AN APPROXIMATION FOR THE POWER FUNCTION OF A SEMI-PARAMETRIC TEST OF FIT

MOHAMMED BOUKILI MAKHOUKH

Abstract

We consider in this paper goodness of fit tests of the null hypothesis that the underlying d.f. of a sample $F(x)$, belongs to a given family of distribution functions \mathcal{F}. We propose a method for deriving approximate values of the power of a weighted Cramér-von Mises type test of goodness of fit. Our method relies on Karhunen-Loève [K.L] expansions on $(0,1)$ for the weighted a Brownian bridges.

1. Introduction

In this paper we investigate semi-parametric tests of fit based upon a random sample $X_{1}, X_{2}, \ldots, X_{n}$ with common continuous distribution function $F(x)=$ $\mathbb{P}\left(X_{1} \leq x\right)$. Here $\mathcal{F}=\{G(., \theta): \theta \in \Theta\}$ denotes a family of all distribution function which will be specified later on, and Θ is some open set in \mathbb{R}^{k}.
We seek to test the hypothesis

$$
H_{0}: F(.)=G(., \theta) \in \mathcal{F},
$$

against an alternative which will be specified later on. We will make use of the Cramér-von Mises type statistics of the form

$$
\widehat{W}_{n, \varphi}^{2}:=n \int_{-\infty}^{\infty} \varphi\left(G\left(x, \widehat{\theta}_{n}\right)\right)\left[\mathbb{F}_{n}(x)-G\left(x, \widehat{\theta}_{n}\right)\right]^{2} d G\left(x, \widehat{\theta}_{n}\right),
$$

with $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} \mathbb{I}_{\left\{X_{i} \leq x\right\}}$ denotes the usual empirical distribution function [d.f.] and $\widehat{\theta}_{n}$ is a sequence of estimators of θ and φ is a positive and continuous function on (0,1), fulfilling

$$
\begin{equation*}
\text { (i) } \lim _{t \uparrow 0} t^{2} \varphi(t)=\lim _{t \downarrow 1}(1-t)^{2} \varphi(t)=0 \tag{1.1}
\end{equation*}
$$

$$
\text { (ii) } \int_{0}^{1} t(1-t) \varphi(t)<\infty .
$$

Note that, setting $Z_{i}=G\left(X_{i}, \widehat{\theta}_{n}\right)$ for $i=1, \ldots, n$ and letting $\widehat{\mathbb{G}}_{n}(t)$ denotes the empirical d.f. based upon Z_{1}, \ldots, Z_{n} then, we may write, under $\left(H_{0}\right)$,

$$
\begin{equation*}
\widehat{W}_{n, \varphi}^{2}=n \int_{0}^{1} \varphi(t)\left(\widehat{\mathbb{G}}_{n}(t)-t\right)^{2} d t, \tag{1.2}
\end{equation*}
$$

with Z_{1}, \ldots, Z_{n} being not independent and identically distributed [i.i.d.] uniform $(0,1)$ r.v's. However, in some important cases the distribution of Z_{1}, \ldots, Z_{n}

[^0]doses not depend upon θ, but only on \mathcal{F}. In this cases, the distribution of $\widehat{W}_{n, \varphi}^{2}$ is parameter free. This happens if \mathcal{F} is a location scale family and $\widehat{\theta}_{n}$ is an equivalent estimator, a fact noted by David and Johnson [4].

2. The empirical process with estimated parameters

A general study of the weak convergence of the estimated empirical process was carried out by Durbin [6]. We present here an approach to his main results using strong approximations.
Introduce, for each $x \in \mathbb{R}$, the empirical process with estimated parameters

$$
\begin{equation*}
\alpha_{n}\left(x, \widehat{\theta}_{n}\right)=\sqrt{n}\left(\mathbb{F}_{n}(x)-G\left(x, \widehat{\theta}_{n}\right)\right) \tag{2.3}
\end{equation*}
$$

where $\widehat{\theta}_{n}$ is a sequence of estimators of θ, and we assume that

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} l\left(X_{i}, \theta\right)+o_{\mathbb{P}}(1), \tag{2.4}
\end{equation*}
$$

where $l\left(X_{1}, \theta\right)=\left(l_{1}\left(X_{1}, \theta_{1}\right), \ldots, l_{k}\left(X_{1}, \theta_{k}\right)\right)$ is centered function and has finite second moments.
Suppose $F(x)=G(x, \theta) \in \mathcal{F}$ has density $f(x, \theta)=\frac{\partial G}{\partial \theta}(x, \theta)$. Take $\widehat{\theta}_{n}$ as the maximum Likelihood estimator: the maximizer of

$$
m(\theta)=\sum_{i=1}^{n} \log f\left(X_{i}, \theta\right)
$$

Under adequate regularity conditions $\int \frac{\partial}{\partial \theta} \log f(x, \theta) d G(x, \theta)=0$ and
$\int\left(\frac{\partial}{\partial \theta} \log f(x, \theta)\right)\left(\frac{\partial}{\partial \theta} \log f(x, \theta)\right)^{T} d G(x, \theta)=-\int \frac{\partial^{2}}{\partial \theta^{2}} \log f(x, \theta) d G(x, \theta):=I(\theta)$.
Since

$$
m^{\prime}(\theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i}, \theta\right) \quad \text { and } \quad m^{\prime \prime}(\theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta^{2}} \log f\left(X_{i}, \theta\right),
$$

we obtain, from the Law of Large Number, that $\frac{1}{n} m^{\prime \prime}(\theta) \rightarrow I(\theta)$ almost surely. Now, a Taylor expansion of $m^{\prime}(\theta)$ around θ gives

$$
\begin{aligned}
\frac{1}{\sqrt{n}}\left(m^{\prime}\left(\widehat{\theta}_{n}\right)-m^{\prime}(\theta)\right) & =\frac{1}{n} m^{\prime \prime}\left(\widehat{\theta}_{n}\right) \sqrt{n}(\theta-\hat{\theta})+o_{p}(1) \\
& =-I(\theta) \sqrt{n}(\theta-\hat{\theta})+o_{p}(1),
\end{aligned}
$$

which, taking into account that $m^{\prime}(\widehat{\theta})=0$, gives

$$
\sqrt{n}(\theta-\hat{\theta})=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} l\left(X_{i}, \theta\right)+o_{p}(1),
$$

with $l(x, \theta)=I(\theta)^{-1} \frac{\partial}{\partial \theta} \log f(x, \theta)$. Clearly $\int l(x, \theta) d G(x, \theta)=0$, while

$$
\int l(x, \theta) l(x, \theta)^{T} d G(x, \theta)=I(\theta)^{-1} I(\theta) I(\theta)^{-1}=I(\theta)^{-1}
$$

To obtain the null asymptotic distribution of $\alpha_{n}\left(x, \widehat{\theta}_{n}\right)$, we assume that $\left(H_{0}\right)$ and (2.4) and write

$$
\begin{align*}
\alpha_{n}\left(x, \widehat{\theta}_{n}\right) & =\sqrt{n}\left(\mathbb{F}_{n}(x)-G(x, \theta)\right)-\sqrt{n}\left(G\left(x, \widehat{\theta}_{n}\right)-G(x, \theta)\right) \\
& =\alpha_{n}(G(x, \theta))-H(G(x, \theta), \theta)^{T} \int_{0}^{1} L(t, \theta) d \alpha_{n}(t)+o_{\mathbb{P}}(1) \\
& =\widehat{\alpha}_{n}(G(x, \theta))+o_{\mathbb{P}}(1), \tag{2.5}
\end{align*}
$$

where $\alpha_{n}($.$) denotes the uniform empirical process, H(t, \theta)=\frac{\partial G}{\partial \theta}\left(G^{-1}(t, \theta), \theta\right)$, $L(t, \theta)=l\left(G^{-1}(t, \theta), \theta\right)$, with $G^{-1}(t, \theta)=\{x: G(x, \theta) \geq t\}$ denoting the quantile function of X_{1}, and

$$
\begin{equation*}
\widehat{\alpha}_{n}(t)=\alpha_{n}(t)-H(t, \theta)^{T} \int_{0}^{1} L(s, \theta) d \alpha_{n}(s), \text { for } 0<t<1, \tag{2.6}
\end{equation*}
$$

is the uniform estimated empirical process.
2.1. Some notes on stochastic integration. Equation (2.6) suggests that

$$
\widehat{\alpha}_{n}(t) \xrightarrow{w} B(t)-H(t, \theta)^{T} \int_{0}^{1} L(s, \theta) d B(s), \text { as } n \rightarrow \infty,
$$

where \xrightarrow{w} denotes the weak convergence and $B($.$) is a brownian bridge (i.e.,$ a Gaussian process with $B(0)=B(1)=0, \mathbb{E}(B(t))=0, \mathbb{E}(B(s) B(t))=$ $\min (s, t)-s t$ for $s, t \in[0,1])$.
We cannot give $\int_{0}^{1} L(s, \theta) d B(s)$ the meaning of a Stieltjes integral since the trajectories of $B($.$) are not of bounded variation. It is possible, though, to$ make sense of expressions like $\int_{0}^{1} f(s) d B(s)$, with $f \in L^{2}(0,1)$ through the following construction.
Assume first that f is simple : $\left(f(t)=\sum_{i=1}^{n} a_{i} \mathbb{I}_{\left(t_{W<,} t_{i-1}\right]}\right.$, with $a_{i} \in \mathbb{R}$ and $\left.0=t_{0}<t_{1}<\cdots<t_{n}=1\right)$. Then

$$
\int_{0}^{1} f(s) d B(s)=\sum_{i=1}^{n} a_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right):=\sum_{i=1}^{n} a_{i} \triangle B_{i},
$$

where $\triangle B_{i}=B\left(t_{i}\right)-B\left(t_{i-1}\right)$. It can be easily checked that $\mathbb{E}\left(\triangle B_{i}\right)=0$ and $\operatorname{Var}\left(\triangle B_{i}\right)=\triangle t_{i}\left(1-\triangle t_{i}\right) \quad$ and $\quad \operatorname{Cov}\left(\triangle B_{i}, \triangle B_{j}\right)=-\triangle t_{i} \triangle t_{j} \quad$ if $\quad i \neq j$.

The random variable is centered Gaussian with variance

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i}^{2} \mathbb{V} a r\left(\triangle B_{i}\right)+2 \sum_{1 \leq i<j \leq n} a_{i} a_{j} \operatorname{Cov}\left(\triangle B_{i}, \triangle B_{j}\right) & =\sum_{i=1}^{n} a_{i}^{2} \triangle t_{i}-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \triangle t_{i} \triangle t_{j} \\
& =\sum_{i=1}^{n} a_{i}^{2} \triangle t_{i}-\left(\sum_{i=1}^{n} a_{i} \triangle t_{i}\right)^{2} \\
& =\int_{0}^{1} f^{2}(t) d t-\left(\int_{0}^{1} f(t) d t\right)^{2}
\end{aligned}
$$

Thus, $f \longrightarrow \int_{0}^{1} f(s) d B(s)$ defines an isometry between the subspace of $L^{2}(0,1)$ consisting of centered, simple functions and its range. We can therefore extend the definition to all centered function in $L^{2}(0,1)$. Finally, for a general $f \in L^{2}(0,1)$,

$$
\int_{0}^{1} f(s) d B(s)=f \longrightarrow \int_{0}^{1} \widehat{f}(s) d B(s)
$$

where $\widehat{f}(s)=f(s)-\int_{0}^{1} f(t) d t$. The stochastic integral $\int_{0}^{1} f(s) d B(s)$ is centered, Gaussian random variable with variance

$$
\int_{0}^{1} f^{2}(t) d t-\left(\int_{0}^{1} L(t) d t\right)^{2}
$$

In fact, if $f_{1}, \ldots, f_{k} \in L^{2}(0,1)$, then $\left(\int_{0}^{1} f_{1}(s) d B(s), \ldots, \int_{0}^{1} f_{k}(s) d B(s)\right)$ has a joint centered, Gaussian law and form the isometry defining the integrals we see that
$\operatorname{Cov}\left(\int_{0}^{1} f(s) d B(s), \int_{0}^{1} g(s) d B(s)\right)=\int_{0}^{1} f(s) g(s) d s-\int_{0}^{1} f(s) d s \int_{0}^{1} g(s) d s$.
We can similarly check that

$$
\left(\{B(t)\}_{t \in[0,1]}, \int_{0}^{1} f_{1}(s) d B(s), \ldots, \int_{0}^{1} f_{k}(s) d B(s)\right)
$$

is Gaussian and

$$
\operatorname{Cov}\left(B(t), \int_{0}^{1} f(s) d B(s)\right)=\int_{0}^{t} f(s) d s-t \int_{0}^{t} f(s) d s
$$

(take $g(s)=\mathbb{I}_{(0,1]}(s)$ in (2.7) to check it).
An integration by parts formula. Suppose $h($.$) is simple. Then$

$$
\int_{0}^{1} h(s) d B(s)=\sum_{i=1}^{n} h\left(t_{i}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)=-\sum_{i=0}^{n-1} B\left(t_{i}\right)\left(h\left(t_{i+1}\right)-h\left(t_{i}\right)\right)=-\int_{0}^{1} B(t) d h(t) .
$$

This result can be easily extended to any $h($.$) of bounded variation and con-$ tinuous on $[0,1]$:

$$
\int_{0}^{1} h(s) d B(s)=-\int_{0}^{1} B(t) d h(t) .
$$

This integration by parts formula can be used to bound the difference between stochastic integrals and the corresponding integrals with respect to the empirical process:

$$
\left|\int_{0}^{1} h(s) d \alpha_{n}(s)-\int_{0}^{1} h(s) d B_{n}(s)\right| \leq \sup _{0 \leq t \leq 1}\left|\alpha_{n}(t)-B_{n}(t)\right| \int_{0}^{1} d|h|(s),
$$

$B_{n}($.$) is a sequence of brownian bridges.$
We can summarize now the above arguments in the following theorem (see, e.g., [6]).

Theorem 2.1. Provided $H(t, \theta)$ is continuous on $[0,1]$ and $L(s, \theta)$ is continous and bounded variation on $[0,1]$ we can define, on a sufficiently rich probability space, $\alpha_{n}($.$) and B_{n}($.$) such that$

$$
\sup _{0 \leq t \leq 1}\left|\widehat{\alpha}_{n}(t)-\widehat{B}_{n}(t)\right|=O\left(\frac{\log n}{\sqrt{n}}\right) \text { almost surly [a.s.], }
$$

where $\widehat{B}_{n}(t)=B_{n}(t)-H(t, \theta)^{T} \int_{0}^{1} L(\widehat{s}, \theta) d B_{n}(s)$ is a centered Gaussian process with function covariance

$$
\begin{align*}
\widehat{K}_{\theta}(s, t) & =\min (s, t)-s t-H(t, \theta)^{T} \int_{0}^{s} L(x, \theta) d x-H(s, \theta)^{T} \int_{0}^{t} L(x, \theta) d x \\
(2.8) & +H(s, \theta)^{T}\left[\int_{0}^{1} L(x, \theta) L(x, \theta)^{T} d x\right] H(t, \theta) . \tag{2.8}
\end{align*}
$$

Note that this covariance function can be expressed as $s \wedge t-\sum_{j=1}^{k} \phi_{j}(s) \phi_{j}(t)$ for some real functions $\phi_{j}($.$) . A very complete study of the Karhunen-Loève$ expansion of Gaussian processus with this type of covariance function was carried out in [11].

Exemple 1. We consider $\mathcal{F}=\left\{G_{0}\left(\frac{-\mu}{\sigma}\right): \theta=(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_{+}^{*}\right\}$ is a location scale family $\left(G_{0}(\right.$.$\left.) is a standard distribution function with density g_{0}\right)$. Then

$$
H(t, \theta)=-\frac{1}{\sigma} g_{0}\left(G_{0}^{-1}(t)\right)\left[\begin{array}{c}
1 \\
G_{0}^{-1}(t)
\end{array}\right]
$$

and

$$
I(\theta)=\frac{1}{\sigma^{2}}\left[\begin{array}{cc}
\int \frac{g_{0}^{2}(x)}{g_{0}(x)} d x & \int x \frac{g_{0}^{2}(x)}{g_{0}(x)} d x \\
\int x \frac{g_{0}(x)}{g_{0}(x)} d x & \int x^{2} \frac{g_{0}(x)}{g_{0}(x)} d x-1
\end{array}\right] .
$$

We can now write

$$
I(\theta)^{-1}=\sigma^{2}\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]
$$

with $\sigma_{i j}$ depending only on G_{0}, but not on μ or σ and

$$
\widehat{K}(s, t)=\min (s, t)-s t-\phi_{1}(s) \phi_{1}(t)-\phi_{2}(s) \phi_{2}(t) .
$$

Here

$$
\phi_{1}(t)=-\sqrt{\left(\sigma_{11}-\frac{\sigma_{12}^{2}}{\sigma_{22}}\right)} g_{0}\left(G_{0}^{-1}(t)\right)
$$

and

$$
\phi_{2}(t)=-\frac{\sigma_{12}}{\sqrt{\sigma_{22}}} g_{0}\left(G_{0}^{-1}(t)\right)-\sqrt{\sigma_{22}} g_{0}\left(G_{0}^{-1}(t)\right) G_{0}^{-1}(t)
$$

If \mathcal{F} is the Gaussian family $G_{0}(x)=\Phi(x), g_{0}(x)=\phi(x), g^{\prime}{ }_{0}(x)=-x \phi(x)$ and

$$
I(\theta)=\frac{1}{\sigma^{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

Hence, $\sigma_{11}=1, \sigma_{22}=\frac{1}{2}, \sigma_{12}=\sigma_{21}=0$ and

$$
\widehat{K}(s, t)=\min (s, t)-s t-\phi\left(\Phi^{-1}(s)\right) \phi\left(\Phi^{-1}(t)\right)-\frac{1}{2} \phi\left(\Phi^{-1}(s)\right) \Phi^{-1}(s) \phi\left(\Phi^{-1}(t)\right) \Phi^{-1}(t) .
$$

In this Gaussian case L is not of bounded variation on $[0,1]$, but the above argument can be modified and still prove that

$$
\begin{gathered}
\left\{\widehat{\alpha}_{n}(t)\right\}_{t} \xrightarrow{w} \\
\left\{B(t)+\phi\left(\Phi^{-1}(s)\right) \int_{0}^{1}\left(\Phi^{-1}(s)\right) d B(s)+\frac{1}{2} \phi\left(\Phi^{-1}(t)\right) \Phi^{-1}(t) \int_{0}^{1}\left(\Phi^{-1}(s)^{2}-1\right) d B(s)\right\}_{t}
\end{gathered}
$$

as random variable in $D[0,1]$ or $L^{2}[0,1]$.
Theorem 2.1 provided, as an easy corollary, the asymptotic distribution of a variety of $\widehat{W}_{n, \varphi}^{2}$ statistics under the null hypothesis. In fact, Durbin's results also give a valuable tool for studying its asymptotic power because they include too the asymptotic distribution of the estimated empirical process under contiguous alternatives. A survey of results connected to Theorem 2.1 as well as a simple derivation of it based on Skorohod embedding can be founnd in [10].

3. Results (Asymptotic power of the $\widehat{W}_{n, \varphi}^{2}$ TEST OF Fit)

Assume that (1.1) and (2.4), under the null hypothesis $\left(H_{0}\right)$, the limiting distribution of $\widehat{W}_{n, \varphi}^{2}$ in (1.2) coincides with the distribution of the random variable

$$
\widehat{W}_{\varphi}^{2}:=\int_{0}^{1} \varphi(t) B^{2}(t, \theta) d t
$$

where $B(t, \theta)$ is a Gaussian random process with zero mean and covariance function

$$
\begin{equation*}
K_{\varphi}(s, t)=\sqrt{\varphi(s) \varphi(t)} \widehat{K}_{\theta}(s, t), \tag{3.9}
\end{equation*}
$$

where $\widehat{K}_{\theta}(s, t)$ has been described above in (2.8).
We chose the sequence of local alternatives which depend on the parameters $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ given by

$$
H_{a}: F(.)=F^{(n)}(., \theta),
$$

where $F^{(n)}(., \theta)$ is chosen as a proper distribution function such that $F^{(n)}(., \theta) \rightarrow$ $G(., \theta)$, as $n \rightarrow \infty$, and with $R_{n}():.=\sqrt{n}\left(F^{(n)}(., \theta)-G(., \theta)\right) \rightarrow R(., \theta)$ in the mean square, as $n \rightarrow \infty$, and $R(., \theta)$ is known and satisfies the condition $\int_{-\infty}^{+\infty} R(x, \theta) d x<\infty$.
These kinds of alternatives were proposed and discussed, in particular, by Chibisov [2]. Setting $t=G(x, \theta), \delta(t, \theta)=R\left(G^{-1}(t, \theta), \theta\right)$ and assuming that

$$
\begin{equation*}
\int_{0}^{1} \varphi(t) \delta^{2}(t, \theta) d t<\infty \tag{3.10}
\end{equation*}
$$

Under $\left(H_{a}\right)$, with $\delta(., \theta)$ satisfies the condition (3.10), the limiting distribution (as $n \rightarrow \infty$) of statistic $\widehat{W}_{n, \varphi}^{2}$ coincides (see, e.g., [2]) with the distribution of r.v:

$$
\begin{align*}
\widehat{W}_{(\delta, \varphi)}^{2} & =\int_{0}^{1} \varphi(t)[B(t, \theta)+\delta(t, \theta)]^{2} d t \\
11) & =\int_{0}^{1} \varphi(t) B^{2}(t, \theta)+2 \int_{0}^{1} \delta(t, \theta) \varphi(t) B(t, \theta) d t+\int_{0}^{1} \delta(t, \theta) \varphi^{2}(t) . \tag{3.11}
\end{align*}
$$

For a fixed parameter θ and a level of significance $\alpha \in(0,1)$, there is a threshold of confidence $t_{\alpha}:=t_{\alpha}(\theta)$ satisfying the identity

$$
\begin{equation*}
\mathbb{P}\left(\int_{0}^{1} \varphi(t) B^{2}(t, \theta) d t \geq t_{\alpha}\right)=\alpha . \tag{3.12}
\end{equation*}
$$

(see, e.g., [5] for a tabulation of numerical values of t_{α} for the particular cases $\varphi(t)=t^{2 \beta}, \beta>-1$, and, $\left.\alpha=0.1,0.05,0.01,0.005,0.001\right)$.

In the case above, the asymptotic power of the test of fit based upon $\widehat{W}_{n, \varphi}^{2}$, under the sequence of local alternatives specified by $\left(H_{a}\right)$, is specified by

$$
\begin{equation*}
\mathbb{P}\left(\widehat{W}_{(\delta, \varphi)}^{2} \geq t_{\alpha}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\widehat{W}_{n, \varphi}^{2} \geq t_{\alpha} \mid H_{a}\right) . \tag{3.13}
\end{equation*}
$$

Recalling the definitions (1.1) of $\varphi,(3.9)$ of $K_{\varphi}(.,$.$) and, (3.12) of t_{\alpha}$, we set

$$
\begin{align*}
& g(t, \theta):=\sqrt{\varphi(t)} \delta(t, \theta), \\
& A:=\int_{0}^{1} K_{\varphi}^{2}(s, s) d s, \tag{3.14}\\
& C:=\int_{0}^{1} \int_{0}^{1}\left[\int_{0}^{1} g(\quad u, \theta) K_{\varphi}(s, u) d u \int_{0}^{1} K_{\varphi}(t, t) d t-\int_{0}^{1} \varphi(t) \delta^{2}(t, \theta) d t\right. \\
& 2 \\
& 1\left.g(s, \theta) K_{\varphi}(s, t) d s\right]^{2} d t \tag{3.15}\\
&(3.15)\left.D^{2}:=\int_{0}^{1} \int_{0}^{1} g(s, v) d v\right]^{2} K_{\varphi}(s, t) d s d t, \\
&=K_{\varphi}(s, t) g(t, \theta) d s d t .
\end{align*}
$$

Let ϕ (resp. Φ) be the probability density (resp. distribution) function of the standard normal $\mathcal{N}(0,1)$ distribution. Namely,

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \text { and } \Phi(x)=\int_{-\infty}^{x} f(u) d u .
$$

Then, for calculating the power function defined in (3.13), we have the following theorem. Recall the definitions (3.14)-(3.15) of x, A, B, C and, D.

Theorem 3.1. Under the assumptions above, we have

$$
\begin{gathered}
1-\mathbb{P}\left(\widehat{W}_{(\delta, \varphi)}^{2} \geq t_{\alpha}\right) \\
=\Phi\left(\frac{x}{D}\right)+\left\{\frac{A}{2 D^{2}} H_{1}\left(\frac{x}{D}\right)+\frac{B}{2 D^{\frac{3}{2}}} H_{2}\left(\frac{x}{D}\right)+\frac{C}{4 D^{4}} H_{3}\left(\frac{x}{D}\right)+\frac{B^{2}}{8 D^{6}} H_{5}\left(\frac{x}{D}\right)\right\} \phi\left(\frac{x}{D}\right)+\varepsilon(x) .
\end{gathered}
$$

Here $H_{j}($.$) are Hermite polynomial and, \varepsilon_{k}($.$) is a remainder term fulfilling$

$$
\begin{equation*}
\sup _{y}|\varepsilon(y)| \leq \frac{C_{1}}{\left(D^{2}-\frac{B}{\lambda_{1}}\right)^{\frac{3}{2}}}, \tag{3.16}
\end{equation*}
$$

where C_{1} is a constant and, λ_{1} is the first eigenvalue of the Fredholm transformation $h \rightarrow \int_{0}^{1} K_{\varphi}(s,) h.(s) d s$.
Remark 1.

The following particular cases are of interest. If, we replace $g(., \theta)$ by $\gamma g(., \theta)$ in the alternatives of (3.10) (for some real parameter $\gamma>0$), we obtain that

$$
\begin{equation*}
\sup _{y}|\varepsilon(y)|=o\left(\gamma^{-\frac{3}{2}}\right) \quad \text { as } \quad \gamma \rightarrow \infty . \tag{3.17}
\end{equation*}
$$

Proof. The proof of this theorem resembles that which was published (in the case non-parametric) in another article (see, e.g.,[1]).

4. Numerical example

As an illustration, we will consider approximate calculation of the power of $\widehat{W}_{n, \varphi}^{2}$ test for verifying the hypothesis of normal distribution.
Here, we consider $\mathcal{F}=\left\{\Phi\left(\frac{-\mu}{\sigma}\right):(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_{+}^{*}\right\}, \theta=(\mu, \sigma), \widehat{\theta}=\left(\bar{X}, S^{2}\right)$ and,

$$
H_{0}: F(y)=G(y, \theta):=\Phi\left(\frac{y-\mu}{\sigma}\right) .
$$

We chose as an alternative,

$$
\left(H_{a}\right): F(y)=F^{(n)}(y, \theta):=\Phi\left(\frac{y-\mu}{\sigma}\right)+\gamma \frac{R\left(\frac{y-\mu}{\sigma}\right)}{\sqrt{n}}+O\left(\frac{1}{n}\right),
$$

where $R(x)=\frac{1}{4 \sqrt{2 \pi}}\left(3 x-x^{3}\right) e^{-\frac{x^{2}}{2}}$ and, γ is a real parameter positive.
Setting $t=\Phi\left(\frac{y-\mu}{\sigma}\right)$ and, $\delta(t) \triangleq R\left(\Phi^{-1}(t)\right)$, we obtain

$$
\begin{gathered}
K_{\varphi}(s, t)=\sqrt{\varphi(s) \varphi(t)} \widehat{K}_{\theta}(s, t) \\
=\sqrt{\varphi(s) \varphi(t)}\left\{\min (s, t)-s t-\left(1+\frac{1}{2} \Phi^{-1}(s) \Phi^{-1}(t)\right) \phi\left(\Phi^{-1}(s)\right) \phi\left(\Phi^{-1}(t)\right)\right\} .
\end{gathered}
$$

According to the preceding theorem, the asymptotic power of the test of fit based upon $W_{n, \varphi}^{2}$, under the sequence of local alternatives specified by $\left(H_{a}\right)$ in the case above, is calculated for various γ and α. The accompanying table gives values of the power $\beta_{\gamma}=\mathbb{P}\left(\widehat{W}_{(\delta, \varphi)}^{2}>t_{\alpha}\right)$ for $\varphi \equiv 1$.

$\alpha=0.01$	γ	β_{γ}	$\alpha=0.001$	γ	β_{γ}
	3	0.2		3	0.085
	4	0.53		4	0.21
	5	0.851		5	0.532
	6	0.98		6	0.847

Table. Approximate power for the test goodness of fit
The second column gives various values of the parameter γ. The third as well as last the columns give power values for β_{γ}. They are compared with the exact values obtained by Martynov [8].

References

[1] Boukili Makhoukhi.M. (2008) An approximation for the power function of a non-parametric test of fit. Statistics and Probability Letters, Vol.78, Issue 8, pp. 1034-1042
[2] Chibisov, D.M. (1965) On the investigation of the asymptotic power of match criteria in the case of close alternatives. Theory of Probability and its Applications, translation by SIAM, Vol. 10, no.3, pp. 460-478.
[3] Csörgö, M., Csörgö, S., Horvath, L and Mason, D.M. (1986) Weighted empirical and quantile process. Ann. Probab, Vol. 14, pp. 31-85.
[4] David, F.N. and Johnson, N.L. (1948) The probability integral transformation when parameters are estimated from the sample. Biometrika 35, 182-190.
[5] Deheuvels, P. and Martynov, G. (2003) High Dimensional Probability III. Progress in probability, Vol. 55, 57-93.
[6] Durbin, J. (1973) Weak convergence of the sample distribution function when parameters are estimated. Ann. Stat, vol. 1, 279-290.
[7] Del Barrio, E. (2005) Empirical and quantile processes in the asymptotic theory of goodness of fit tests. Bernoulli., Vol. 11, no.1, pp. 131-189.
[8] Martynov, G. V. (1976) Program for calculating distribution functions of quadratic forms: in numerical statistics (Algorithms and Programs). In Russian, Izd-vo MGU, Moscow.
[9] Martynov, G. V. (1976) Calculation of the limit distributions of statistics for tests of normality of w^{2}-type. Teor. Verojatnost. i Primenen., 21(1) pp 3-15.
[10] Shorack, G. R. and Wellner, J. A. (1986) Empirical Process With Applications to Statistics. Wiley, New York.
[11] Sukhatme, S. (1972) Fredholm determinant of a positive definite kernel of a special type and its applications. Ann. Math. Statist. 43, 1914-1926.

[^1]
[^0]: 2000 Mathematics Subject Classification. Primary 62G10, 62F03: Secondary 60J65.
 Key words and phrases. Cramér-von Mises tests; Tests of goodness of fit; weak laws; empirical processes; Karhunen-Loève expansions; Gaussian processes; Brownian bridge; Bessel functions.

[^1]: L.S.T.A, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France

 E-mail address: boukili@ccr.jussieu.fr

