
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

AN APPROXIMATION FOR THE POWER FUNCTION OF A
SEMI-PARAMETRIC TEST OF FIT

MOHAMMED BOUKILI MAKHOUKHI

Abstract. We consider in this paper goodness of fit tests of the null hypothesis that

the underlying d.f. of a sample F (x), belongs to a given family of distribution functions

F . We propose a method for deriving approximate values of the power of a weighted
Cramér-von Mises type test of goodness of fit. Our method relies on Karhunen-Loève

[K.L] expansions on (0, 1) for the weighted a Brownian bridges.

1. Introduction

In this paper we investigate semi-parametric tests of fit based upon a random
sample X1, X2, . . . , Xn with common continuous distribution function F (x) =
P(X1 ≤ x). Here F = {G(., θ) : θ ∈ Θ} denotes a family of all distribution
function which will be specified later on, and Θ is some open set in Rk.
We seek to test the hypothesis

H0 : F (.) = G(., θ) ∈ F ,

against an alternative which will be specified later on. We will make use of
the Cramér-von Mises type statistics of the form

Ŵ 2
n,ϕ := n

∫ ∞

−∞
ϕ
(
G(x, θ̂n)

)[
Fn(x)−G(x, θ̂n)

]2
dG(x, θ̂n),

with Fn(x) = n−1
∑n

i=1 1I{Xi≤x} denotes the usual empirical distribution func-

tion [d.f.] and θ̂n is a sequence of estimators of θ and ϕ is a positive and
continuous function on (0, 1), fulfilling

(1.1) (i) lim
t↑0

t2ϕ(t) = lim
t↓1

(1− t)2ϕ(t) = 0 (ii)

∫ 1

0

t(1− t)ϕ(t) < ∞.

Note that, setting Zi = G(Xi, θ̂n) for i = 1, . . . , n and letting Ĝn(t) denotes
the empirical d.f. based upon Z1, . . . , Zn then, we may write, under (H0),

(1.2) Ŵ 2
n,ϕ = n

∫ 1

0

ϕ(t)
(
Ĝn(t)− t

)2
dt,

with Z1, . . . , Zn being not independent and identically distributed [i.i.d.] uni-
form (0,1) r.v’s. However, in some important cases the distribution of Z1, . . . , Zn
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doses not depend upon θ, but only on F . In this cases, the distribution of Ŵ 2
n,ϕ

is parameter free. This happens if F is a location scale family and θ̂n is an
equivalent estimator, a fact noted by David and Johnson [4].

2. The empirical process with estimated parameters

A general study of the weak convergence of the estimated empirical process
was carried out by Durbin [6]. We present here an approach to his main results
using strong approximations.
Introduce, for each x ∈ R, the empirical process with estimated parameters

(2.3) αn(x, θ̂n) =
√

n
(
Fn(x)−G(x, θ̂n)

)
,

where θ̂n is a sequence of estimators of θ, and we assume that

(2.4)
√

n(θ̂n − θ) =
1√
n

n∑
i=1

l(Xi, θ) + oP(1),

where l(X1, θ) =
(
l1(X1, θ1), . . . , lk(X1, θk)

)
is centered function and has finite

second moments.
Suppose F (x) = G(x, θ) ∈ F has density f(x, θ) = ∂G

∂θ
(x, θ). Take θ̂n as the

maximum Likelihood estimator: the maximizer of

m(θ) =
n∑

i=1

log f(Xi, θ).

Under adequate regularity conditions
∫

∂
∂θ

log f(x, θ)dG(x, θ) = 0 and∫ ( ∂

∂θ
log f(x, θ)

)( ∂

∂θ
log f(x, θ)

)T

dG(x, θ) = −
∫

∂2

∂θ2
log f(x, θ)dG(x, θ) := I(θ).

Since

m′(θ) =
n∑

i=1

∂

∂θ
log f(Xi, θ) and m′′(θ) =

n∑
i=1

∂

∂θ2
log f(Xi, θ),

we obtain, from the Law of Large Number, that 1
n
m′′(θ) → I(θ) almost surely.

Now, a Taylor expansion of m′(θ) around θ gives

1√
n

(
m′(θ̂n)−m′(θ)

)
=

1

n
m′′(θ̂n)

√
n
(
θ − θ̂

)
+ op(1)

= −I(θ)
√

n
(
θ − θ̂

)
+ op(1),

which, taking into account that m′(θ̂) = 0, gives

√
n
(
θ − θ̂

)
=

1√
n

n∑
i=1

l(Xi, θ) + op(1),
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with l(x, θ) = I(θ)−1 ∂
∂θ

logf(x, θ). Clearly
∫

l(x, θ)dG(x, θ) = 0, while∫
l(x, θ)l(x, θ)T dG(x, θ) = I(θ)−1I(θ)I(θ)−1 = I(θ)−1.�

To obtain the null asymptotic distribution of αn(x, θ̂n), we assume that (H0)
and (2.4) and write

αn(x, θ̂n) =
√

n
(
Fn(x)−G(x, θ)

)
−
√

n
(
G(x, θ̂n)−G(x, θ)

)
= αn

(
G(x, θ)

)
−H(G(x, θ), θ)T

∫ 1

0

L(t, θ)dαn(t) + oP(1)

= α̂n

(
G(x, θ)

)
+ oP(1),(2.5)

where αn(.) denotes the uniform empirical process, H(t, θ) = ∂G
∂θ

(
G−1(t, θ), θ

)
,

L(t, θ) = l
(
G−1(t, θ), θ

)
, with G−1(t, θ) =

{
x : G(x, θ) ≥ t

}
denoting the

quantile function of X1, and

(2.6) α̂n(t) = αn(t)−H(t, θ)T

∫ 1

0

L(s, θ)dαn(s), for 0 < t < 1,

is the uniform estimated empirical process.

2.1. Some notes on stochastic integration. Equation (2.6) suggests that

α̂n(t)
w→ B(t)−H(t, θ)T

∫ 1

0

L(s, θ)dB(s), as n →∞,

where
w→ denotes the weak convergence and B(.) is a brownian bridge (i.e.,

a Gaussian process with B(0) = B(1) = 0, E(B(t)) = 0, E(B(s)B(t)) =
min(s, t)− st for s, t ∈ [0, 1]).

We cannot give
∫ 1

0
L(s, θ)dB(s) the meaning of a Stieltjes integral since the

trajectories of B(.) are not of bounded variation. It is possible, though, to

make sense of expressions like
∫ 1

0
f(s)dB(s), with f ∈ L2(0, 1) through the

following construction.
Assume first that f is simple : (f(t) =

∑n
i=1 aiI(tW<,ti−1], with ai ∈ R and

0 = t0 < t1 < · · · < tn = 1). Then∫ 1

0

f(s)dB(s) =
n∑

i=1

ai

(
B(ti)−B(ti−1)

)
:=

n∑
i=1

ai 4Bi,

where 4Bi = B(ti)−B(ti−1). It can be easily checked that E(4Bi) = 0 and

Var(4Bi) = 4ti(1−4ti) and Cov(4Bi,4Bj) = −4 ti 4 tj if i 6= j.

The random variable is centered Gaussian with variance
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n∑
i=1

a2
i Var(4Bi) + 2

∑
1≤i<j≤n

aiajCov(4Bi,4Bj) =
n∑

i=1

a2
i 4 ti −

n∑
i=1

n∑
j=1

aiaj 4 ti 4 tj

=
n∑

i=1

a2
i 4 ti −

( n∑
i=1

ai 4 ti
)2

=

∫ 1

0

f 2(t)dt−
( ∫ 1

0

f(t)dt
)2

.

Thus, f −→
∫ 1

0
f(s)dB(s) defines an isometry between the subspace of

L2(0, 1) consisting of centered, simple functions and its range. We can therefore
extend the definition to all centered function in L2(0, 1). Finally, for a general
f ∈ L2(0, 1), ∫ 1

0

f(s)dB(s) = f −→
∫ 1

0

f̂(s)dB(s),

where f̂(s) = f(s)−
∫ 1

0
f(t)dt. The stochastic integral

∫ 1

0
f(s)dB(s) is cen-

tered, Gaussian random variable with variance∫ 1

0

f 2(t)dt−
( ∫ 1

0

L(t)dt
)2

.

In fact, if f1, ..., fk ∈ L2(0, 1), then
( ∫ 1

0
f1(s)dB(s), . . . ,

∫ 1

0
fk(s)dB(s)

)
has a

joint centered, Gaussian law and form the isometry defining the integrals we
see that

(2.7)

Cov
( ∫ 1

0

f(s)dB(s),

∫ 1

0

g(s)dB(s)
)

=
∫ 1

0
f(s)g(s)ds−

∫ 1

0
f(s)ds

∫ 1

0
g(s)ds.

We can similarly check that(
{B(t)}t∈[0,1],

∫ 1

0
f1(s)dB(s), . . . ,

∫ 1

0
fk(s)dB(s)

)
is Gaussian and

Cov
(
B(t),

∫ 1

0

f(s)dB(s)
)

=

∫ t

0

f(s)ds− t

∫ t

0

f(s)ds

(take g(s) = I(0,1](s) in (2.7) to check it).

An integration by parts formula. Suppose h(.) is simple. Then∫ 1

0

h(s)dB(s) =
n∑

i=1

h(ti)
(
B(ti)−B(ti−1)

)
= −

n−1∑
i=0

B(ti)
(
h(ti+1)−h(ti)

)
= −

∫ 1

0

B(t)dh(t).
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This result can be easily extended to any h(.) of bounded variation and con-
tinuous on [0, 1] : ∫ 1

0

h(s)dB(s) = −
∫ 1

0

B(t)dh(t).

This integration by parts formula can be used to bound the difference be-
tween stochastic integrals and the corresponding integrals with respect to the
empirical process:

|
∫ 1

0

h(s)dαn(s)−
∫ 1

0

h(s)dBn(s)| ≤ sup
0≤t≤1

|αn(t)−Bn(t)|
∫ 1

0

d|h|(s),

Bn(.) is a sequence of brownian bridges.

We can summarize now the above arguments in the following theorem (see,
e.g., [6]).

Theorem 2.1. Provided H(t, θ) is continuous on [0, 1] and L(s, θ) is continous
and bounded variation on [0, 1] we can define, on a sufficiently rich probability
space, αn(.) and Bn(.) such that

sup
0≤t≤1

|α̂n(t)− B̂n(t)| = O(
log n√

n
) almost surly [a.s.],

where B̂n(t) = Bn(t)−H(t, θ)T
∫ 1

0
L(s, θ)dBn(s) is a centered Gaussian process

with function covariance

K̂θ(s, t) = min(s, t)− st−H(t, θ)T

∫ s

0

L(x, θ)dx−H(s, θ)T

∫ t

0

L(x, θ)dx

+ H(s, θ)T
[ ∫ 1

0

L(x, θ)L(x, θ)T dx
]
H(t, θ).(2.8)

Note that this covariance function can be expressed as s∧ t−
∑k

j=1 φj(s)φj(t)

for some real functions φj(.). A very complete study of the Karhunen-Loève
expansion of Gaussian processus with this type of covariance function was car-
ried out in [11].

Exemple 1. We consider F = {G0(
.−µ
σ

) : θ = (µ, σ) ∈ R × R∗
+} is a location

scale family
(
G0(.) is a standard distribution function with density g0

)
. Then

H(t, θ) = − 1

σ
g0

(
G−1

0 (t)
) [

1
G−1

0 (t)

]
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and

I(θ) =
1

σ2

[ ∫ g2
0(x)

g0(x)
dx

∫
x

g2
0(x)

g0(x)
dx∫

x
g2
0(x)

g0(x)
dx

∫
x2 g2

0(x)

g0(x)
dx− 1

]
.

We can now write

I(θ)−1 = σ2

[
σ11 σ12

σ21 σ22

]
,

with σij depending only on G0, but not on µ or σ and

K̂(s, t) = min(s, t)− st− φ1(s)φ1(t)− φ2(s)φ2(t).

Here

φ1(t) = −

√(
σ11 −

σ2
12

σ22

)
g0

(
G−1

0 (t)
)

and

φ2(t) = − σ12√
σ22

g0

(
G−1

0 (t)
)
−
√

σ22g0

(
G−1

0 (t)
)
G−1

0 (t).

If F is the Gaussian family G0(x) = Φ(x), g0(x) = φ(x), g′0(x) = −xφ(x) and

I(θ) =
1

σ2

[
1 0
0 2

]
.

Hence, σ11 = 1, σ22 = 1
2
, σ12 = σ21 = 0 and

K̂(s, t) = min(s, t)−st−φ
(
Φ−1(s)

)
φ
(
Φ−1(t)

)
−1

2
φ
(
Φ−1(s)

)
Φ−1(s)φ

(
Φ−1(t)

)
Φ−1(t).

In this Gaussian case L is not of bounded variation on [0, 1], but the above
argument can be modified and still prove that

{α̂n(t)}t
w−→{

B(t)+φ
(
Φ−1(s)

) ∫ 1

0

(
Φ−1(s)

)
dB(s)+

1

2
φ
(
Φ−1(t)

)
Φ−1(t)

∫ 1

0

(
Φ−1(s)2−1

)
dB(s)

}
t

as random variable in D[0, 1] or L2[0, 1].

Theorem 2.1 provided, as an easy corollary, the asymptotic distribution

of a variety of Ŵ 2
n,ϕ statistics under the null hypothesis. In fact, Durbin’s

results also give a valuable tool for studying its asymptotic power because
they include too the asymptotic distribution of the estimated empirical process
under contiguous alternatives. A survey of results connected to Theorem 2.1 as
well as a simple derivation of it based on Skorohod embedding can be founnd
in [10].
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3. Results (Asymptotic power of the Ŵ 2
n,ϕ test of fit)

Assume that (1.1) and (2.4), under the null hypothesis (H0), the limiting

distribution of Ŵ 2
n,ϕ in (1.2) coincides with the distribution of the random

variable

Ŵ 2
ϕ :=

∫ 1

0

ϕ(t)B2(t, θ)dt,

where B(t, θ) is a Gaussian random process with zero mean and covariance
function

(3.9) Kϕ(s, t) =
√

ϕ(s)ϕ(t)K̂θ(s, t),

where K̂θ(s, t) has been described above in (2.8).
We chose the sequence of local alternatives which depend on the parameters
θ = (θ1, . . . , θk) given by

Ha : F (.) = F (n)(., θ),

where F (n)(., θ) is chosen as a proper distribution function such that F (n)(., θ) →
G(., θ), as n → ∞, and with Rn(.) :=

√
n
(
F (n)(., θ) − G(., θ)

)
→ R(., θ) in

the mean square, as n → ∞, and R(., θ) is known and satisfies the condition∫ +∞
−∞ R(x, θ)dx < ∞.

These kinds of alternatives were proposed and discussed, in particular, by
Chibisov [2]. Setting t = G(x, θ), δ(t, θ) = R(G−1(t, θ), θ) and assuming that

(3.10)

∫ 1

0

ϕ(t)δ2(t, θ)dt < ∞.

Under (Ha), with δ(., θ) satisfies the condition (3.10), the limiting distribution

(as n → ∞) of statistic Ŵ 2
n,ϕ coincides (see, e.g., [2]) with the distribution of

r.v:

Ŵ 2
(δ,ϕ) =

∫ 1

0

ϕ(t)
[
B(t, θ) + δ(t, θ)

]2
dt

=

∫ 1

0

ϕ(t)B2(t, θ) + 2

∫ 1

0

δ(t, θ)ϕ(t)B(t, θ)dt +

∫ 1

0

δ(t, θ)ϕ2(t).(3.11)

For a fixed parameter θ and a level of significance α ∈ (0, 1), there is a
threshold of confidence tα := tα(θ) satisfying the identity

(3.12) P(

∫ 1

0

ϕ(t)B2(t, θ)dt ≥ tα) = α.

(see, e.g., [5] for a tabulation of numerical values of tα for the particular cases
ϕ(t) = t2β, β > −1, and, α =0.1, 0.05, 0.01, 0.005, 0.001).
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In the case above, the asymptotic power of the test of fit based upon Ŵ 2
n,ϕ,

under the sequence of local alternatives specified by (Ha), is specified by

(3.13) P
(
Ŵ 2

(δ,ϕ) ≥ tα

)
= lim

n→∞
P
(
Ŵ 2

n,ϕ ≥ tα|Ha

)
.

Recalling the definitions (1.1) of ϕ, (3.9) of Kϕ(., .) and, (3.12) of tα, we set

(3.14)

g(t, θ) :=
√

ϕ(t)δ(t, θ), x :=
tα −

∫ 1

0
Kϕ(t, t)dt−

∫ 1

0
ϕ(t)δ2(t, θ)dt

2
,

A :=

∫ 1

0

K2
ϕ(s, s)ds, B :=

∫ 1

0

[ ∫ 1

0

g(s, θ)Kϕ(s, t)ds
]2

dt,

C :=

∫ 1

0

∫ 1

0

[ ∫ 1

0

g( u, θ)Kϕ(s, u)du

∫ 1

0

g(v, θ)Kϕ(s, v)dv
]2

Kϕ(s, t)dsdt,

D2 : =

∫ 1

0

∫ 1

0

g(s, θ)Kϕ(s, t)g(t, θ)dsdt.(3.15)

Let φ (resp. Φ) be the probability density (resp. distribution) function of the
standard normal N (0, 1) distribution. Namely,

φ(x) =
1√
2π

e−
x2

2 and Φ(x) =

∫ x

−∞
f(u)du.

Then, for calculating the power function defined in (3.13), we have the follow-
ing theorem. Recall the definitions (3.14)-(3.15) of x, A, B, C and, D.

Theorem 3.1. Under the assumptions above, we have

1− P
(
Ŵ 2

(δ,ϕ) ≥ tα
)

= Φ(
x

D
)+

{ A

2D2
H1(

x

D
)+

B

2D
3
2

H2(
x

D
)+

C

4D4
H3(

x

D
)+

B2

8D6
H5(

x

D
)
}

φ(
x

D
)+ε(x).

Here Hj(.) are Hermite polynomial and, εk(.) is a remainder term fulfilling

(3.16) sup
y
|ε(y)| ≤ C1(

D2 − B
λ1

) 3
2

,

where C1 is a constant and, λ1 is the first eigenvalue of the Fredholm transfor-
mation h →

∫ 1

0
Kϕ(s, .)h(s)ds.

Remark 1.
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The following particular cases are of interest. If, we replace g(., θ) by γg(., θ)
in the alternatives of (3.10) (for some real parameter γ > 0), we obtain that

(3.17) sup
y
|ε(y)| = o

(
γ−

3
2

)
as γ →∞.

Proof. The proof of this theorem resembles that which was published (in the
case non-parametric) in another article (see, e.g.,[1]). �

4. Numerical example

As an illustration, we will consider approximate calculation of the power of

Ŵ 2
n,ϕ test for verifying the hypothesis of normal distribution.

Here, we consider F = {Φ( .−µ
σ

) : (µ, σ) ∈ R × R∗
+}, θ = (µ, σ), θ̂ = (X, S2)

and,

H0 : F (y) = G(y, θ) := Φ(
y − µ

σ
).

We chose as an alternative,

(Ha) : F (y) = F (n)(y, θ) := Φ(
y − µ

σ
) + γ

R(y−µ
σ

)
√

n
+ O(

1

n
),

where R(x) = 1
4
√

2π
(3x− x3)e−

x2

2 and, γ is a real parameter positive.

Setting t = Φ(y−µ
σ

) and, δ(t) = R(Φ−1(t)), we obtain

Kϕ(s, t) =
√

ϕ(s)ϕ(t)K̂θ(s, t)

=
√

ϕ(s)ϕ(t)
{

min(s, t)− st−
(
1 +

1

2
Φ−1(s)Φ−1(t)

)
φ
(
Φ−1(s)

)
φ
(
Φ−1(t)

)}
.

According to the preceding theorem, the asymptotic power of the test of fit
based upon W 2

n,ϕ, under the sequence of local alternatives specified by (Ha)
in the case above, is calculated for various γ and α. The accompanying table

gives values of the power βγ = P
(
Ŵ 2

(δ,ϕ) > tα
)

for ϕ ≡ 1.

α = 0.01 γ βγ α = 0.001 γ βγ

3 0.2 3 0.085
4 0.53 4 0.21
5 0.851 5 0.532
6 0.98 6 0.847

Table. Approximate power for the test goodness of fit

The second column gives various values of the parameter γ. The third as
well as last the columns give power values for βγ. They are compared with the
exact values obtained by Martynov [8].

An Approximation for the Power Function of a
Semi-parametric Test of Fit
Mohammed Boukili Makhoukhi, pp. 73-82

ISSN 0825-0305

Afrika Statistika  www.jafristat.net 81



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

References

[1] Boukili Makhoukhi.M. (2008) An approximation for the power function of a
non-parametric test of fit. Statistics and Probability Letters, Vol.78, Issue 8, pp.
1034-1042

[2] Chibisov, D.M. (1965) On the investigation of the asymptotic power of match cri-
teria in the case of close alternatives. Theory of Probability and its Applications,
translation by SIAM, Vol. 10, no.3, pp. 460-478.
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