p = 2, so that the rows of Y represent bivariate data pairs.

There were eight candidate models stored in an n×8 matrix X, with a column of ones fol-

lowed by seven columns of independent standard normal random variables. We consider

1000 samples of size n = 50, with m0 = 4 and m0 = 6. Here, Σ = (1− ρ)Ip + ρJp, where

Jp is a p× p matrix of ones, Ip is the identity matrix and the values of ρ are fixed at 0.3,

0.6 and 0.8. For each the p responses, the regression parameters are identical: (1, 2, 3, 4)

if for example m0 = 4. Thus, we use the same matrix and values of ρ for each pair (n, p).

We obtained the same simulation results for different values of the correlation ρ between

responses, so we present only results for ρ = 0.6. This example is considered by Bedrick

and Tsai (1994) to investigate the performance of the corrected Akaike information cri-

terion.

For each m0, a collection of five simulation sets are run with the pair of discard prob-

abilities (Pr(y1mis), Pr(y2mis)) set at (0.00, 0.00), (0.00, 0.60), (0.20, 0.40), (0.40, 0.20),

(0.60, 0.00). The selected dimensions are grouped in three categories:”< d0”(underfitting),

”d0”(correct dimension), and ”> d0”(overfitting). Over the 1000 data sets, the selections

are summarized in Table 3.

In the presence of incomplete-data, it can be seen that KICcd greatly outperforms all

other criteria. Moreover, the tendency to underestimate the correct dimension is zero for

all criteria. As in the previous examples, KICcd overfits to a slightly lesser degree than

other criteria. Furthermore, in other examples not reported here, we obtained the same

results when modifying the values of Σ and X or the values of β0 and X. Other examples

of simulation on multiple and bivariate regression, not reported here, give the same results

as in the preceding example (Hafidi and Mkhadri 2002).

We now present in Table 4 the number of correct order selections obtained by each diver-

gence measure for sets 1 to 5. We see that JY(θ0, θ̂) obtains more correct order selection

than JYo(θ0, θ̂), IY(θ0, θ̂) and IYo(θ0, θ̂).

5 Conclusion

In this paper, we have presented and investigated the KICcd criterion for model selection

in applications where the observed-data is incomplete. Our criterion estimates the ex-

pected complete-data Kullback-Leibler’s symmetric discrepancy in the same manner that
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KIC estimates the expected incomplete-data symmetric discrepancy. Our simulations in-

dicate that in the presence of incomplete-data KICcd provides better model order choices

than other criteria. Moreover, KICcd tends to underfit to a stronger degree than AICcd,

and tends to overfit to a lesser degree than KIC. KICcd achieves this performance by

incorporating a penalization term for missing information which is lacking in KIC. Thus,

AICcd and AIC, respectively, tend to overfit to a stronger degree than KICcd and KIC.

The results suggest that the symmetric discrepancy JY(θ0, θ̂) may provide a foundation

for the development of a model selection criteria in the presence of missing-data which is

preferable to that provided by the asymmetric discrepancy IY(θ0, θ̂).

Unlike KIC, the KICcd criterion is based entirely on complete-data tools, and does not

require the evaluation of the observed-data empirical log-likelihood, which may be difficult

to compute. Moreover, KICcd may be evaluated in this framework by the EM algorithm

for assessment of its goodness of fit term and by the SEM algorithm or by other numer-

ical differentiation methods for the estimation of the observed information matrix or its

penalty term.
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Appendix: Evaluating DM matrix

EM algorithm

Starting with an initial value θ0 ∈ Θ, the EM algorithm find θ̂ by iterating between the

following two steps (t = 0, 1, ...):

E step: Impute the unknown complete-data log-likelihood by its conditional expectation

given the current estimate θ(t):

Q(θ|θ(t)) =

∫
Ym

{ln f(Y|θ)}f(Ym|Yo, θ
(t))dYm.

M step: Determine θ(t+1) by maximizing the imputed log-likelihood Q(θ|θ(t)):

θ(t+1) = argmax Q(θ|θ(t)), forall θ ∈ Θ.
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SEM algorithm Let r(i,j) be the (i, j) element of the d × d matrix DM and define θ
(t)
(i)

as

θ(t)(i) = (θ̂(1), ..., θ̂(i−1), θ
(t)
(i) , θ̂(i+1), ..., θ̂(d)), i = 1, 2, ..., d. (18)

That is, θ(t)(i) is θ̂ with the ith component active is replaced by the ith component of θ(t).

Repeat the SEM steps:

INPUT: θ̂ and θ(t)

Repeat step 1 and 2 for for each i

Step 1: Calculate θ(t)(i) from (18), treat it as input for the EM algorithm, and run

one iteration of the EM algorithm (that is, one E step and one M step) to obtain

θ̃(t+1)(i).

Step 2: Obtain the ratio

r
(t)
(i,j) =

θ̃
(t)
(j)(i)− θ̂(j)

θ
(t)
(i) − θ̂(i)

for j = 1, ..., d

OUTPUT: θ(t+1) and {r(t)
(i,j), i, j = 1, ..., d}. DM = {r?

(i,j)} where {r?
(i,j)} = {r(t+1)

(i,j) }
is such that

|r(t+1)
(i,j) − r

(t)
(i,j)| < ε,

for some suitable convergence threshold ε.
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Appendix: Tables and figures

Table 1. Selected dimensions for bivariate normal simulations

Selected dimensions

Set d0 P(y1mis) AIC KIC AICcd KICcd

P(y2mis) < d0 d0 > d0 < d0 d0 > d0 < d0 d0 > d0 < d0 d0 > d0

1 3 0.00,0.00 0 766 144 1 880 119 0 766 234 1 880 119

2 3 0.15,0.15 9 754 237 21 862 117 9 802 189 23 889 88

3 3 0.30,0.30 40 718 242 97 778 125 46 780 174 99 828 73

4 3 0.40,0.40 197 573 230 321 574 105 83 745 172 143 766 91

5 3 0.00,0.00 0 768 232 0 876 124 0 768 232 0 876 124

6 3 0.15,0.15 0 756 244 0 874 126 0 790 210 0 904 96

7 3 0.30,0.30 0 746 254 0 867 133 0 800 200 1 902 97

8 3 0.40,0.40 17 723 260 21 810 169 4 739 257 11 827 162

9 4 0.00,0.00 0 831 169 0 917 83 0 831 169 0 917 83

10 4 0.15,0.15 3 819 178 10 891 99 4 812 184 17 878 105

11 4 0.30,0.30 26 792 182 53 848 99 59 752 189 126 767 107

12 4 0.40,0.40 82 700 214 180 724 96 267 593 140 214 700 86

13 4 0.00,0.00 0 843 157 0 919 81 0 843 157 0 919 81

14 4 0.15,0.15 0 824 176 0 892 108 0 816 184 0 888 112

15 4 0.30,0.30 1 811 188 3 885 112 2 801 197 10 869 121

16 4 0.40,0.40 16 801 183 40 855 105 70 759 171 142 758 100

Table 2: Correct order selections for JY(θ0, θ̂), IY(θ0, θ̂), JYo(θ0, θ̂) and IYo(θ0, θ̂) for bivariate

normale.

Divergence

Sets 1-4 Sets 5-8

Pry1mis JY(θ0, θ̂) IY(θ0, θ̂) JYo(θ0, θ̂) IYo(θ0, θ̂) JY(θ0, θ̂) IY(θ0, θ̂) JYo(θ0, θ̂) IYo(θ0, θ̂)

Pry2mis

0.00,0.00 900 822 900 822 994 988 994 988

0.15,0.15 961 957 959 954 959 954 955 952

0.30,0.30 937 928 917 906 951 945 941 939

0.40,0.40 836 821 799 786 907 883 884 858
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Table 3. Selected dimensions for simulation of multivariate regression

Selected dimensions

Set d0 Py1mis, AIC KIC AICcd KICcd

Py2mis < d0 d0 > d0 < d0 d0 > d0 < d0 d0 > d0 < d0 d0 > d0

1 11 0.0,0.0 0 715 285 0 912 88 0 715 285 0 912 88

2 11 0.0,0.6 0 603 377 0 845 155 0 771 229 0 912 88

3 11 0.2,0.4 0 654 346 0 860 140 0 782 218 0 924 76

4 11 0.4,0.2 0 638 362 0 857 143 0 764 236 0 901 99

5 11 0.6,0.0 0 618 382 0 847 253 0 777 223 0 909 91

6 15 0.0,0.0 0 732 68 0 896 104 0 732 268 0 896 104

7 15 0.0,0.6 0 627 373 0 817 183 0 819 181 2 916 82

8 15 0.2,0.4 0 669 331 0 862 138 0 805 195 1 925 74

9 15 0.4,0.2 0 686 314 0 847 143 0 815 185 0 920 80

10 15 0.6,0.0 0 622 378 0 809 191 0 794 206 2 900 98

Table 4: Correct order selections for JY(θ0, θ̂), IY(θ0, θ̂), JYo(θ0, θ̂) and IYo(θ0, θ̂) for

bivariate regression.

Divergence: Sets 1-5

Pry1mis
JY (θ0, θ̂) IY (θ0, θ̂) JYo(θ0, θ̂) IYo(θ0, θ̂)

Pry2mis

0.0,0.0 967 860 967 860

0.0,0.6 970 860 913 710

0.2,0.4 974 870 920 715

0.4,0.6 971 870 929 721

0.6,0.0 985 883 912 798
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Figure 1. ΩY(d, θ0), ∆Y(d, θ0) and Average values of KICcd and AICcd curves

(bivariate normal simulation set 3)
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Figure 2 (a). Simulated ΩY(d, θ0) and ΩYo(d, θ0) curves for bivariate normal simulation.

sets (1,2).
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Figure 2 (b). Simulated ΩY(d, θ0) and ΩYo(d, θ0) curves for bivariate normal simulation.

sets (1,3).
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Figure 2 (c). Simulated ΩY(d, θ0) and ΩYo(d, θ0) curves for bivariate normal simulation.

sets (1,4).

Bezza Hafadi & Abdallah Mkhadri, Afrika Statistika, Vol.2, n°1, 2007, pp.1-21 
An Akaike Criterion based on Kullback Symmetric Divergence
in the Presence of Incomplete-Data

Afrika Statistika www.ufrsat.org/jas 20



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3. Simulated ΩY(d, θ0) and Average KICcd curves

(bivariate normal simulation set 3)
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