AN APPROXIMATION FOR THE POWER FUNCTION OF A SEMI-PARAMETRIC TEST OF FIT

MOHAMMED BOUKILI MAKHOUKHI

ABSTRACT. We consider in this paper goodness of fit tests of the null hypothesis that the underlying d.f. of a sample F(x), belongs to a given family of distribution functions \mathcal{F} . We propose a method for deriving approximate values of the power of a weighted Cramér-von Mises type test of goodness of fit. Our method relies on Karhunen-Loève [K.L] expansions on (0, 1) for the weighted a Brownian bridges.

1. INTRODUCTION

In this paper we investigate semi-parametric tests of fit based upon a random sample X_1, X_2, \ldots, X_n with common continuous distribution function $F(x) = \mathbb{P}(X_1 \leq x)$. Here $\mathcal{F} = \{G(., \theta) : \theta \in \Theta\}$ denotes a family of all distribution function which will be specified later on, and Θ is some open set in \mathbb{R}^k . We seek to test the hypothesis

$$H_0: F(.) = G(., \theta) \in \mathcal{F},$$

against an alternative which will be specified later on. We will make use of the Cramér-von Mises type statistics of the form

$$\widehat{W}_{n,\varphi}^2 := n \int_{-\infty}^{\infty} \varphi \big(G(x, \widehat{\theta}_n) \big) \big[\mathbb{F}_n(x) - G(x, \widehat{\theta}_n) \big]^2 dG(x, \widehat{\theta}_n),$$

with $\mathbb{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{I}_{\{X_i \leq x\}}$ denotes the usual empirical distribution function [d.f.] and $\widehat{\theta}_n$ is a sequence of estimators of θ and φ is a positive and continuous function on (0, 1), fulfilling

(1.1) (i)
$$\lim_{t \uparrow 0} t^2 \varphi(t) = \lim_{t \downarrow 1} (1-t)^2 \varphi(t) = 0$$
 (ii) $\int_0^1 t(1-t)\varphi(t) < \infty$.

Note that, setting $Z_i = G(X_i, \hat{\theta}_n)$ for i = 1, ..., n and letting $\widehat{\mathbb{G}}_n(t)$ denotes the empirical d.f. based upon $Z_1, ..., Z_n$ then, we may write, under (H_0) ,

(1.2)
$$\widehat{W}_{n,\varphi}^2 = n \int_0^1 \varphi(t) \big(\widehat{\mathbb{G}}_n(t) - t\big)^2 dt,$$

with Z_1, \ldots, Z_n being not independent and identically distributed [i.i.d.] uniform (0,1) r.v's. However, in some important cases the distribution of Z_1, \ldots, Z_n

²⁰⁰⁰ Mathematics Subject Classification. Primary 62G10, 62F03: Secondary 60J65.

Key words and phrases. Cramér-von Mises tests; Tests of goodness of fit; weak laws; empirical processes; Karhunen-Loève expansions; Gaussian processes; Brownian bridge; Bessel functions.

doses not depend upon θ , but only on \mathcal{F} . In this cases, the distribution of $\widehat{W}^2_{n,\varphi}$ is parameter free. This happens if \mathcal{F} is a location scale family and θ_n is an equivalent estimator, a fact noted by David and Johnson [4].

2. THE EMPIRICAL PROCESS WITH ESTIMATED PARAMETERS

A general study of the weak convergence of the estimated empirical process was carried out by Durbin [6]. We present here an approach to his main results using strong approximations.

Introduce, for each $x \in \mathbb{R}$, the empirical process with estimated parameters

(2.3)
$$\alpha_n(x,\widehat{\theta}_n) = \sqrt{n} \big(\mathbb{F}_n(x) - G(x,\widehat{\theta}_n) \big),$$

where $\widehat{\theta}_n$ is a sequence of estimators of θ , and we assume that

(2.4)
$$\sqrt{n}(\widehat{\theta}_n - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^n l(X_i, \theta) + o_{\mathbb{P}}(1),$$

where $l(X_1, \theta) = (l_1(X_1, \theta_1), \dots, l_k(X_1, \theta_k))$ is centered function and has finite second moments.

Suppose $F(x) = G(x,\theta) \in \mathcal{F}$ has density $f(x,\theta) = \frac{\partial G}{\partial \theta}(x,\theta)$. Take $\widehat{\theta}_n$ as the maximum Likelihood estimator: the maximizer of

$$m(\theta) = \sum_{i=1}^{n} \log f(X_i, \theta).$$

Under adequate regularity conditions $\int \frac{\partial}{\partial \theta} \log f(x,\theta) dG(x,\theta) = 0$ and

$$\int \left(\frac{\partial}{\partial \theta} \log f(x,\theta)\right) \left(\frac{\partial}{\partial \theta} \log f(x,\theta)\right)^T dG(x,\theta) = -\int \frac{\partial^2}{\partial \theta^2} \log f(x,\theta) dG(x,\theta) := I(\theta).$$

Since

Since

$$m'(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i, \theta)$$
 and $m''(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta^2} \log f(X_i, \theta),$

we obtain, from the Law of Large Number, that $\frac{1}{n}m''(\theta) \to I(\theta)$ almost surely. Now, a Taylor expansion of $m'(\theta)$ around θ gives

$$\frac{1}{\sqrt{n}} \left(m'(\widehat{\theta}_n) - m'(\theta) \right) = \frac{1}{n} m''(\widehat{\theta}_n) \sqrt{n} \left(\theta - \widehat{\theta} \right) + o_p(1)$$
$$= -I(\theta) \sqrt{n} \left(\theta - \widehat{\theta} \right) + o_p(1),$$

which, taking into account that $m'(\hat{\theta}) = 0$, gives

$$\sqrt{n}(\theta - \widehat{\theta}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l(X_i, \theta) + o_p(1),$$

with
$$l(x,\theta) = I(\theta)^{-1} \frac{\partial}{\partial \theta} log f(x,\theta)$$
. Clearly $\int l(x,\theta) dG(x,\theta) = 0$, while
$$\int l(x,\theta) l(x,\theta)^T dG(x,\theta) = I(\theta)^{-1} I(\theta) I(\theta)^{-1} = I(\theta)^{-1} . \Box$$

To obtain the null asymptotic distribution of $\alpha_n(x, \hat{\theta}_n)$, we assume that (H_0) and (2.4) and write

$$\begin{aligned} \alpha_n(x,\widehat{\theta}_n) &= \sqrt{n} \big(\mathbb{F}_n(x) - G(x,\theta) \big) - \sqrt{n} \big(G(x,\widehat{\theta}_n) - G(x,\theta) \big) \\ &= \alpha_n \big(G(x,\theta) \big) - H(G(x,\theta),\theta)^T \int_0^1 L(t,\theta) d\alpha_n(t) + o_{\mathbb{P}}(1) \\ \end{aligned}$$

$$(2.5) \qquad = \widehat{\alpha}_n \big(G(x,\theta) \big) + o_{\mathbb{P}}(1),$$

where $\alpha_n(.)$ denotes the uniform empirical process, $H(t,\theta) = \frac{\partial G}{\partial \theta} \left(G^{-1}(t,\theta), \theta \right)$, $L(t,\theta) = l \left(G^{-1}(t,\theta), \theta \right)$, with $G^{-1}(t,\theta) = \{ x : G(x,\theta) \ge t \}$ denoting the quantile function of X_1 , and

(2.6)
$$\widehat{\alpha}_n(t) = \alpha_n(t) - H(t,\theta)^T \int_0^1 L(s,\theta) d\alpha_n(s), \text{ for } 0 < t < 1,$$

is the uniform estimated empirical process.

2.1. Some notes on stochastic integration. Equation (2.6) suggests that

$$\widehat{\alpha}_n(t) \xrightarrow{w} B(t) - H(t,\theta)^T \int_0^1 L(s,\theta) dB(s), \text{ as } n \to \infty,$$

where \xrightarrow{w} denotes the weak convergence and B(.) is a brownian bridge (i.e., a Gaussian process with B(0) = B(1) = 0, $\mathbb{E}(B(t)) = 0$, $\mathbb{E}(B(s)B(t)) = \min(s,t) - st$ for $s, t \in [0,1]$).

We cannot give $\int_0^1 L(s,\theta)dB(s)$ the meaning of a Stieltjes integral since the trajectories of B(.) are not of bounded variation. It is possible, though, to make sense of expressions like $\int_0^1 f(s)dB(s)$, with $f \in L^2(0,1)$ through the following construction.

Assume first that f is simple : $(f(t) = \sum_{i=1}^{n} a_i \mathbb{I}_{(t_{W}, t_{i-1}]})$, with $a_i \in \mathbb{R}$ and $0 = t_0 < t_1 < \cdots < t_n = 1$. Then

$$\int_0^1 f(s) dB(s) = \sum_{i=1}^n a_i \left(B(t_i) - B(t_{i-1}) \right) := \sum_{i=1}^n a_i \bigtriangleup B_i,$$

where $\Delta B_i = B(t_i) - B(t_{i-1})$. It can be easily checked that $\mathbb{E}(\Delta B_i) = 0$ and $\mathbb{V}ar(\Delta B_i) = \Delta t_i(1 - \Delta t_i)$ and $\mathbb{C}ov(\Delta B_i, \Delta B_j) = -\Delta t_i \Delta t_j$ if $i \neq j$.

The random variable is centered Gaussian with variance

$$\sum_{i=1}^{n} a_i^2 \mathbb{V}ar(\triangle B_i) + 2 \sum_{1 \le i < j \le n} a_i a_j \mathbb{C}ov(\triangle B_i, \triangle B_j) = \sum_{i=1}^{n} a_i^2 \triangle t_i - \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \triangle t_i \triangle t_j$$
$$= \sum_{i=1}^{n} a_i^2 \triangle t_i - \left(\sum_{i=1}^{n} a_i \triangle t_i\right)^2$$
$$= \int_0^1 f^2(t) dt - \left(\int_0^1 f(t) dt\right)^2.$$

Thus, $f \longrightarrow \int_0^1 f(s) dB(s)$ defines an isometry between the subspace of $L^2(0, 1)$ consisting of centered, simple functions and its range. We can therefore extend the definition to all centered function in $L^2(0, 1)$. Finally, for a general $f \in L^2(0, 1)$,

$$\int_0^1 f(s)dB(s) = f \longrightarrow \int_0^1 \widehat{f}(s)dB(s)$$

where $\widehat{f}(s) = f(s) - \int_0^1 f(t) dt$. The stochastic integral $\int_0^1 f(s) dB(s)$ is centered, Gaussian random variable with variance

$$\int_{0}^{1} f^{2}(t)dt - \left(\int_{0}^{1} L(t)dt\right)^{2}.$$

In fact, if $f_1, ..., f_k \in L^2(0, 1)$, then $\left(\int_0^1 f_1(s) dB(s), \ldots, \int_0^1 f_k(s) dB(s)\right)$ has a joint centered, Gaussian law and form the isometry defining the integrals we see that

(2.7)

$$\mathbb{C}ov\Big(\int_0^1 f(s)dB(s), \int_0^1 g(s)dB(s)\Big) = \int_0^1 f(s)g(s)ds - \int_0^1 f(s)ds \int_0^1 g(s)ds.$$
We say similarly check that

We can similarly check that

$$\left(\{B(t)\}_{t\in[0,1]}, \int_0^1 f_1(s)dB(s), \dots, \int_0^1 f_k(s)dB(s)\right)$$

is Gaussian and

$$\mathbb{C}ov\Big(B(t), \int_0^1 f(s)dB(s)\Big) = \int_0^t f(s)ds - t\int_0^t f(s)ds$$

(take
$$g(s) = \mathbb{I}_{(0,1]}(s)$$
 in (2.7) to check it)

An integration by parts formula. Suppose h(.) is simple. Then

$$\int_0^1 h(s)dB(s) = \sum_{i=1}^n h(t_i) \Big(B(t_i) - B(t_{i-1}) \Big) = -\sum_{i=0}^{n-1} B(t_i) \Big(h(t_{i+1}) - h(t_i) \Big) = -\int_0^1 B(t)dh(t).$$

Afrika Statistika

This result can be easily extended to any h(.) of bounded variation and continuous on [0, 1]:

$$\int_{0}^{1} h(s)dB(s) = -\int_{0}^{1} B(t)dh(t).$$

This integration by parts formula can be used to bound the difference between stochastic integrals and the corresponding integrals with respect to the empirical process:

$$|\int_{0}^{1} h(s)d\alpha_{n}(s) - \int_{0}^{1} h(s)dB_{n}(s)| \le \sup_{0 \le t \le 1} |\alpha_{n}(t) - B_{n}(t)| \int_{0}^{1} d|h|(s),$$

 $B_n(.)$ is a sequence of brownian bridges.

We can summarize now the above arguments in the following theorem (see, e.g., [6]).

Theorem 2.1. Provided $H(t, \theta)$ is continuous on [0, 1] and $L(s, \theta)$ is continuous and bounded variation on [0, 1] we can define, on a sufficiently rich probability space, $\alpha_n(.)$ and $B_n(.)$ such that

$$\sup_{0 \le t \le 1} |\widehat{\alpha}_n(t) - \widehat{B}_n(t)| = O(\frac{\log n}{\sqrt{n}}) \text{ almost surly } [a.s.],$$

where $\widehat{B}_n(t) = B_n(t) - H(t,\theta)^T \int_0^1 L(s,\theta) dB_n(s)$ is a centered Gaussian process with function covariance

$$\widehat{K}_{\theta}(s,t) = \min(s,t) - st - H(t,\theta)^{T} \int_{0}^{s} L(x,\theta) dx - H(s,\theta)^{T} \int_{0}^{t} L(x,\theta) dx$$

$$(2.8) + H(s,\theta)^{T} \Big[\int_{0}^{1} L(x,\theta) L(x,\theta)^{T} dx \Big] H(t,\theta).$$

Note that this covariance function can be expressed as $s \wedge t - \sum_{j=1}^{k} \phi_j(s)\phi_j(t)$ for some real functions $\phi_j(.)$. A very complete study of the Karhunen-Loève expansion of Gaussian processus with this type of covariance function was carried out in [11].

Exemple 1. We consider $\mathcal{F} = \{G_0(\frac{-\mu}{\sigma}) : \theta = (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^*_+\}$ is a location scale family $(G_0(.) \text{ is a standard distribution function with density } g_0)$. Then

$$H(t,\theta) = -\frac{1}{\sigma}g_0\left(G_0^{-1}(t)\right) \begin{bmatrix} 1\\ G_0^{-1}(t) \end{bmatrix}$$

and

$$I(\theta) = \frac{1}{\sigma^2} \begin{bmatrix} \int \frac{g_0^2(x)}{g_0(x)} dx & \int x \frac{g_0^2(x)}{g_0(x)} dx \\ \int x \frac{g_0^2(x)}{g_0(x)} dx & \int x^2 \frac{g_0^2(x)}{g_0(x)} dx - 1 \end{bmatrix}.$$

We can now write

$$I(\theta)^{-1} = \sigma^2 \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix},$$

with σ_{ij} depending only on G_0 , but not on μ or σ and

$$\hat{K}(s,t) = \min(s,t) - st - \phi_1(s)\phi_1(t) - \phi_2(s)\phi_2(t).$$

Here

$$\phi_1(t) = -\sqrt{\left(\sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}}\right)}g_0(G_0^{-1}(t))$$

and

$$\phi_2(t) = -\frac{\sigma_{12}}{\sqrt{\sigma_{22}}} g_0 \big(G_0^{-1}(t) \big) - \sqrt{\sigma_{22}} g_0 \big(G_0^{-1}(t) \big) G_0^{-1}(t)$$

If \mathcal{F} is the Gaussian family $G_0(x) = \Phi(x), g_0(x) = \phi(x), g'_0(x) = -x\phi(x)$ and

$$I(\theta) = \frac{1}{\sigma^2} \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix}.$$

Hence, $\sigma_{11} = 1$, $\sigma_{22} = \frac{1}{2}$, $\sigma_{12} = \sigma_{21} = 0$ and

$$\widehat{K}(s,t) = \min(s,t) - st - \phi \left(\Phi^{-1}(s) \right) \phi \left(\Phi^{-1}(t) \right) - \frac{1}{2} \phi \left(\Phi^{-1}(s) \right) \Phi^{-1}(s) \phi \left(\Phi^{-1}(t) \right) \Phi^{-1}(t).$$

In this Gaussian case L is not of bounded variation on [0, 1], but the above argument can be modified and still prove that

 $\{\widehat{\alpha}_n(t)\}_t \xrightarrow{w}$

$$\begin{cases} B(t) + \phi \left(\Phi^{-1}(s) \right) \int_0^1 \left(\Phi^{-1}(s) \right) dB(s) + \frac{1}{2} \phi \left(\Phi^{-1}(t) \right) \Phi^{-1}(t) \int_0^1 \left(\Phi^{-1}(s)^2 - 1 \right) dB(s) \end{cases}_t \\ as \ random \ variable \ in \ D[0, 1] \ or \ L^2[0, 1]. \end{cases}$$

Theorem 2.1 provided, as an easy corollary, the asymptotic distribution of a variety of $\widehat{W}_{n,\varphi}^2$ statistics under the null hypothesis. In fact, Durbin's results also give a valuable tool for studying its asymptotic power because they include too the asymptotic distribution of the estimated empirical process under contiguous alternatives. A survey of results connected to Theorem 2.1 as well as a simple derivation of it based on Skorohod embedding can be found in [10].

3. Results (Asymptotic power of the $\widehat{W}_{n,\varphi}^2$ test of fit)

Assume that (1.1) and (2.4), under the null hypothesis (H_0) , the limiting distribution of $\widehat{W}_{n,\varphi}^2$ in (1.2) coincides with the distribution of the random variable

$$\widehat{W}_{\varphi}^2 := \int_0^1 \varphi(t) B^2(t,\theta) dt,$$

where $B(t, \theta)$ is a Gaussian random process with zero mean and covariance function

(3.9)
$$K_{\varphi}(s,t) = \sqrt{\varphi(s)\varphi(t)}\widehat{K}_{\theta}(s,t),$$

where $\widehat{K}_{\theta}(s,t)$ has been described above in (2.8). We chose the sequence of local alternatives which depend on the parameters $\theta = (\theta_1, \ldots, \theta_k)$ given by

$$H_a: F(.) = F^{(n)}(.,\theta),$$

where $F^{(n)}(.,\theta)$ is chosen as a proper distribution function such that $F^{(n)}(.,\theta) \to G(.,\theta)$, as $n \to \infty$, and with $R_n(.) := \sqrt{n} \Big(F^{(n)}(.,\theta) - G(.,\theta) \Big) \to R(.,\theta)$ in the mean square, as $n \to \infty$, and $R(.,\theta)$ is known and satisfies the condition $\int_{-\infty}^{+\infty} R(x,\theta) dx < \infty$.

These kinds of alternatives were proposed and discussed, in particular, by Chibisov [2]. Setting $t = G(x, \theta)$, $\delta(t, \theta) = R(G^{-1}(t, \theta), \theta)$ and assuming that

(3.10)
$$\int_0^1 \varphi(t) \delta^2(t,\theta) dt < \infty.$$

Under (H_a) , with $\delta(.,\theta)$ satisfies the condition (3.10), the limiting distribution (as $n \to \infty$) of statistic $\widehat{W}_{n,\varphi}^2$ coincides (see, e.g., [2]) with the distribution of r.v:

$$\widehat{W}_{(\delta,\varphi)}^2 = \int_0^1 \varphi(t) \left[B(t,\theta) + \delta(t,\theta) \right]^2 dt$$

$$(3.11) = \int_0^1 \varphi(t) B^2(t,\theta) + 2 \int_0^1 \delta(t,\theta) \varphi(t) B(t,\theta) dt + \int_0^1 \delta(t,\theta) \varphi^2(t).$$

For a fixed parameter θ and a level of significance $\alpha \in (0, 1)$, there is a threshold of confidence $t_{\alpha} := t_{\alpha}(\theta)$ satisfying the identity

(3.12)
$$\mathbb{P}(\int_0^1 \varphi(t) B^2(t,\theta) dt \ge t_\alpha) = \alpha.$$

(see, e.g., [5] for a tabulation of numerical values of t_{α} for the particular cases $\varphi(t) = t^{2\beta}, \beta > -1$, and, $\alpha = 0.1, 0.05, 0.01, 0.005, 0.001$).

In the case above, the asymptotic power of the test of fit based upon $\widehat{W}_{n,\varphi}^2$, under the sequence of local alternatives specified by (H_a) , is specified by

(3.13)
$$\mathbb{P}\Big(\widehat{W}^2_{(\delta,\varphi)} \ge t_\alpha\Big) = \lim_{n \to \infty} \mathbb{P}\Big(\widehat{W}^2_{n,\varphi} \ge t_\alpha | H_a\Big).$$

Recalling the definitions (1.1) of φ , (3.9) of $K_{\varphi}(.,.)$ and, (3.12) of t_{α} , we set

$$g(t,\theta) := \sqrt{\varphi(t)}\delta(t,\theta), \qquad x := \frac{t_{\alpha} - \int_{0}^{1} K_{\varphi}(t,t)dt - \int_{0}^{1} \varphi(t)\delta^{2}(t,\theta)dt}{2},$$

$$A := \int_{0}^{1} K_{\varphi}^{2}(s,s)ds, \qquad B := \int_{0}^{1} \left[\int_{0}^{1} g(s,\theta)K_{\varphi}(s,t)ds \right]^{2}dt,$$

$$C := \int_{0}^{1} \int_{0}^{1} \left[\int_{0}^{1} g(-u,\theta)K_{\varphi}(s,u)du \int_{0}^{1} g(v,\theta)K_{\varphi}(s,v)dv \right]^{2} K_{\varphi}(s,t)dsdt,$$
(3.15)
$$D^{2} := \int_{0}^{1} \int_{0}^{1} g(s,\theta)K_{\varphi}(s,t)g(t,\theta)dsdt.$$

Let ϕ (resp. Φ) be the probability density (resp. distribution) function of the standard normal $\mathcal{N}(0, 1)$ distribution. Namely,

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 and $\Phi(x) = \int_{-\infty}^x f(u)du$.

Then, for calculating the power function defined in (3.13), we have the following theorem. Recall the definitions (3.14)-(3.15) of x, A, B, C and, D.

Theorem 3.1. Under the assumptions above, we have

$$1 - \mathbb{P}\big(\widehat{W}^2_{(\delta,\varphi)} \ge t_{\alpha}\big)$$

$$= \Phi(\frac{x}{D}) + \left\{\frac{A}{2D^2}H_1(\frac{x}{D}) + \frac{B}{2D^{\frac{3}{2}}}H_2(\frac{x}{D}) + \frac{C}{4D^4}H_3(\frac{x}{D}) + \frac{B^2}{8D^6}H_5(\frac{x}{D})\right\}\phi(\frac{x}{D}) + \varepsilon(x).$$

Here $H_j(.)$ are Hermite polynomial and, $\varepsilon_k(.)$ is a remainder term fulfilling

(3.16)
$$\sup_{y} |\varepsilon(y)| \le \frac{C_1}{\left(D^2 - \frac{B}{\lambda_1}\right)^{\frac{3}{2}}},$$

where C_1 is a constant and, λ_1 is the first eigenvalue of the Fredholm transformation $h \to \int_0^1 K_{\varphi}(s, .)h(s)ds$.

Remark 1.

The following particular cases are of interest. If, we replace $g(., \theta)$ by $\gamma g(., \theta)$ in the alternatives of (3.10) (for some real parameter $\gamma > 0$), we obtain that

(3.17)
$$\sup_{y} |\varepsilon(y)| = o(\gamma^{-\frac{3}{2}}) \quad \text{as } \gamma \to \infty.$$

Proof. The proof of this theorem resembles that which was published (in the case non-parametric) in another article (see, e.g., [1]).

4. Numerical example

As an illustration, we will consider approximate calculation of the power of $\widehat{W}_{n,\varphi}^2$ test for verifying the hypothesis of normal distribution.

Here, we consider $\mathcal{F} = \{\Phi(\frac{\cdot-\mu}{\sigma}) : (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^*_+\}, \ \theta = (\mu, \sigma), \ \widehat{\theta} = (\overline{X}, S^2)$ and,

$$H_0: F(y) = G(y, \theta) := \Phi(\frac{y - \mu}{\sigma}).$$

We chose as an alternative,

$$(H_a): F(y) = F^{(n)}(y,\theta) := \Phi(\frac{y-\mu}{\sigma}) + \gamma \frac{R(\frac{y-\mu}{\sigma})}{\sqrt{n}} + O(\frac{1}{n}),$$

where $R(x) = \frac{1}{4\sqrt{2\pi}}(3x - x^3)e^{-\frac{x^2}{2}}$ and, γ is a real parameter positive. Setting $t = \Phi(\frac{y-\mu}{\sigma})$ and, $\delta(t) = R(\Phi^{-1}(t))$, we obtain

$$K_{\varphi}(s,t) = \sqrt{\varphi(s)\varphi(t)} \widehat{K}_{\theta}(s,t)$$
$$= \sqrt{\varphi(s)\varphi(t)} \bigg\{ \min(s,t) - st - \Big(1 + \frac{1}{2}\Phi^{-1}(s)\Phi^{-1}(t)\Big)\phi\big(\Phi^{-1}(s)\big)\phi\big(\Phi^{-1}(t)\big)\bigg\}.$$

According to the preceding theorem, the asymptotic power of the test of fit based upon $W_{n,\varphi}^2$, under the sequence of local alternatives specified by (H_a) in the case above, is calculated for various γ and α . The accompanying table gives values of the power $\beta_{\gamma} = \mathbb{P}(\widehat{W}_{(\delta,\varphi)}^2 > t_{\alpha})$ for $\varphi \equiv 1$.

$\alpha = 0.01$	γ	β_{γ}	$\alpha = 0.001$	γ	β_{γ}
	3	0.2		3	0.085
	4	0.53		4	0.21
	5	0.851		5	0.532
	6	0.98		6	0.847

Table. Approximate power for the test goodness of fit

The second column gives various values of the parameter γ . The third as well as last the columns give power values for β_{γ} . They are compared with the exact values obtained by Martynov [8].

References

- Boukili Makhoukhi.M. (2008) An approximation for the power function of a non-parametric test of fit. *Statistics and Probability Letters*, Vol.**78**, Issue 8, pp. 1034-1042
- [2] Chibisov, D.M. (1965) On the investigation of the asymptotic power of match criteria in the case of close alternatives. *Theory of Probability and its Applications, translation by SIAM*, Vol. 10, no.3, pp. 460-478.
- [3] Csörgö, M., Csörgö, S., Horvath, L and Mason, D.M. (1986) Weighted empirical and quantile process. Ann. Probab, Vol. 14, pp. 31-85.
- [4] David, F.N. and Johnson, N.L. (1948) The probability integral transformation when parameters are estimated from the sample. *Biometrika* **35**, 182-190.
- [5] Deheuvels, P. and Martynov, G. (2003) High Dimensional Probability III. Progress in probability, Vol. 55, 57-93.
- [6] Durbin, J. (1973) Weak convergence of the sample distribution function when parameters are estimated. Ann. Stat, vol. 1, 279-290.
- [7] Del Barrio, E. (2005) Empirical and quantile processes in the asymptotic theory of goodness of fit tests. *Bernoulli.*, Vol. 11, no.1, pp. 131-189.
- [8] Martynov, G. V. (1976) Program for calculating distribution functions of quadratic forms: in numerical statistics (Algorithms and Programs). In Russian, Izd-vo MGU, Moscow.
- [9] Martynov, G. V. (1976) Calculation of the limit distributions of statistics for tests of normality of w²-type. *Teor. Verojatnost. i Primenen.*, 21(1) pp 3-15.
- [10] Shorack, G. R. and Wellner, J. A. (1986) Empirical Process With Applications to Statistics. Wiley, New York.
- [11] Sukhatme, S. (1972) Fredholm determinant of a positive definite kernel of a special type and its applications. Ann. Math. Statist. 43, 1914-1926.

L.S.T.A, UNIVERSITÉ PARIS VI, 175, RUE DU CHEVALERET, 75013 PARIS, FRANCE $E\text{-}mail\ address:\ boukili@ccr.jussieu.fr$