A cross-sectional study on urogenital schistosomiasis in children; haematuria and proteinuria as diagnostic indicators in an endemic rural area of Nigeria

Olajumoke Morenikeji¹, Junaid Quazim¹, Claire Omoregie¹, Adesola Hassan¹, Roseangela Nwuba¹, Chiaka Anumudu¹, Sunday Adejumobi², Oyetunde Salawu¹, Ayodele Jegede³, Alexander Odaibo¹

1. Department of Zoology, University of Ibadan, Ibadan, Nigeria
2. Department of Anatomy, College of Medicine, University of Ibadan, Nigeria
3. Department of Medical Sociology, University of Ibadan, Ibadan, Nigeria

Abstract

Background: Rapid and accurate diagnosis is necessary for the management of schistosomiasis in endemic areas.

Objective: To assess the burden of urogenital schistosomiasis and the diagnostic efficiency of morbidity indicators of the disease in an endemic rural community of Nigeria.

Methods: A cross-sectional school-based study was conducted. Urine samples of 487 pupils were screened microscopically for S. haematobium and tested for haematuria and proteinuria using chemical reagent strips.

Results: The prevalence and intensity of infection were 57.1% and 45.0 eggs/10 mL urine respectively. Prevalence of infection in male (54.1%) and female (60.3%) individuals showed no significant variation (P>0.05). However, prevalence of infection was age dependent with those in age groups 3-5 and 12-14 years having the least and highest prevalence of infection respectively (P<0.05). Microhaematuria and proteinuria varied significantly with ages of the pupils with least (14.0, 40.0%) and highest (60.0, 80.0%) prevalence recorded in age groups 3-5 and 15-19 years respectively (P<0.05). Proteinuria showed higher sensitivity (80.3%) compared to microhaematuria (73.3%).

Conclusion: Schistosomiasis is highly endemic in the study area and the use of microhaematuria and proteinuria for mapping the infected population prior treatment could be adopted.

Key words: Schistosomaisis, haematuria, proteinuria, Nigeria

African Health Sciences 2014; 14(2):390-396
DOI: http://dx.doi.org/10.4314/ahr.v14i2.15

Introduction

Schistosomiasis is a chronic disease with high public health importance as 207 million people have been estimated to be infected worldwide¹. Most recent estimate reported 50.8 million infected individuals in aged ≤ 20 years in West Africa² (Schur et al., 2011). Schistosomiasis has been widely reported in Nigeria³-⁶.

The implementation of programmes to control schistosomiasis requires up-to-date information regarding the prevalence and distribution of the diseases⁷. Rapid and indirect diagnostic methods have been suggested to aid quick mapping surveys in endemic regions⁸.

This becomes important as rapid detection of diseased individuals is necessary for efficient intervention through mass drug administration in the areas. Some of the notable indicators of infection especially due to S. haematobium for rapid assessment are haematuria, proteinuria and leukocyturia.

Operational research studies in Nigeria and other African countries have shown these indicators as good morbidity indicators of S. haematobium infection and have been successfully used to identify school children requiring treatment and subsequently monitor control⁹,¹⁰. However, the low sensitivities of these indicators to detect the diseased population especially in low endemic areas have raised some questions on the reliance of results obtained from such studies. An approach of combining two or more indicators has been developed to improve the diagnostic accuracy or efficiency¹⁰.

The present school-based study reports the prevalence of urogenital schistosomiasis and reliability of haematuria and proteinuria as diagnostic indicators of the disease in a rural endemic area of Nigeria.
Materials and methods

Study setting

A cross-sectional school based study was conducted in Yewa North Central Primary School, Ijoun, Ogun State in the south-western part of Nigeria. Ijoun is a rural community with a heterogeneous population comprising the Yorubas, Fulanis, Igbos and few individuals from the Republic of Benin. The inhabitants depend on streams and rivers for their sources of water for domestic purposes. The snail intermediate hosts of *S. haematobium* have been discovered in the river bodies in the area\(^1\).

Sample size and sampling procedures

Sample size was calculated using the method described by Naing et al.\(^12\) A prevalence of 55% was used to compute the minimum sample size based on previous report on schistosomiasis in some other communities in the LGA\(^13\). The sample size arrived at was 380 with precision 0.05(5\%) being the most suitable. The statistical power used was 80\%. A total of 541 school pupils were recruited but 487 and 432 pupils provided urine samples for microscopic examination and reagent strips screening respectively. Class to class recruitment procedure was adopted during which the pupils through the help of the class teacher were given urine sample bottles and were monitored for urine collection. Samples were collected between March and April, 2010.

Data collection

Clean and sterile universal urine containers were given to each of the pupils to collect samples of urine. Urine, 10-20 mL, was collected at midday (10.00-14.00 hours) under the proper guide of the teachers and the research team. The urine containers were clearly labelled with the sample number assigned to each participant.

The freshly passed urine samples were inspected macroscopically for gross haematuria and then screened for microhaematuria and proteinuria using commercially available urine reagent strips (Medi-Test Combi 10, Standard Diagnostics Inc., Korea). The strip testing was performed in accordance with the manufacturer’s instructions. The urinary protein content was recorded as negative (< 0.1g/L of urine), trace (<0.3g/L), 1+, 2+, 3+ or 4+. The symbols are intended to correlate as follows: +1 with 0.3 g/L, +2 with 1.0 g/L, +3 with 3.0 g/L and +4 with ≥5.0 g/L. The samples were transported in a dark container to the laboratory and processed within 24 hours after collection. Each sample was well-mixed and 10 mL was withdrawn using clean, sterile plastic syringes. This was then centrifuged at 5000 rpm for 5 minutes. The supernatant was decanted and the sediments were transferred to a clean slide and examined under a light microscope for eggs of *S. haematobium* using the x10 objective lens.

Intensity of infection was classified using Briand *et al*.'s modification of WHO recommendations\(^14\). Intensity of infection was thus categorized as no infection, light infection (1-9 egg/10 mL of urine), moderate infection (10-49 eggs/10 mL of urine) and heavy infections (≥50 eggs/10 mL of urine). All the infected individuals were treated with single dose of 40 mg/kg of praziquantel.

The older pupils were asked their ages while in case of uncertainty and in younger pupils, the class teachers were engaged who confirmed their ages by consulting the class register containing each pupil biodata. The age of each pupil was recorded against their names in the register created for the study.

Quality control

Urine samples collected were prevented from direct light penetration in order to avoid hatching of parasite eggs before microscopy examination. Parasite morphology and intensity was confirmed by another scientist during examination.

Ethical considerations

Ethical approval was obtained from the joint University of Ibadan/University College Hospital Ethical Review Board. Approval was also obtained from Ogun State Ministry of Health and the Ministry of Education. The community’s leaders and the school’s administrators were duly informed of the objectives and benefits of the study. The children parents were also invited to Parent Teacher Association (PTA) meeting during which they were briefed on the significance of the study. Written informed consent was obtained from them after a detailed explanation of the objectives of the study. Participant’s personal information was treated private and was not divulged to third party. For example, sample bottles were identified only by a unique code allotted to them while every other information was recorded in the study’s register.

Inclusion and exclusion criteria

All pupils with the exception of the very few ones who declined were recruited for the study.
Statistical analysis
Data were entered into an Excel spreadsheet, checked for entry errors and transferred into SPSS for Windows (version 15.0, SPSS Inc, Chicago, USA) for analysis. The sensitivity (number of individuals with a positive rapid test/individuals with a positive reference test) and specificity (number of individuals with a negative rapid test/individuals with a negative reference test) were calculated for rapid tests (chemical reagent strips) compared to the gold standard (microscopy was used as the reference test). Chi-square tests were applied to compare relative proportions of infections between genders and ages of the pupils. When analyzing for the effect of age, pupils were divided into 5 groups: aged 3-5, 6-8, 9-11, 12-14, and ≥ 15 years. The intensity of infection measured by the parasite egg counts was logarithmically transformed into geometric mean. Student’s t-test and ANOVA were used to determine significant differences in intensity of infection. P values < 0.05 were considered significant.

Results
The overall prevalence and intensity of infection due to *S. haematobium* were 57.1% and 45.0 eggs/10 mL urine (OR=1.8, CI=1.1-3.8) respectively. Prevalence of urogenital schistosomiasis varied significantly across age groups (P<0.05) with the least (27.5%) (OR=0.5, CI=0.3-1.0) and highest prevalence (68.4%) (OR=2.9, CI=2.0-4.2) recorded in age groups 3-5 and 12-14 years respectively (Table 1).

Table 1. Age and sex related infection pattern

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Sex</th>
<th>No. examined (%)</th>
<th>Light infection (%)</th>
<th>Moderate infection (%)</th>
<th>Heavy infection (%)</th>
<th>OR(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>M</td>
<td>32</td>
<td>7(21.9)</td>
<td>3(42.9)</td>
<td>1(14.3)</td>
<td>3(42.9)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19</td>
<td>7(36.8)</td>
<td>2(28.6)</td>
<td>0(0)</td>
<td>5(71.4)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>51</td>
<td>14(27.5)</td>
<td>5(35.7)</td>
<td>1(7.1)</td>
<td>8(57.1)</td>
</tr>
<tr>
<td>6-8</td>
<td>M</td>
<td>65</td>
<td>33(50.8)</td>
<td>21(21.2)</td>
<td>14(24.2)</td>
<td>12(36.4)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>58</td>
<td>25(43.1)</td>
<td>27(58.0)</td>
<td>10(40.0)</td>
<td>8(32.0)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>123</td>
<td>58(47.2)</td>
<td>14(24.1)</td>
<td>24(41.4)</td>
<td>20(34.5)</td>
</tr>
<tr>
<td>9-11</td>
<td>M</td>
<td>64</td>
<td>36(56.3)</td>
<td>7(19.4)</td>
<td>12(33.3)</td>
<td>17(47.2)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>72</td>
<td>50(69.4)</td>
<td>8(16.0)</td>
<td>13(26.0)</td>
<td>29(58.0)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>136</td>
<td>86(63.2)</td>
<td>15(17.4)</td>
<td>25(29.1)</td>
<td>46(53.5)</td>
</tr>
<tr>
<td>12-14</td>
<td>M</td>
<td>81</td>
<td>52(64.2)</td>
<td>3(5.8)</td>
<td>20(38.5)</td>
<td>29(55.8)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>71</td>
<td>52(73.2)</td>
<td>14(26.9)</td>
<td>11(21.1)</td>
<td>27(51.9)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>152</td>
<td>100(68.4)</td>
<td>17(16.4)</td>
<td>31(29.8)</td>
<td>56(53.9)</td>
</tr>
<tr>
<td>≥15</td>
<td>M</td>
<td>13</td>
<td>10(76.9)</td>
<td>1(10.0)</td>
<td>5(50.0)</td>
<td>4(40.0)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>12</td>
<td>6(50.0)</td>
<td>1(16.7)</td>
<td>1(16.7)</td>
<td>4(66.7)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>25</td>
<td>16(64.0)</td>
<td>2(12.5)</td>
<td>6(37.5)</td>
<td>8(50.0)</td>
</tr>
<tr>
<td>Total</td>
<td>M</td>
<td>255</td>
<td>138(54.1)</td>
<td>21(15.2)</td>
<td>52(37.7)</td>
<td>65(47.1)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>232</td>
<td>140(60.3)</td>
<td>32(22.9)</td>
<td>35(25.0)</td>
<td>73(52.1)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>487</td>
<td>278(57.1)</td>
<td>53(19.1)</td>
<td>87(31.3)</td>
<td>138(49.6)</td>
</tr>
</tbody>
</table>

Note: OR- odd ratio, CI- confidence interval

There was no gender difference in infection pattern (P>0.05), however, more female participants (60.3%) (OR=0.8, 0.5-1.1) were infected than the male participants (54.1%) (OR=1.3, CI=0.9-1.8). The overall prevalence of microhaematuria was 50.0% and age related prevalence of microhaematuria was similar to what was observed in infection due to *S. haematobium* with the least (14.0%) and highest (60.0%) prevalence recorded in age groups 3-5 and 12-14 years respectively (Table 2).
Table 2. Age and sex prevalence profiles of urogenital schistosomiasis morbidity indicators

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Sex</th>
<th>Macrohaematuria</th>
<th>Microhaematuria</th>
<th>Proteinuria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. examined</td>
<td>Prevalence (%)</td>
<td>No. examined</td>
</tr>
<tr>
<td>3-5</td>
<td>M</td>
<td>32</td>
<td>1(3.1)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19</td>
<td>0(0.0)</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>51</td>
<td>1(2.0)</td>
<td>50</td>
</tr>
<tr>
<td>6-8</td>
<td>M</td>
<td>65</td>
<td>11(16.9)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>58</td>
<td>12(20.7)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>123</td>
<td>23(18.7)</td>
<td>106</td>
</tr>
<tr>
<td>9-11</td>
<td>M</td>
<td>64</td>
<td>16(25.0)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>72</td>
<td>11(15.3)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>136</td>
<td>27(19.9)</td>
<td>106</td>
</tr>
<tr>
<td>12-14</td>
<td>M</td>
<td>81</td>
<td>16(19.8)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>71</td>
<td>8(11.3)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>152</td>
<td>24(15.8)</td>
<td>145</td>
</tr>
<tr>
<td>≥15</td>
<td>M</td>
<td>13</td>
<td>3(23.1)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>12</td>
<td>2(16.7)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>25</td>
<td>5(20.0)</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>M</td>
<td>255</td>
<td>47(18.4)</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>232</td>
<td>33(14.2)</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>487</td>
<td>80(16.4)</td>
<td>432</td>
</tr>
</tbody>
</table>

Microhaematuria varied significantly across age groups (P<0.05) but showed no significant variation with gender (P>0.05). The overall prevalence of proteinuria is 65.5% with the least (40.0%) and highest (88.0%) prevalence recorded in age groups 3-5 and 15-19 years respectively. The difference in prevalence of proteinuria between age groups was statistically significant (P<0.05). Prevalence of proteinuria was significantly higher in male subjects (70.6%) than in the female subjects (59.8%) (P<0.05). The overall proportion of the population with proteinuria ranging from none (<0.1 g/L) to trace urinary quantity (<0.3 g/L) was 48.5% while 51.5% of the population had proteinuria ≥0.3 g/L. Most of the male subjects showed higher proportion of pathologic urinary proteinuria (56.3, 65.7, 100%) than their female counterparts (43.8, 34.3, 0.0%) in the 0.3, 3.0, 5.0 g/L categories respectively (Table 3).
Table 3. Severity of proteinuria in the study population (n=210)

<table>
<thead>
<tr>
<th>Proteinuria Gradients (g/L)</th>
<th>Male Number (%)</th>
<th>Female Number (%)</th>
<th>Total (overall %)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1(-ve)</td>
<td>10(31.3)</td>
<td>22(68.8)</td>
<td>32(15.2)</td>
</tr>
<tr>
<td><0.3(Trace)</td>
<td>46(65.7)</td>
<td>24(34.3)</td>
<td>70(33.3)</td>
</tr>
<tr>
<td>0.3(1+)</td>
<td>36(56.3)</td>
<td>28(43.8)</td>
<td>64(30.5)</td>
</tr>
<tr>
<td>1.0(2+)</td>
<td>23(56.3)</td>
<td>12(34.3)</td>
<td>35(16.7)</td>
</tr>
<tr>
<td>3.0(3+)</td>
<td>1(100)</td>
<td>0(0.0)</td>
<td>1(0.5)</td>
</tr>
<tr>
<td>5.0(4+)</td>
<td>4(50.0)</td>
<td>4(50.0)</td>
<td>8(3.8)</td>
</tr>
<tr>
<td>Total (n)</td>
<td>120</td>
<td>90</td>
<td>210</td>
</tr>
</tbody>
</table>

The most sensitive (80.3%) *Schistosoma* morbidity indicator was proteinuria while macrohaematuria was the least sensitive (24.8%) indicator of infection due to *S. haematobium*. However, microhaematuria which recorded higher values in other diagnostic parameters compared to proteinuria showed overall highest diagnostic accuracy of 76.2% (Table 4).

Table 4. Diagnostic performance of indirect screening methods used for urogenital schistosomiasis

<table>
<thead>
<tr>
<th>Diagnostic Predictors</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV a</th>
<th>NPV b</th>
<th>Accuracy</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrohaematuria</td>
<td>24.8</td>
<td>94.7</td>
<td>86.3</td>
<td>48.7</td>
<td>54.8</td>
<td>0.144</td>
</tr>
<tr>
<td>Microhaematuria</td>
<td>73.3</td>
<td>80.0</td>
<td>82.4</td>
<td>69.9</td>
<td>76.2</td>
<td>0.531</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>80.3</td>
<td>53.4</td>
<td>68.9</td>
<td>67.8</td>
<td>68.5</td>
<td>0.337</td>
</tr>
<tr>
<td>Microscopy</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Note a- positive predictive value, b- negative predictive value

Discussion

The results of this study confirm the active transmission of *S. haematobium* in the study area. The public health implication of the disease is high enough to attract appropriate interventions like mass drug administration and provision of safe water. The overall prevalence of urogenital schistosomiasis (57.1%) reported in this study is higher than Nigerian estimated mean prevalence 39.1%2 and records from other African countries15,16. In moderate-to-high Schistosoma endemic regions, infection usually varies with age and gender. The heterogeneity in exposure influenced by behaviour, culture and social factors, the development of acquired immunity, as well as, physiological changes during puberty are factors that influence susceptibility to the parasite17. It is therefore of particular note that in the study area, this typical age-related profile of egg-positive cases appeared, being concordant with a typical endemic area. The age-related infection pattern is similar to other studies conducted in Nigeria18,19 but clearly deviated from other studies that reported significant differences in sex-related prevalence3. The lack of association between infection and ages of the subjects could be due to equal dependent on natural water bodies in such low resource community with poor water development.

The high prevalence of microhaematuria and proteinuria is similar to a study conducted in Minna, Niger State, Nigeria20. These two morbidity indicators are recognized clinical features of *S. haematobium* infection21. Both symptoms are indicators of damage in the urinary tract and kidney20. Inconclusive evidence has suggested *S. haematobium* associated glomeruli pathology. When the glomeruli are damaged, protein and often red blood cells leak into the urine. Although, at the present, the precise origin and clinical significance of the proteinuria observed in *S. haematobium* infection remains unknown22. High prevalence of glomerulonephritis had been reported in areas of the tropic where urogenital schistosomiasis is also common, however
its relationship to *S. haematobium* remain unclear. The occurrence of high proportion of pathologic urinary proteinuria (≥0.3 g/L) in the current study may suggest urogenital schistosomiasis involvement in inducing glomeruli pathology resulting in abnormal urinary protein excretion. This effect being more pronounced in the male subjects could be due to higher intensity of infection due to *S. haematobium* in the group compared to their female counterparts.

The degree of microhaematuria and proteinuria detectable by chemical reagent strip observed to correlate significantly with microscopy is also similar to the findings. The association of these symptoms with urogenital schistosomiasis had been widely documented. The high sensitivity for haematuria and proteinuria reported in this study conforms favourably with earlier reports. Macrohaematuria was the most specific but least sensitive, although it has the benefit of not requiring reagent strips. Its gender disparity, however, needs to be considered if using this test, with females requiring additional test.

The inability to generalize result in other population groups since the participants constituted only school pupils and use of single urine sample for both microscopy and morbidity screening are the potential limitations of the study.

The present study shows that microhaematuria is the most accurate and reliable indirect diagnostic method. This is as a result of its high specificity for negative results and high positive predictive value for positive results. The high sensitivity values reflect the usefulness of these diagnostic indices as morbidity indicators of *S. haematobium* in an endemic area. It is also worth mentioning that a combination of proteinuria and microhaematuria may be more efficient in infection diagnosis than a single variable.

Acknowledgements

This study is financed by MacArthur Multidisciplinary Grant of University of Ibadan, Ibadan, Nigeria. Many thanks to the Education Authorities of Yewa North Local Government Area of Ogun State, Southwestern Nigeria, Head Teachers, parents and pupils of the participating schools for permission to carry out this study.

References

11. Salawu OT and Odaibo AB. Preliminary study on ecology of Bulinus jousseaumei in *Schistosoma haematobium* endemic rural community of Nigeria. *African Journal of Ecology* 2012;1-6 (early online view)
assessment indicators for
Schistosoma haematobium infec-
tion among school children in endemic areas.
American Journal of Infectious Diseases 2012; 8(1): 60-64.

Plasmodium falciparum and Schistosoma
haematobium: protective effect of schistosomiasis on ma-
laria in Senegalese children? American Journal of

and evaluation and environmental risk factors for uro-
genital schistosomiasis and active trachoma in Burkina
Faso before preventative chemotherapy using sentinel
sites. BMC Infectious Diseases, 2011;11:191

16. Stothard JR, Khamis IS, Blair I, Nyandindi US,
Kane RA, Johnston DA, Webster BL and Rollinson D. Parasitological and malacological surveys reveal urogeni-
tal schistosomiasis on Mafia Island, Tanzania to be an
imported infection, 2012; http://dx.doi.org/10.1016/j.
actatropica.2012.09.006

17. King CL. Initiation and regulation of disease in
chisctosomiasis. In AAF Mahmoud, Schistosomiasis,

chisctosomiasis in Abini community, Biase local gov-
ernment area, Cross river State, Nigeria. Nigeria Journal

19. Ugboombooko US, Ofosiezie IE, Okoye IC and Heuke-
lbach J. Factors associated with urinary chisctosomiasis in two peri-urban communities in south–western
Nigeria. Annals of Tropical Medicine and Parasitology
2010;104(5):409-419

20. Chidozie EU and Daniany SY. Urinary chisctosomiasis
7(16):2773–2776

21. Wikins HA. The significance of proteinuria and hae-
maturia in Schistosoma haematobium infection. Transactions
of the Royal Society of Tropical Medicine 1979;73:74-80.

22. Houmsou R, Kela S, Suleiman M and Ogidi J. Urine colour as a rapid assessment indicator in evaluating the
prevalence of Schistosoma haematobium infection in two endemic areas of Benue State-Nigeria. The Internet
Journal of Tropical Medicine 2009; 6(1)

23. Elissa V. Measuring micro-albuminuria: an innova-
tive approach to estimating intensity of Schistosoma bae-
matobium infection in Zanzibari school children. Working
Paper Series, Harvard Center for Population and
Development Studies 2004; 14(5).

24. Chugh KS and Sakiju V. Glomerular diseases in the
tropics. American Journal of Nephrology, 1990; 10(6), 437-
450.

25. Laven JS, Vleugels MP, Dofferhoff AS and Bloem-
bergen P. Schistosomiasis as a cause of vulvar hypertro-
phy. European Journal of Obstetrics, Gynecology and Reproduc-

26. Traquinho GA, Quinto LE, Nala RM, Gama VR and
Corachan M. Schistosomiasis in northern Mozam-
bique. Transactions of the Royal Society of Tropical Medicine
and Hygiene 1998;92, 279-281.

27. Nmorsi OPG, Egwunyenga OA and Okolo OE.
Schistosoma haematobium infections in two rural commu-
nities in EdoState,Nigeria. South East Asian Journal of

28. Brouwer KC, Munatsi A, Ndhlouvo PD, Wągatsuma
Y, Shiff CJ. Urinary schistosomiasis in Zimbabwean
children: predictors of morbidity. African Health
Science 2004; 4:115–118

29. Fatiregun AA, Osungbade KO and Olumide EA.
Diagnostic performance of screening methods for
urinary schistosomiasis in a school-based control pro-
grame, in Ibadan, Nigeria. Journal of Community Medi-
cine and Primary Health Care 2005;17(1):24-27

30. Ba’ammer AA. Two Practical and Cost Effective
Methods for Urinary Schistosomiasis Screening in
Yemeni School children. Iranian Journal of Public Health
2009; 38(3):78-83