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Abstract. In this paper, we obtain asymptotic confidence bands for both the density and regression functions in the
framework of nonparametric estimation. Beforehand, the asymptotic behaviors in probability of the kernel estimator
of the density and the Nadaraya-Watson estimator of the regression function are described while local and global
optimal smoothing parameters are investigated. A simulation study is conducted, showing the good performance of
the confidence bands obtained for small sample.

Résumé. Dans cet article, nous obtenons les bandes de confiance asymptotiques pour la densité et la fonction de
régression dans le cadre de l’estimation non paramétrique. L’étude a porté également sur le comportement asymptotique
en probabilité de l’estimateur à noyau de la densité et de l’estimateur de Nadaraya-Watson de la fonction de régression,
ainsi que le paramètre de lissage optimal, local et global. Une étude par simulation est menée pour montrer la bonne
performance des bandes de confiance obtenues pour une petite taille d’échantillon.

Key words: Confidence bounds; Density estimation; Kernel estimation; Nonparametric estimation; Regression esti-
mation.
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1. Introduction

Let (X1, Y1), (X2, Y2), . . . , be independent and identically distributed random replicates of the random vector (X,Y ) ∈
R2. Let us assume that the marginal distributions of X and Y are normal with unknown means µX , µY and standard
deviations σX > 0, σY > 0 respectively, with an unknown linear correlation coefficient ρ. In the sequel, the following
notations and assumptions will be adopted.
I = [a, b] and J = [a′, b′] denote two fixed intervals of R such that −∞ < a′ < a < b < b′ < ∞. |I| denotes the
Lebesgue measure of I.
K is a real kernel weight function satisfying the folllowing conditions:

K.1 For every x ∈ R, K(x) = K(−x);

K.2
∫
RK(t)dt = 1;

K.3 [t2K] =
∫
R t

2K(t)dt <∞;

K.4 [K2] =
∫
RK

2(t)dt <∞;

K.5 K(u) = 0 for u /∈ [−α
2 ,

α
2 ), where α ∈]0,∞[.

For every u ∈ R, set logθ,K(u) = log(θ ∨ u{
∫
K2(t)dt}), where A ∨B = max(A,B) and θ > 1 is a specified constant.
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The regression function and the conditional variance of Y given X = x are defined for x ∈ J , by

r(x) = E(Y |X = x) =

∫
R
y
fX,Y (x, y)

fX(x)
dx = µY + ϱ

σX
σY

(x− µX)

and

v2(x) = V ar(Y |X = x) =

∫
R
[y − E(Y |X = x)]2

fX,Y (x, y)

fX(x)
dy = (1− ρ2)σ2

Y ,

where fX,Y (x, y) is the joint density of (X,Y ) and fX(x) is the marginal density of the random variable X.

Let (hn)n≥1 be a sequence of real numbers such that hn → 0 as n → ∞ . Following Rosenblatt [15], Parzen [13],
Nadaraya [11] and Watson [21], the kernel estimators of the functions fX(x), r(x) and v2(x) are defined by

fX,n(x;hn) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
,

rn(x;hn) =



n∑
i=1

YiK
(
x−Xi

hn

)
n∑
i=1

K
(
x−Xi

hn

) if
n∑
i=1

K

(
x−Xi

hn

)
̸= 0,

1

n

n∑
i=1

Yi if
n∑
i=1

K

(
x−Xi

hn

)
= 0

and

v2n(x;hn) =



n∑
i=1

[Yi − rn(x;hn)]
2
K
(
x−Xi

hn

)
n∑
i=1

K
(
x−Xi

hn

) if
n∑
i=1

K

(
x−Xi

hn

)
̸= 0,

1

n

n∑
i=1

Yi − 1

n

n∑
j=1

Yj

2

if
n∑
i=1

K

(
x−Xi

hn

)
= 0 ,

respectively.

Introduce now the following centering factors

EfX,n(x;hn) =
1

hn
E

[
K

(
x−X

hn

)]

Êrn(x;hn) =


E
[
Y K

(
X−x
hn

)]
E
[
K
(
X−x
h

)] if E

[
K

(
X − x

hn

)]
̸= 0,

E(Y ) if E

[
K

(
x−X

hn

)]
= 0,

which are needed hereafter in our study.

We have
lim
n→∞

{
E[fX,n(x;hn)]− fX(x)

}
= 0.

According to Deheuvels and Mason [3], the conditions hn → 0 and nhn → ∞ are necessary and sufficient to ensure,
that for each x ∈ I, we have

Ê[rn(x;hn)]− E[rn(x;hn)] = O

(
1

nhn

)
, as n→ ∞.

From the seminal works by Rosenblatt [15], Parzen [13], Nadaraya [11] and Watson [21], nonparametric function
estimation has been widely investigated. Theoretical aspects and properties have been described and numerical imple-
mentations have been performed. For an overview on the question, we refer to Prakasa Rao [14], Devroye and Györfi
[5], Wand and Jones [20], Bosq and Lecoutre [2], Silverman [18], Nadaraya [12], Scott [17] and the references therein.
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The behavior of nonparametric estimators depends strongly upon the smoothing parameter. Several procedures have
been proposed describing how to choose this parameter. We quote the cross-validation and the plug-in methods
related essentially to the mean square error criterion. Asymptotic properties of estimators need also conditions upon
the smoothing parameter. The minimal conditions to set are hn → 0 and nhn → ∞ as n → ∞. It is well known that
these conditions are necessary and sufficient for the pointwise weak consistency of the kernel estimator of fX and the
Nadaraya-Watson estimator of the regression function r. Moreover, these conditions allow to state a rate of uniform

convergence of Ê
(
rn(x;hn)

)
towards r(x), i.e. we have{

Ê
(
rn(x;hn)

)
− r(x)

}
→ 0, as n→ ∞.

Deheuvels and Mason [3] obtained the rate of uniform convergence in probability for the kernel density estimator.
Their result is stated in the following terms. If

hn → 0 and
nhn
log n

→ ∞, as n→ ∞,

then √√√√ nhn

2 log
(

1
hn

) sup
x∈I

∣∣∣∣∣fX,n(x;hn)− E [fX,n(x;hn)]√
2[K2]2fX(x)

∣∣∣∣∣ P−→ 1 asn→ ∞,

where I is a compact interval in R. Deheuvels and Mason [3] have also obtained the optimal rate of convergence in
probability for the estimate rn(x;hn)of the regression function r. These results allow them to construct asymptotic
confidence bands for the functions fX and r.

Consider now the problem related to the optimal choices hn(x) and hn of the smoothing parameter with respect to the
mean square error and the integrated mean square error criteria respectively. Our aim is to construct the estimates
ĥn(x) and ĥn of the optimal parameter for these criteria in terms of the empirical estimators µ̂X , µ̂Y , σ̂X , σ̂Y and ρ̂,
such that

ĥn(x)

hn(x)

P−→ 1 and
ĥn
hn

P−→ 1 as n→ ∞.

Confidence bounds for fX(x) and r(x) in terms of fX,n(x; ĥn(x)) and rn(x; ĥn(x)) respectively are then deduced. The
interest for our particular case is that we use the bandwidth explicitly in these asymptotic confidence bands.

The remainder of the paper is organized as follows. In section 2, we present the results. A Monte Carlo study is
conducted in Section 3. Section 4 is devoted to the proofs.

2. Results

2.1. Mean square error of fX,n(x;hn)

In this section, we give the optimal choices hn of the smoothing parameter in the expression of the kernel estimators
of the functions fX(x) and r(x) with respect to the mean square error and the integrated mean square error. Having
replaced the unknown parameters µX and σX by their empirical estimators µ̂X and σ̂X respectively, we also give the
asymptotic behaviors of the estimates of the functions fX and r.

According to Wand and Jones [20], the mean square error of fX,n(x;hn) is given by

E[fX,n(x;hn)− fX(x)]2 = VarfX,n(x;hn) + [E(fX,n(x;hn))− fX(x)]2.

This quantity is minimized with respect to hn, by

Hn,1(x) = n−1/5

(
fX(x) [K2]

(f ′′X(x) [t2K])2

)1/5

= n−1/5σX


√
2π [K2] exp 1

2

(
x−µX

σX

)2
[t2K]2

[(
x−µX

σX

)2
− 1

]2


1/5

.
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As µX and σX are unknown parameters, we replace them by their empirical estimators

µ̂X =
1

n

n∑
i=1

Xi

and

σ̂2
X =

1

n

n∑
i=1

(Xi − µ̂X)
2
,

respectively.

Therefore, we obtain

Ĥn,1(x) = n−1/5σ̂X

√
2π [K2] exp 1

2 (
x−µ̂X

σ̂X
)2

[t2K]2
[
(x−µ̂X

σ̂X
)2 − 1

]2


1/5

(1)

as an estimator of Hn,1(x).

Set now,

Θ1(x) =

√
σX
[K2]

√(2π)3 [K2]1/2 exp 3
2 (
x−µX

σX
)2

[t2K]
∣∣∣ (x−µX

σX

)2
− 1
∣∣∣


1/5

(2)

and

Θn,1(x) =

√
σ̂X
[K2]

(√
(2π)3 [K2]1/2 exp 3

2 (
x−µ̂X

σ̂X
)2

[t2K]
∣∣(x−µ̂X

σ̂X
)2 − 1

∣∣
)1/5

(3)

an estimator of Θ1(x).

Following Deheuvels and Mason [3], one can see that

ĥn,1(x) = Ĥn,1(x)/σ̂X , hn,1(x) = Hn,1(x)/σX

and Θn,1(x) satisfy the following statements.

(B.1) For any ε > 0,

P
(
inf
x∈I

hn,1(x)− εn−1/5 ≤ inf
x∈I

ĥn,1(x) ≤ sup
x∈I

ĥn,1(x) ≤ sup
x∈I

hn,1(x) + εn−1/5
)

P−→ 1,

as n→ ∞.

(B.2) For any ε > 0,

P

(
sup
x∈I

∣∣∣∣∣ ĥn,1(x)hn
− hn,1(x)

hn

∣∣∣∣∣ ≥ ε

)
→ 0, as n→ ∞ .

(Θ.1) For any ε > 0,

P
(
sup
x∈I

∣∣∣Θn,1(x)
Θ1(x)

− 1
∣∣∣ > ε

)
→ 0, as n→ ∞ .

2.2. Integrated mean square error of fX,n(x;hn)

Wand and Jones [20] stated that the integrated mean square error relative to fX,n(x;hn) is given by∫
R
E[fX,n(x;hn)− fX(x)]2 dx =

1

n
[t2K] +

∫
R

[
f ′′X(x)[t2K]

]2
dx + o(h2n).

The minimum of this quantity, with respect to hn, is

hn,2 = n−1/5

 [K2]

[t2K]2
∫
R

[
f ′′X(x)

]2
dx


1/5

= n−1/5 σX

(
8
√
π [K2]

3 [t2K]2

)1/5

.
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As the parameter σX is unknown, we replace it by the empirical estimator σ̂X , to obtain

ĥn,2 = n−1/5 σ̂X

(
8
√
π [K2]

3[t2K]2

)1/5

. (4)

Set

Θn,2(x) =

{
[K2]√
2π σ̂X

exp−1

2

(x− µ̂X
σ̂X

)2}−1/2

, (5)

an estimator of the following quantity

Θ2(x) =

{
[K2]√
2π σX

exp−1

2

(x− µX
σX

)2}−1/2

.

As in Deheuvels and Mason [3], one can see that ĥn,2 satisfies the statement

P
(
hn,2 − εn−1/5 < ĥn,2 < hn,2 + εn−1/5

)
−→ 1, as n→ ∞, ∀ε > 0.

Moreover, we have

P
(
sup
x∈I

∣∣∣Θn,2(x)
Θ2(x)

− 1
∣∣∣ > ε

)
−→ 0, as n→ ∞, ∀ε > 0.

2.3. Mean square error of rn(x;hn)

In a similar way, according to Wand and Jones [20], the value of hn,3 that minimizes the mean square error of rn(x;hn)
given by

E[rn(x;hn)− r(x)]2 = Var[rn(x;hn)] + [E(rn(x;hn))− r(x)]
2

is

Hn,3(x) = n−1/5

 v(x)
fX(x) [K

2][
r′′(x) + 2r′(x)

f ′
X(x)

fX(x) [t
2K]

]2


1/5

= n−1/5 σX

(√
2π[K2](1− ρ2)σ2

X exp 1
2 (
x−µX

σX
)2

4[t2K]2ρ2x2

)1/5

.

As σX , µX and ρ are unknown parameters, we replace them by their empirical estimators, i.e. σ̂X , µ̂X and

ρ̂ =
1
nΣ

n
i=1(Xi − µ̂X)(Yi − µ̂Y )

σ̂X σ̂Y
.

Therefore, Hn,3(x) is estimated by

Ĥn,3(x) = n−1/5 σ̂X

(√
2π [K2] (1− ρ̂2) σ̂2

X exp 1
2 (
x−µ̂X

σ̂X
)2

4 [t2K]2 ρ̂2 x2

)1/5

. (6)

Set now

Θn,3(x) =

(
(1− ρ̂2)−2 |ρ̂x|−1 exp−(x−µ̂X

σ̂X
)2

4π σ̂
3/2
X σ̂5

Y [K2]2 [t2K]

)1/5

, (7)

as the estimator of the quantity

Θ3(x) =

(
(1− ρ2)−2|ρx|−1 exp−(x−µX

σX
)2

4π σ
3/2
X σ5

Y [K2]2[t2K]

)1/5

.

Similarly, as above, one may show that

hn,3(x) = Hn,3(x)/σX , ĥn,3(x) = Ĥn,3(x)/σ̂X

and Θn,3(x) satisfy the statements (B.1), (B.2), (Θ.1).

The asymptotic behaviors of the estimates of the functions fX and r are described in the following theorems.
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Theorem 1. Let Ĥn,1(x), Θn,1(x) be the estimates given in the statements (1) and (3) respectively. Then, we have n4/5σ̂X

2 logθ,K

(
|I|

n−1/5σ̂X

)
1/2

sup
x∈I

±Θn,1(x)
[
fX,n

(
x, Ĥn,1(x)

)
− fX(x)

]
P−→ 1,

as n→ ∞.

Remark 1. Note from Theorem 1 that, for any 0 < ε < 1, as n→ ∞, we have for any x ∈ I,

lim
n→∞

P
(
fX(x) ∈

[
fX,n(x, Ĥn,1(x))− (1 + ε)∆n,1(x), fX,n(x, Ĥn,1(x)) + (1 + ε)∆n,1(x)

])
= 1

and

lim
n→∞

P
(
fX(x) ∈

[
fX,n(x, Ĥn,1(x))− (1− ε)∆n,1(x), fX,n(x, Ĥn,1(x)) + (1− ε)∆n,1(x)

])
= 0,

where

∆n,1(x) =
1

Θn,1(x)

2 logθ,K

(
|I|

n−1/5σ̂X

)
n4/5 σ̂X

1/2

.

Therefore, the interval [
fX,n(x, Ĥn,1(x))−∆n,1(x), fX,n(x, Ĥn,1(x)) + ∆n,1(x)

]
stands as an asymptotic confidence domain for fX(x).

Theorem 2. Let ĥn,2 and Θn,2(x) be the estimates given in the statements (4) and (5) respectively. Then, we have nĥn,2

2 logθ,K

(
|I|

n−1/5σ̂X

)
1/2

sup
x∈I

±Θn,2(x)
[
fX,n(x, ĥn,2)− fX(x)

]
P−→ 1,

as n→ ∞.

Theorem 3. Let Ĥn,3(x), Θn,3(x) be the estimates given in the statements (6) and (7) respectively. Then, we have n4/5σ̂X

2 logθ,K

(
|I|

n−1/5σ̂X

)
1/2

sup
x∈I

±Θn,3(x)
[
rn(x, Ĥn,3(x)− r(x)

]
P−→ 1

as n→ ∞.

Remark 2. Note from Theorem 3 that, for any 0 < ε < 1, we have for any x ∈ I,

lim
n→∞

P
(
r(x) ∈

[
rn(x; Ĥn,3(x))− (1 + ε)∆n,2(x), rn(x; Ĥn,3(x)) + (1 + ε)∆n,2(x)

])
= 1

and

lim
n→∞

P
(
r(x) ∈

[
rn(x; Ĥn,3(x))− (1− ε)∆n,2(x), rn(x; Ĥn,3(x)) + (1− ε)∆n,2(x)

])
= 0,

where

∆n,3(x) =
1

Θn,3(x)

2 logθ,K

(
|I|

n−1/5σ̂X

)
n4/5σ̂X

1/2

.

Therefore, we obtain for any x ∈ I, the following asymptotic confidence bounds for the regression function[
rn(x; Ĥn,3(x))−∆n,2(x), rn(x; Ĥn,3(x)) + ∆n,2(x)

]
.
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3. Monte Carlo Study

In order to investigate the small sample properties of the confidence bands for the density fX(x) and regression
function r(x), some simulation studies are conducted. We conduct a Monte Carlo study for sample sizes n = 10,
n = 50, n = 100 and n = 800. We consider the model Y = X + Z, with X and Z normally distributed N (0, 1) and
N (0, 2) respectively. We choose hn = n(−1/5), K(x) = 1[(−1/2),(1/2)].

Figure 1 and Figure 2 show the estimators of the density function fX and the regression function respectively, with
the confidence bands.

Examination of Figure 1 and Figure 2 reveal that, when the sample size n increases, the confidence bands become
smaller with the density, the regression and their estimators are always in bounds. It appears that the confidence
bands have a good performance even for small sample size.

−2 0 2
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0.5

1

1.5

2
n=10

−2 0 2

0

0.5
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0.5
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1.5

2
n=100

−2 0 2

0
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f
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−4

−2

0

2

4
n=10

−1 −0.5 0 0.5 1
−4

−2

0

2

4
n=50

−1 −0.5 0 0.5 1
−4

−2

0

2

4
n=100

−1 −0.5 0 0.5 1
−4

−2

0

2

4
n=800

Estimator of r
Lower bound
Upper bound
r

Figure 1. Confidence bands of the density function. Figure 2. Confidence bands of the regression function

4. Proofs of results

4.1. Proof of Theorem 1

Taking hn = n−1/5, it follows that the conditions (B.1), (B.2) and (Θ1) are satisfied, Theorem 1.2 of Deheuvels and
Mason implies
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 nhn

2 logθ,K

(
|I|
hn

)
1/2

sup
x∈I

±Θn,1(x)
[
EfX,n

(
x, ĥn,1(x)

)
− fX,n

(
x, ĥn,1(x)

)]
P−→
{
sup
x∈I

Θ2
1(x)fX(x)

C1(x)
[K2]

}1/2

,

as n→ ∞, where

C1(x) =

{√
2π[K2] exp 1

2 (
x−µX

σX
)2

[t2K]2
[
(x−µX

σX
)2 − 1

]2
}1/5

. (8)

Taking into account the expressions Θ1(x) and C1(x) given by (2) and (8) respectively, we obtain nhn

2 logθ,K

(
|I|
hn

)
1/2

sup
x∈I

±Θn,1(x)
[
EfX,n(x, ĥn,1(x))− fX,n(x, ĥn,1(x))

]
P−→ 1, (9)

as n→ ∞.

Now, with this choice of the parameter hn, we have (see Nadaraya (1989)) nhn

2 logθ,K

(
|I|
hn

)
1/2

sup
x∈I

±Θn,1(x)
[
EfX,n(x, hn)− fX(x)

]
P−→ 0,

as n→ ∞.

Let ~n = σ̂Xhn, we have
~n
hn

P−→σX .

According to Section 2 of Deheuvels and Mason [3] and works of Einmahl and Mason [8], the locally adapted bandwith
defined by

Ĥn,1(x) = ~nC1(x) = σ̂X ĥn,1(x)

fulfills, via (9)  n4/5σ̂X

2 logθ,K

(
|I|

n−1/5σ̂X

)
1/2

sup
x∈I

±Θn,1(x)
[
fX,n(x, Ĥn,1(x))− fX(x)

]
P−→ 1

as n→ ∞.

4.2. Proof of Theorem 2

This proof is based on Corollary 2.1 of Deheuvels and Mason [3], then nĥn,2

2 logθ,K( |I|
ĥn,2

)

1/2

sup
x∈I

±Θn,2(x)
[
fX,n(x, ĥn,2)− fX(x)

]
P−→
{
sup
x∈I

±Θ2(x)fX(x)

∫
R
K2(t)dt

} 1
2

i.e.  nĥn,2

2 logθ,K

(
|I|
ĥn,2

)
1/2

sup
x∈I

Θn,2(x)
[
fX,n(x, ĥn,2)− fX(x)

]
P−→ 1,

as n→ ∞.
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4.3. Proof of Theorem 3

According to the Theorem 1.2 and to Section 2 of Deheuvels and Mason [3] and using the works of Einmahl and
Mason [8], the proof of this theorem is the same as the proof of Theorem 1.
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