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Abstract. We consider the problem of estimating the quadratic loss ||δ−θ||2 of an estimator
δ of the location parameter θ = (θ1, . . . , θp) when a subset of the components of θ are
restricted to be nonnegative. First, we assume that the random observation X is a Gaussian
vector and, secondly, we suppose that the random observation has the form (X,U) and has a
spherically symmetric distribution around a vector of the form (θ, 0) with dimX = dim θ = p
and dimU = dim 0 = k. For these two settings, we consider two location estimators, the least
square estimator and a shrinkage estimators, and we compare theirs unbiased loss estimators
with improved loss estimator.

Résumé. On considère le problème de l’estimation du coût quadratique ||δ − θ||2 d’un
estimateur δ de la moyenne θ = (θ1, . . . , θp) d’une loi à symétrie sphérique lorsque l’on sait
que certaines composantes θi de celle-ci sont positives ou nulles. En premier lieu, lorsque
X est un vecteur gaussien, on s’intéresse à l’amélioration de l’estimateur sans biais λ0 de
||δ − θ||2 par des estimateurs de la forme λ0(X) + h(X) en fournissant des conditions sur
la fonction h. On étend ensuite cette problématique à un modèle distributionnel où l’on
dispose d’un vecteur résiduel U : la loi de (X,U) est supposée à symétrie sphérique autour
du couple (θ, 0) et l’on considère des estimateurs de coût de la forme λ0(X) + ||U ||4h(X).
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1. Introduction

In this paper we are interested by the estimation of the loss incurred when using the least
square estimator and an improved estimator of the location parameter of a spherically sym-
metric distribution, when a subset of the components of this parameter are restricted to
some constraints. The assumption on our model is that the random observation has the
form (X,U) and has a spherically symmetric distribution around a vector of the form (θ, 0)
with dimX = dim θ = p and dimU = dim 0 = k. In that model, the p-dimensional part of
the location, say θ, is unknown and the k-dimensional part of the observation is the residual
vector. First we construct, for unbiased estimator of the loss, a dominating shrinkage-type
estimator, in terms of squared-error loss. These results complement these of James-Stein-
type estimation of a location parameter. An important feature of our results is that the
proposed loss estimators dominate the unbiased estimator for the entire class of spherically
symmetric distributions under constraints. That is, the domination results are robust with
respect to the spherical symmetry distribution under constraints.

Notice that the problem of estimating the loss (without any constraint on the scale param-
eter) was first considered by Lehmann and Scheffé (1993), who estimated the power of a
statistical test. Recently, Johnstone (1988), Lele (1993) and Fourdrinierand Wells (1995)
have discussed this problem in a variety of situations.

In this paper, we remain in the contexte of spherically symmetric distribution where a
residual vector U is available. The type of constraints we consider are that all or only a
subset of the θi are restricted to be nonnegative. Recall tat Fourdrinierand Wells (1995),
Ouassou and Rachdi (2011) have studied this problem but without any constraint on θ and
they give an estimators class of the form λ0 − c||U ||4/||X||2 which dominate the unbiased
quadratic loss estimator λ0(X) = p||U ||2/k of the minimax estimator X.

Suppose we wish to estimate θ, by a decision rule δ(X,U) using the sum of squared-error
loss ||δ(X,U) − θ||2. This loss is unobservable since it depends on θ; hence one may wish
to estimate it by λ(X,U) from the data. To study how well λ estimates the loss, a further
distance measure is needed; for mathematical convenience, we use squared error to evaluate
λ(X). Thus the risk incurred by this latter λ is:

R(λ, δ, θ) = Eθ

[(
λ(X,U)− ||δ(X,U)− θ||2

)2]
.

We say that a loss estimator λ1 dominates λ2 if R(λ1, θ, δ) < R(λ2, θ, δ).

In section 2, we study the quadratic loss estimator of an estimator of the scale parameter
θ = (θ1, . . . , θp) when some of its components θi are nonnegative. First, when the random
vector X is normally distributed with mean θ and of covariance matrix the identity Ip. In
this setting, the random vectors X and U are independent then the situation becomes the
same as when just the vector X is available, so here, we do not consider the residual vector
U .

So in the first step, we study the quadratic loss estimation ||δ0(X) − θ||2 of the maximum
likelihood estimator δ0(X) = (δ01(X), . . . , δ0p(X)) where, for all i ( 1 ≤ i ≤ p),

δ0i(X) =

{
max(0, Xi) for i = 1, . . . , s
Xi for i = s+ 1, . . . , p
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We get the unbiased estimator λ0(X) of its quadratic loss, which we then we improve by
giving some domination conditions for the estimators of the form λ0(X) + h(X).

Afterward, we consider a more general class of estimators of θ of the form δg(X) = δ0(X) +
g(X). In this case, we give an unbiased estimator λ0g(X) of the quadratic loss ||δg(X)− θ||2
of the estimator δg(X) and we establish the conditions for which λ0g(X) is dominated by an

estimator of the form λhg (X) = λ0g(X) + h(X).

Finally, still for the spherically symmetric distribution context where a residual vector U
is available, we estimate the quadratic loss ||δg(X,U) − θ||2 of any estimator of the form
δg(X,U) = δ0(X) + ||UU ||2g(X) of the scale parameter θ, by giving an unbiased estimator
λ0g(X) of this quadratic loss and conditions for which λ0g(X) is dominated by a more general

estimator of the form λhg (X) = λ0g(X) + ||U ||4h(X).

2. The Gaussian model framework

Assume that a p-dimensional random vector X = (X1, . . . , Xp) is observed which is normally
distributed with mean vector θ = (θ1, . . . , θp) such that it has s nonnegative components and
covariance identity matrix Ip. Without loss of generality, we assume that θ1 ≥ 0, . . . , θs ≥ 0
for s ≤ p.

2.1. Quadratic loss estimation of the maximum likelihood estimator

In this case, the maximum likelihood estimator is δ0(X) = (δ01(X), . . . , δ0p(X)) where

δ0i(X) =


{

0 if Xi < 0
Xi if Xi ≥ 0

for i = 1, . . . , s

Xi for i = s+ 1, . . . , p

Il is convenientl to write it on the form: δ0(X) = X+γ(X) where γ(X) = (γ1(X), . . . , γp(X))
with

γi(X) =


{
−Xi if Xi < 0
0 if Xi ≥ 0

for i = 1, . . . , s

0 for i = s+ 1, . . . , p.

An unbiased estimator of the quadratic loss ||δ0(X) − θ||2 of the usual estimator δ0(X) is
given by:

λ0(X) = p+

s∑
i=1

(X2
i − 2)1[Xi<0]. (1)

where 1A denotes the indicator function on the set A. In fact, the risk of δ0(X) in θ may be
written as follows:

Eθ
[
||δ0(X)− θ||2

]
= Eθ

[
||X − θ + γ(X)||2

]
= Eθ

[
||X − θ||2

]
+ Eθ

[
||γ(X)||2

]
+ 2Eθ

[
(X − θ)tγ(X)

]
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This decomposition is valid since Eθ
[
||X − θ||2

]
= p < +∞ (which is the risk of X) and

that:

Eθ
[
||γ(X)||2

]
= E

[
s∑
i=1

X2
i 1[Xi<0]

]
≤ Eθ

[
||X||2

]
< +∞

Then, the Schwartz inequality provides that Eθ [(X − θ)tγ(X)] exist.
As the function γ is weakly differentiable, then the Lemma 5 allows to voice this expectation:

Eθ
[
(X − θ)tγ(X)

]
= Eθ [div γ(X)] = −E

[
s∑
i=1

1[Xi<0]

]
by some simple calculation of the divergence of γ(X).
Finally the risk of δ0(X) is finite and may be written such that:

p+ Eθ

[
s∑
i=1

(X2
i − 2)1[Xi<0]

]
.

An alternative class of estimators which improve λ0(X) are of the form:

λh(X) = λ0(X)− h(X).

where h is some function defined from Rp into R. The difference in risk between λh(X)
and λ0(X) is given by Lemma 1 below. In Lemma 1, as in all what follows, the weakly
differentiability of the function h is assumed because it is a natural hypothesis as in Stein
Lemma (cf. Stein; 1981 and Johnstone; 1988). This assumption permits also to give some
examples for which the differentiability is not valid.

Lemma 1. For every weakly differentiable function h : R → Rp and for every θ ∈ Rp, the
difference in risks of λh(X) and λ0(X) is equal to:

R
(
λh, δ0, θ

)
−R

(
λ0, δ0, θ

)
(2)

= Eθ
[
h2(X) + 4sh(X) + 24 h(X)

]
− 4Eθ

[
h(X)

s∑
i=1

(
1[Xi>0] + (X2

i −Xiθi)1[Xi<0]

)]
provided these expectation exist, where 4 (resp. div) denotes the Laplacian operator (resp.
divergency).

Proof.For a fixed θ ∈ Rp, we have that:

R
(
λh, δ0, θ

)
−R

(
λ0, δ0, θ

)
= Eθ

[
(λ0(X)− h(X)− ||δ0(X)− θ||2)2 − (λ0(X)− ||δ0(X)− θ||2)2

]
= Eθ

[
h2(X)− 2(λ0(X)− ||δ0(X)− θ||2)h(X)

]
.

Since,

λ0(X)− ||δ0(X)− θ||2

= p− s+

s ∑
i=1

I[Xi≥0] +

s ∑
i=1

(X2
i − 1)1[Xi<0] −

s ∑
i=1

(δ0i(X)− θi)2 −
p ∑

i=s+1

(δ0i(X)− θi)2

= (p− 2s) + 2

s∑
i=1

(
1[Xi>0] + (X2

i −Xθi)I[Xi<0]

)
− ||X − θ||2.
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then,

Eθ
[
(λ0(X)− ||δ0(X)− θ||2)h(X)

]
(3)

= (p− 2s)Eθ [h(X)] + 2

s ∑
i=1

Eθ
[(

1[Xi>0] + (X2
i −Xiθi)1[Xi<0]

)
h(X)

]
−Eθ

[
||X − θ||2h(X)

]
.

and, by using the Lemma 6 result on the function h, we get

Eθ
[
||X − θ||2h(X)

]
= pEθ [h(X)] + Eθ [4h(X)] . (4)

Combining the results above, (3) and (4) , the difference in risk equals for every θ

Eθ
[
h2(X) + 4sh(X) + 24 h(X)

]
− 4Eθ

[
h(X)

s∑
i=1

(
1[Xi>0] + (X2

i −Xiθi)1[Xi<0]

)]
.

�
As a first application of the above we have the following result.

Theorem 1. Let h be a two-times weakly differentiable and positive function on Rp. If the
function h satisfy

h2 + 24 h+ 4sh < 0 (5)

then, the estimator λh(X) dominates λ0(X), for θ ∈ Rs+ × Rp−s.

Proof. The Condition (5) is a consequence of the that the second expectation of the equation
(2) is negative. Indeed, we have by hypothesis that, for all i = 1, . . . , s, θi > 0 and therefore
−Xiθi1[Xi<0] ≥ 0 for i = 1, . . . , s. Then we have

s∑
i=1

(1[Xi>0] + (X2
i −Xiθi)1[Xi<0]) ≥ 0

and so

Eθ

[
h(X)

s∑
i=1

(1[Xi>0] + (X2
i −Xiθi)1[Xi<0])

]
≥ 0

since the function h is assumed positive, which is the desired result. �

Remark 1. The case which there is no positivity constraint on the components of the
parameter θRp may be result in the fact that s = 0. Note that in this interpretation, the
inequality (5) coincides with the condition given by Johnstone (1988).
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2.2. Quadratic loss estimation of a general estimator

We consider the estimaton of the loss of a class of shrinkage estimators δ, estimators incurred
when using the maximum likelihood estimator δ0(X) as

δ(X) = δg(X) = δ0(X) + g(X)

where g is weakly differentiable function from Rp to Rp.
As before we first develop an unbiased estimator of the loss function ||δg(X) − θ||2 of the
estimator δg(X). Indeed, by application of Lemma 5 to the function γ + g, we can write

Eθ
[
||δg(X)− θ||2

]
= Eθ

[
||X + γ(X) + g(X)− θ||2

]
= Eθ

[
||X − θ + γ(X) + g(X)||2

]
= Eθ

[
||X − θ||2 + 2(X − θ)(γ(X) + g(X)) + ||γ(X) + g(X)||2

]
= p+ Eθ

[
||γ(X) + g(X)||2 + 2div (γ + g)(X)

]
,

therefore an unbiased estimator of ||δg(X)− θ||2 has the following form

λ0g(X) = p+ ||γ + g||2 + 2div (γ + g).

In the signal of this section we focus to prove the domination of the unbiased estimator λ0
of the quadratic loss by computing estimators λhg of the form

λhg (X) = λ0g(X)− h(X)

for some real function unknown h. Then in Lemma 2 we develop the difference in risk
between λhg (X) and λ0g(X).

Lemma 2. For every twice-weakly differentiable function h : R → Rp and a weakly differ-
entiable function g : Rp → Rp. For every θ ∈ Rp the difference in risk between λhg (X) and
λ0g(X) is given by:

R
(
λhg , δg, θ

)
−R

(
λ0g, δg, θ

)
= Eθ

[
h2(X) + 24 h(X) + 4 〈5h(X), γ(X) + g(X)〉

]
.

Proof. Let θ ∈ Rp. The difference in risk between λhg (X) and λ0g(X) is equal to

R
(
λhg , δg, θ

)
−R

(
λ0g, δg, θ

)
= Eθ

[
(λg(X)− ||δg(X)− θ||2)2 − (λ0g(X)− ||δg(X)− θ||2)2

]
= Eθ

[
(λ0g(X)− h(X)− ||δg(X)− θ||2)2 − (λ0g(X)− ||δg(X)− θ||2)2

]
= Eθ

[
h2(X)

]
− 2Eθ

[
(λ0g(X)− ||δg(X)− θ||2)h(X)

]
.

It is clear, by using Lemma 6 to the function h, that the second expectation in this last
expression can be expressed as follows:

Eθ
[
(λ0g(X)− ||δg(X)− θ||2)h(X)

]
= Eθ

[(
p+ ||γ(X) + g(X)||2 + 2div (γ + g)(X)− ||X + γ(X) + g(X)− θ||2

)
h(X)

]
= Eθ

[(
p+ 2div (γ + g)(X)− 2(X − θ)t(γ + g)(X)− ||X − θ||2

)
h(X)

]
= 2Eθ

[
h(X)divg(X)− div(g · h)(X)− 1

2
4 h(X)

]
+2Eθ

[
(divγ − (X − θ)tγ(X))h(X)

]
.
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Otherwise as

divγ(X)− (X − θ)tγ(X) = −
s∑
i=1

I[Xi<0] +

s∑
i=1

(Xi − θi)Xi1[Xi<0]

= −s+

s∑
i=1

1[Xi≥0] + (X2
i −Xiθi)1[Xi<0].

Then we are now able to give an expression for the difference in risk

Eθ
[
h2(X) + 24 h(X) + 4div(g · h)(X)− 4h(X) · divg(X) + 4sh(X)

−4h(X)

s∑
i=1

1[Xi>0] + (X2
i −Xiθi)1[Xi<0]

]
= Eθ

[
h2(X) + 24 h(X) + 4 〈5h(X), γ(X) + g(X)〉

]
,

which achieves the proof of this Lemma. �

The following theorem gives a condition of domination of the estimator λ0g(X) by λhg (X).

Theorem 2. Let h be a positive function twice-weakly differentiable on Rp and p ≥ 4.
A sufficient condition under which the estimator λhg (X) dominates the unbiased estimator
λ0g(X), for all θ ∈ Rs+ ×Rp−s, is that h satisfies de differential inequality

h2 + 24 h+ 4sh+ 4 〈5h, g〉 ≤ 0.

Proof. Demonstration follows the same lines as that of Theorem 1. �

3. The spherically unimodal framework

We consider the model introduced in section1 where (X,U) is a p+ k random vector having
a symmetrically distribution around de p + k vector (θ, 0) Here dimX = dim θ = p and
dimU = dim 0 = k.

For the constraints on θ, we takes those in paragraph 2 where some components of the mean
θ is assumed positive (i.e. θi ≥ 0 for i = 1, . . . , s with s ≤ p).

We will study the estimation of quadratic loss ||δg(X,U) − θ||2 for any estimator of the
form δg(X,U) = X + γ(X) + ||U ||2g(X) of the mean θ, where g is a function twice-weakly
differentiable on Rp in Rp. General conditions for such an estimator δg(X,U) dominates the
estimator X + γ(X) are given in Fourdrinier et al. (2003), Brandwein and Strawderman
(1991), Brandwein et al. (1991) and Cellier et al. (1989).

The next lemma give an unbiased estimator of the loss ||δg(X,U) − θ||2 of the estimator
δg(X,U).

Lemma 3. For every weakly differentiable function g : Rp → Rp and for all θ ∈ Rp, an
unbiased estimator of the loss function ||δg(X,U) − θ||2 of the estimator δg(X,U) is equal
to

λ0g(X,U) = p
||U ||2

k
+ 2
||U ||2

k
divγ(X) +

2

k + 2
||U ||4divg(X) + ||γ(X) + ||U ||2g(X)||2. (6)
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Proof. let θ ∈ Rp fixed. They can write

Eθ
[
||δg(X,U)− θ||2

]
= Eθ

[
||X + γ(X) + ||U ||2g(X)− θ||2

]
= Eθ

[
||(X − θ + γ(X)) + ||U ||2g(X)||2

]
= Eθ

[
||X − θ + γ(X)||2 + 2(X − θ + ||U ||2γ(X)).g(X) + ||U ||4||g(X)||2

]
.

Frome the Lemma 7, for α = 0 and α = 1 respectively, we have

Eθ
[
(X − θ)tγ(X)

]
= Eθ

[
||U ||2

k
div γ(X)

]
and

Eθ
[
||U ||2(X − θ)tg(X)

]
= Eθ

[
||U ||4

k + 2
div g(X)

]
.

It comes then

Eθ
[
||δg(X,U)− θ||2

]
= Eθ

[
p
||U ||2

k
+ 2
||U ||2

k
div γ(X) + ||γ(X)||2 + 2||U ||2γ(X) · g(X)

+2||U ||2(X − θ)tg(X) + ||U ||4||g(X)||2
]

= Eθ

[
p
||U ||2

k
+ 2
||U ||2

k
div γ(X) + ||γ(X)||2 + 2||U ||2γ(X)g(X) + ||U ||2||g(X)||2

+
2

k + 2
||U ||4div g(X)

]
= Eθ

[
p
||U ||2

k
+ 2
||U ||2

k
div γ(X) +

2

k + 2
||U ||4div g(X) + ||γ(X) + ||U ||2g(X)||2

]
then the result. �

Remark 2. Where there is no positivity constraint on the components of θ can be inter-
preted by taking γ ≡ 0. We thus find the unbiased estimator given by Cellier and Fourdrinier
(1995).

In the following of this section, we show that the estimator λ0g(X,U) can be improved
through a more general class of estimators of the form

λhg (X,U) = λ0g(X,U) + ||U ||4h(||X||2) (7)

where h(·) is a negative real-valued function and twice weakly differentiable.

Order to compare two estimators λhG(X,U) and λ0g(X,U) we needs to calculate the difference
in their risk

∆R = R
(
λhg (X,U), δg(X,U), θ

)
−R

(
λ0g(X,U), δg(X,U), θ

)
.

It is the object of the following lemma.
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Lemma 4. For every weakly differentiable function g : Rp→Rp, for every twice weakly
differentiable function h : R+→R and for all θ ∈ Rp, an unbiased estimator of the difference
in risk between λhg (X,U) and λ0g(X,U) is equal to

||U ||8
(
h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2)

+
4

k + 2
h(||X||2)div g(X)− 4

k + 6
div
(
h(||X||2)g(X)

))
+

4

k + 4
||U ||6

(
2p

k
h(||X||2)−

〈
5h(||X||2), γ(X)

〉
+

4

k
h(||X||2)div γ(X)

)
. (8)

Proof. See Appendix.

As a first application of the previous result, we have the following theorem where we assume
that the distribution of (X,U) is unimodal is to say that it have a density of the form
(x, u)→G(||x− θ||2 + ||u||2) where G(·) is a nonincreasing function.

Theorem 3. We assume that the distribution of (X,U) is unimodal. If the function h sat-
isfies the following conditions

1. is a negative function, twice weakly differentiable and concave.

2. ∂h
∂Xi

(||X||2) ≤ −h(||X||
2)

||X||2 Xi for all i = 1, . . . , p then the estimator λhg (X,U) dominates

the unbiased estimator λ0g(X,U), for θ ∈ Rs × Rp−s, since provided that

h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2)− 4

k + 6
div (g · h)(X) +

4

k + 2
h(||X||2)div g(X)

− 2s

(k + 4)(k − 2)

h(||X||2)

||X||2
≤ 0 (9)

provided these expectation exist.

Proof. Using Lemma 4, we get that the difference in risk

Eθ

[
||U ||8

(
h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2)

− 4

k + 6
div (g · h)(X) +

4

k + 2
h(||X||2)div g(X)

)]
+

4

k + 4

(
2p

k
Eθ
[
||U ||6h(||X||2)

]
+

4

k
Eθ
[
||U ||6h(||X||2)div γ(X)

]
− Eθ

[
||U ||6

〈
5h(||X||2), γ(X)

〉])
. (10)

Using the results of the paper Fourdrinier et al. (2003) (demonstration of theorem 3.1), we
show that the last expectation of (10) is bounded by

− s

k − 2
Eθ

[
||U ||8h(||X||2)

||X||2

]
. (11)
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Indeed,

−Eθ
[
||U ||6

〈
5h(||X||2), γ(X)

〉]
= Eθ

[
||U ||6

s∑
i=1

∂h(||X||2)

∂Xi
XiI[Xi<0]

]

≤ −2

s∑
i=1

Eθ

[
||U ||6h(||X||2)

||X||2
X2
i I[Xi<0]

]
≤ − s

k − 2
Eθ

[
||U ||8h(||X||2)

||X||2

]
because the function h satisfies the same conditions as those of function r of theorem 3.1 du
Fourdrinier et al. (2003). Then

Eθ

[
− 4

k + 4
||U ||6

〈
5h(||X||2), γ(X)

〉]
≤ −2s

(k + 4)(k − 2)
Eθ

[
||U ||8h(||X||2)

||X||2

]
. (12)

To conclude we need Lemma 9 to show that, the sum of the second and the third expectation
of the expression (10) is negative. Using Lemma 9, we get that,

Eθ
[
||U ||6h(||X||2)div γ(X)

]
≤ −s

2
Eθ
[
h(||X||2)||U ||6

]
. (13)

In effect

Eθ
[
||U ||6h(||X||2)div γ(X)

]
= −Eθ

[
||U ||6h(||X||2)

s∑
i=1

I[Xi<0]

]

= −
s∑
i=1

Eθ
[
||U ||6h(||X||2)I[Xi<0]

]
≤ −s

2
Eθ
[
h(||X||2)||U ||6

]
the last inequality being acquired by using the fact that the function −h(·) is nonnegative
and the Lemma 9. So, from equation (13), we have

Eθ

[
8p

k(k + 4)
||U ||6h(||X||2) +

16

k(k + 4)
||U ||6h(||X||2) γ(X)

]
(14)

≤ Eθ

[
8p||U ||6h(||X||2)

k(k + 4)
− 8s

k(k + 4)
||U ||6h(||X||2)

]
= 8(p− s)Eθ

[
||U ||6

k(k + 4)
h(||X||2)

]
≤ 0

since the function h(·) is negative and p− s ≥ 0.
Finally we acquire as upper bound of the difference in risk

Eθ

[
||U ||8

(
h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2)− 4

k + 6
(g · h)(X)+

4

k + 2)
h(||X||2)div g(X)− 2s

k(k + 4)(k − 2)

h(||X||2)

||X||2

)]
,

what gives the desired result. �
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Remark 3. Where there is no positivity constraint on the components of θ can be inter-
preted by taking s = 0 and γ ≡ 0. We thus find the condition of domination of Theorem 3.1
in Fourdrinier et al. (2003).

The following corollary gives an example of a function h and function g which satisfies the
conditions of Theorem 3.

Corollary 1. Assume that p > 4, p > s+8
2 , k > 2 + 4s

2p−8−s and that the distribution is

unimodal. For the functions g(X) = − d
||X||2X and h(||X||2) = − c

||X||2 a sufficient condition

under which the estimator λhg (X,U) dominates the unbiased estimators λ0g(X,U), for all
θ ∈ Rs × Rp−s, is that

0 < c <
4(p− 4)

k + 2
+ 4

(
(p− 4)

k + 6
− (p− 2)

k + 2

)
d− 2s

(k + 4)(k − 2)
. (15)

where the constante d satisfy

0 ≤ d ≤ 1

2

(k + 2)(p− s+8
2 )
(
k −

[
2 + 4s

2p−s−8

])
(k + 4)(k − 2)(2p+ k − 2)

(16)

Proof. Let us consider the usual shrinkage estimator g of θ with shrinkage factor g defined
by g(X) = d X

‖|X||2 , where d is a positive constant, and the shrinkage loss estimator used in

the previous corollary with the shrinkage function h defined by h(t) = −c X
‖|X||2 where c is a

positive constante, for every X ∈ Rp, it easy to check that

4h(||X||2) =

p∑
i=1

∂2h

∂2Xi
(||X||2) = 2c

p− 4

||X||4
,

div g(X) =

p∑
i=1

∂gi
∂2Xi

(X) = −d p− 2

||X||2
.

and

div (h · g)(X) = h(||X||2)div g(X) +
〈
5h(||X||2), g(X)

〉
=

c

||X||2
d(p− 2)

||X||2
+

p∑
i=1

∂h

∂Xi
(X)gi(X)

= cd
p− 4

||X||4
.

The member of left of the condition of domination (9) becomes

c2

||X||4
− 2

(k + 4)(k + 6)

2c(p− 4)

||X||4
− 4

(k + 6)

cd(p− 4)

||X||4
+

4

k + 2

cd(p− 2)

||X||4
+

2sc

(k + 4)(k − 2)

1

||X||4

=
c

||X||4

[
c− 4(p− 4)

(k + 4)(k + 6)
− 4(p− 4)

k + 6
d+

4(p− 2)

k + 2
d+

2s

(k + 4)(k − 2)

]
.
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Hence the sufficient condition of domination is

c− 4(p− 4)

(k + 4)(k + 6)
−
(

4(p− 4)

k + 6
− 4(p− 2)

k + 2

)
d+

2s

(k + 4)(k − 2)
< 0

what is identical to

0 < c < 4
(p− 4)

(k + 4)(k + 6)
+ 4d

(
(p− 4)

k + 6
− (p− 2)

k + 2

)
− 2s

(k + 4)(k − 2)
.

A simple calcultion shows that the right-and side is positive if and only 0 ≤ d ≤
1
2

(k+2)(p− s+8
2 )(k−[2+ 4s

2p−s−8 ])
(k+4)(k−2)(2p+k−2) and k > 2 + 4s

2p−8−s . This completes the proof. �

Remark 4. The optimal of c is given by

c∗ =
2(p− 4)

(k + 4)(k + 6)
+ 2d

(
(p− 4)

k + 6
− (p− 2)

k + 2

)
− s

(k + 4)(k − 2)
.

It is clear that the optimal shrinkage factor of the loss estimator depends on the shrinkage
factor of te point estimate. We found that wih the optimal d, that is, d = p−2

k+2 −
s

k−2 , the
optimal c is still positive for reasonable values of p and k.

Comment

It is worthwhile to note that the stated condition for domination are too restrictive is certain
case (s ≤ 4). In particular, what is needed is the finiteness of the risk, which is governed
by the final term of the expression. Thus, if s = 0, it suffices that p ≥ 5, k ≥ 1 and

0 < c < 4 (p−4)
(k+4)(k+6) + 4d

(
(p−4)
k+6 −

(p−2)
k+2

)
for same 0 ≤ d ≤ 1

2
(p−4)(k+2)

(2p+k−2)(k+4) which is same

bound as in the unrestricted case. If s = 1, or s = 2, it suffices that p ≥ 5 and if s = 4,
that p ≥ 7. The condition on k for s ≥ 1 are as in the corollary. In particular, if s = 1 and
p = 5, we require k ≥ 10 Similarly, if s = 2 and p = 6, we also require k ≥ 10 in general for
p = s+ 4 we require k ≥ 10, but, for s = 3 and p = 6, we need k ≥ 26. For s = 4 and p = 7,
we need that k ≥ 8. For p = s we need to p ≥ 9. In general, for fixed s, the value of k which
is required decreases to 3 as p increases to

[
5s+4
2

]
+ 1.

4. Appendix

The first two lemma are given respectively by Stein (1981) and by Stein (1981) and Johnstone
(1988).

Lemma 5. For every weakly differentiable function g : Rp → Rp, for every θ ∈ Rp, we have

Eθ [(X − θ).g(X)] = Eθ [div g(X)] (17)

provided these expectations exist.

Lemma 6. For every weakly differentiable function g : Rp → R,for every θ ∈ Rp, we have

Eθ
[
||X − θ||2g(X)

]
= Eθ [∆g(X) + pg(X)]

provided these expectations exist.
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Proof of Lemma 6

We using (17) to the function (X − θ)g(X).

The straightforward proof of the two next lemma is given respectively by Fourdrinier
and Strawderman (1996) and by Fourdrinierand Wells (1995).

Lemma 7. For every weakly differentiable function g : Rp → Rp, for every θ ∈ Rp and for
every integer α,

Eθ
[
||U ||2α(X − θ).g(X)

]
=

1

k + 2α
Eθ
[
||U ||2α+2div g(X)

]
Lemma 8. For every twice weakly differentiable function g : Rp → R+, for every θ ∈ Rp
and for every integer q, we have

ER,θ
[
||U ||q||X − θ||2g(X)

]
=

p

k + q
ER,θ

[
||U ||q+2g(X)

]
+

1

(k + q)(k + q + 2)
ER,θ

[
||U ||q+4∆g(X)

]
.

Lemma 9. Assume X is a real-valued random variable with symmetric unimodal distribu-
tion about θ ∈ R+. If f is a nonnegative function on R+, then

Eθ
[
f(X2)I[X<0]

]
≤ 1

2
Eθ
[
f(X2)

]
. (18)

�

Proof of Lemma 9

Note that , by the symmetrical unimodal assumption, X has density of the forme
(x, u)→g

(
(x− θ)2

)
with g nonincreasing function. The lemma reduces showing that

Eθ

[
f(X2)

(
I[X<0] −

1

2

)]
≤ 0. (19)

The left-hand side of (19) can be written as

1

2
Eθ
[
f(X2)

(
I[X<0] − I[X≥0]

)]
. (20)

Conditioning on |X|, and noting by E the expectation of the distribution of |X|, the expres-
sion (20) is

1

2
E
[
f(X2)

(
g
(
(−|X| − θ)2

)
− g ((|X| − θ))2

)]
.

So, by hypothesis we have θ > 0 then

(|X| − θ)2 ≤ (−|X| − θ)2.
By unimodatily of X (the function g(·) is decreasing), it is clear that

g
(
(−|X| − θ)2

)
≤ g

(
(|X| − θ))2

)
.

and hence that an upper bound of (19) is given by

1

2
E
[
f(X2)

(
g
(
(−|X| − θ)2

)
− g ((|X| − θ))2

)]
≤ 0

what gives the desired result. �
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Proof of Lemma 4

For θ ∈ Rp fixed. We can compute using (6) and (7)

∆R(θ) = Eθ

[(
λhg (X,U)− ||δg(X,U)− θ||2

)2]− Eθ [(λ0g(X,U)− ||δg(X,U)− θ||2
)2]

= Eθ

[(
λ0g(X,U) + ||U ||4h(||X||2)− ||δg(X,U)− θ||2

)2 − (λ0g(X,U)− ||δg(X,U)− θ||2
)2]

= Eθ

[
||U ||8h2(||X||2) + 2p

||U ||6

k
h(||X||2)− 2||U ||4||X − θ||2h(||X||2)

]
+4Eθ

[
||U ||6

k

(
divγ(X) +

k

k + 2
||U ||2divg(X)

)
h(||X||2)

]
−4Eθ

[
||U ||4(X − θ)

(
γ(X) + ||U ||2g(X)

)
h(||X||2)

]
.

Using Lemma 8, for q = 4 and g(X) = h(||X||2), we obtain

Eθ
[
||U ||4||X − θ||2h(||X||2)

]
=

p

k + 4
Eθ
[
||U ||6h(||X||2)

]
+

1

(k + 4)(k + 6)
Eθ
[
||U ||8 4 h(||X||2)

]
and using Lemma 7, for the function (γ + ||U ||2g)h, we get

Eθ
[
||U ||4(X − θ)γ(X)h(||X||2)

]
=

1

k + 4
Eθ
[
||U ||6div (γ(X)h(X))

]
and

Eθ
[
||U ||6(X − θ)g(X)h(||X||2)

]
=

1

k + 6
Eθ
[
||U ||8div (g(X)h(X))

]
Then the difference in risk be comme

Eθ

[
||U ||8h2(||X||2) + 2p

||U ||6

k
h(||X||2) + 4

||U ||6

k
h(||X||2)

(
γ(X) +

k

k + 2
||U ||2g(X)

)
− 2

(k + 4)(k + 6)
||U ||8 4 h(||X||2)− 4

k + 4
||U ||6div (γ(X)h(X))

−2
p

k + 4
||U ||6h(||X||2)− 4

k + 6
||U ||8div (g(X)h(X))

]
= Eθ

[
||U ||8

{
h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2)

+
4

k + 2
h(X)div (g(X))− 4

k + 6
div (h(X)g(X))

}]
+Eθ

[
||U ||6

{
2p

k
h(||X||2)−

〈
5h(||X||2), γ(X)

〉
+

4

k
h(||X||2)div γ(X)

}]
.

So the unbiased estimator desired is

||U ||8
(
h2(||X||2)− 2

(k + 4)(k + 6)
4 h(||X||2) +

4

k + 2
h(X) (g(X))− 4

k + 6
(h(X)g(X))

)
+4||U ||6

(
2
p

k
h(||X||2)− 1

k + 4
div(h(X)γ(X)) +

1

k
h(X)divγ(X)

)
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then the desired result. �
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