Mean platelet volume in brucellosis: correlation between brucella standard serum agglutination test results, platelet count, and C-reactive protein.

Dogan Halef Okan¹, Zararsiz Gökmen², Bayik Seyit³, Koca Yuksel¹, Zungun Cevdet¹, Akbulut Deniz¹

1. Clinical Biochemistry, Ankara Numune Training and Research Hospital, 06100, Ankara, Turkey
2. Department of Biostatistics and Medical Informatics, Erciyes University, Faculty of Medicine, 38039, Kayseri -Turkey
3. Clinical Microbiology, Ankara Numune Training and Research Hospital 06100, Ankara, Turkey

Abstract

Background: Brucellosis, a zoonotic infection, was most widely diagnosed by the Brucella standard serum agglutination test (SAT). No previous publication has demonstrated a correlation between the degree of Brucella SAT agglutination positivity and the severity of brucellosis infection.

Objective: To contribute to the clarification of the relationship between platelets and brucellosis. It is also aimed at evaluating the usefulness of the SAT titer as a measure of brucellosis severity.

Material and Methods: We compared the control (n=60) and patients (n=96) groups in terms of mean platelet volume (MPV), C-reactive protein (CRP) and platelet values. Patients were grouped according to their degree of agglutination positivity titers and compared by means of CRP, MPV and platelet values. We also investigated the relationship among logarithmic values of MPV, platelet and CRP parameters for each group.

Results: Although statistically meaningful difference was observed between control and patients group in terms of MPV and platelet value, there were no statistically significant differences observed among patients groups. The physiological negative correlation between MPV and platelet count was not encountered in group 2 and 3. Logarithmic values of CRP were not correlated with logarithmic values of MPV and platelet counts.

Conclusion: The MPV could be a new parameter to evaluate hematologic abnormalities in patients with brucellosis. The SAT titer was not a useful measure for evaluation of the severity of brucellosis.

Keywords: Brucella, CRP, platelet count, mean platelet volume, agglutination

DOI: http://dx.doi.org/10.4314/ahs.v14i4.4

Introduction

Brucellosis is a zoonotic infection caused by Gram-negative coccobacilli. The Brucella standard serum agglutination test (SAT) is the most widely used serologic test for the diagnosis of brucellosis as mentioned in the quoted reference. The titer of agglutinating antibodies indicating active Brucella infection varies from country to country and depends on the endemicity of brucellosis. The widely accepted SAT cut-off point was ≥ 1/160 as many textbooks advised and different studies performed in Turkey. Mean platelet volume (MPV) generated by clinical hematology analyzer reflects platelet activation. Previous studies have reported that there is a correlation between MPV and inflammatory disease.

Aydemir et al. indicated that different type of microorganisms might be cause specific MPV and platelet response. Several mediators such as interleukin (IL)-1, tumor necrosis factor (TNF)-alpha and IL-6 influence the maturation of thrombopoietic cells. Brucella-infected cells are activated to express IL-1 beta and IL-6 at both the mRNA and protein levels.

Several markers of inflammation have been used in diagnosis of bacterial infections. One of these markers is C-reactive protein (CRP). It has been reported in different studies that the elevated CRP might be associated with Brucellosis and might be used to determine the activity of acute Brucellosis.

There had been only two studies about the change of MPV value in Brucellosis and no previous publication has demonstrated a correlation between the degree of Brucella SAT agglutination positivity and the severity of brucellosis infection. The importance of platelets in brucellosis has not been proven yet and our study aimed to contribute to the clarification of

Corresponding author:
H. Okan Dogan
Clinical Biochemistry, Ankara Numune Training and Research hospital, 06100, Ankara, Turkey
E-mail address: halefokan@gmail.com
The mean platelet volume (MPV) and CRP values in our laboratory ranged between 7.12 femtolitres (fL) and 150,000-450,000 per microlitre, respectively.

Statistical Analyses

Shapiro-Wilk’s and Levene’s tests were used to check the normality and the equal variances assumptions of the data. A logarithmic transformation was applied to CRP variable because of its highly skew distribution. Values were expressed as mean±standard deviation or geometric mean and 95% confidence intervals. The differences between groups were tested using independent-samples t test or one-way analysis of variance. Brown-Forsythe test was also performed when the assumption of equal variances does not hold.

Games-Howell post-hoc test was used for pairwise comparisons. Pearson correlation coefficients were calculated to see the relationships between MPV, PLT and CRP values for each group and a scatter-plot matrix was given for the visual representation. All analyses were performed using R 2.14.0 software considering p<0.05 statistically significant.

Results

Ninety-six patients who had a titer of ≥ 1:160 enrolled in this study as a patient group. We grouped all patients according to their degree of agglutination positivity. The distribution of patients, according to their sexes and mean ages are given in Table I.

Table I

<table>
<thead>
<tr>
<th>Total # of patients (n=96)</th>
<th>Group 1 (n=31)</th>
<th>Group 2 (n=31)</th>
<th>Group 3 (n=19)</th>
<th>Group 4 (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella SAT result</td>
<td>1/160</td>
<td>1/320</td>
<td>1/640</td>
<td>≥1/1280</td>
</tr>
<tr>
<td>Male/Female</td>
<td>16/15</td>
<td>20/11</td>
<td>15/4</td>
<td>9/6</td>
</tr>
<tr>
<td>Mean Age, (years)</td>
<td>42±14</td>
<td>45±14</td>
<td>41±16</td>
<td>42±15</td>
</tr>
</tbody>
</table>

The mean values of MPV and platelet in control group were 11.01±0.6 and 268.16±58.21, respectively. However those of in patients were 8.66±1.44 and 254.94±82.40, respectively. According to Table II, statistically meaningful difference between patient and control groups was observed in terms of MPV and platelet values (p<0.001 and p<0.05).}

Table II

<table>
<thead>
<tr>
<th>Variable</th>
<th>Brucellosis Patients</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPV</td>
<td>11.01±0.6</td>
<td>8.66±1.44</td>
</tr>
<tr>
<td>PLT</td>
<td>208.16±58.21</td>
<td>245.94±82.40</td>
</tr>
</tbody>
</table>

MPV: Mean platelet volume, PLT: Platelet count, CRP: C-reactive protein. Values are expressed as mean±SD and %95 confidence intervals.

No statistically meaningful difference was observed in terms of MPV, platelet and CRP values among patients groups (Table III).

Table III

<table>
<thead>
<tr>
<th>Group</th>
<th>MPV (fL)</th>
<th>PLT (10^9 μl)</th>
<th>CRP (mg/L)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>8.44(7.98-8.92)</td>
<td>265.03(227.92)</td>
<td>1.41(0.91-2.18)</td>
<td><0.001</td>
</tr>
<tr>
<td>Group 2</td>
<td>8.75(8.26-9.28)</td>
<td>209.26(181.46)</td>
<td>1.64(1.01-2.68)</td>
<td>0.112</td>
</tr>
<tr>
<td>Group 3</td>
<td>8.40(7.84-9.00)</td>
<td>241.33(222.52)</td>
<td>1.50(0.96-2.34)</td>
<td>0.600</td>
</tr>
<tr>
<td>Group 4</td>
<td>8.53(7.62-9.55)</td>
<td>290.85(271.73)</td>
<td>1.30(0.65-2.63)</td>
<td>0.404</td>
</tr>
</tbody>
</table>

Physiological negative correlation between logarithmic values of MPV and platelet was not observed in group 2 (r=-0.253, p=0.169) and in group 3 (r=-0.203, p=0.404). Logarithmic values of CRP were not correlated with logarithmic values of MPV and platelet (Figure 1).

Figure 1

A scatterplot matrix with pearson correlation coefficients to display the relationships between logarithmic values of MPV, platelet and CRP parameters for each group.
Discussion
Hematologic abnormalities are observed in brucellosis. One of these abnormalities is thrombocytopenia. Brucella-induced thrombocytopenia was reported in the range of 2.4–39% [2]. It was encountered to statistical differences between study and control groups. Also MPV values were found to be lower in patient group than in the control group (Table II). Over releasing of proinflammatory cytokines and acute-phase reactants can suppress the size of platelets [25]. Previous studies reported that interferon gamma (IFN-γ), TNF-α, IL-1 and IL-12 secreted in brucellosis [8,27]. Median MPV values were found to be lower in patients with brucellosis than controls [28]. These results are in agreement with the results of our study. Considering the above findings, it could be contemplated that investigating MPV values in combination with platelet counts might be useful in patients with brucellosis. MPV is an indicator of platelet activation and production [21]. In this context therefore, it could be inferred that in addition to platelet counts, the activation of platelets could be affected in patients with brucellosis. Accordingly, the determination of MPV values could be useful in evaluation of the progression of the disease.

MPV, platelet and CRP values changed with brucellosis were used for evaluating whether there was a correlation between the severity of brucellosis and a higher titer in Brucella SAT test. We could not find any significant difference among patients groups in terms of MPV, CRP and platelet value (Table III). It was reported that the role of CRP in the inflammatory processes may involve binding to platelet activating factor [21]. Therefore, we also investigated the correlation between logarithmic values of MPV, CRP and platelet values by using Scatter plot matrix with Pearson correlation to evaluate the relationship between the severity of the disease and SAT titer. However, there was no correlation between logarithmic values of MPV, CRP and platelet values in patient groups. Yüksel et al., as well reported that no correlation was observed between CRP and MPV in patients with ulcerative colitis and chronic obstructive pulmonary disease, respectively [29]. The findings of our study were in line with the results of these previous studies. The physiological inverse relationship between MPV and platelet count seen by Kim et al. [28], was not observed in group 2 and 3 (Figure 1) and we also found that both MPV and platelet values decreased in patients with brucellosis. It was observed that brucellosis might affect the physiological inverse correlation seen between MPV and platelet count. However, the physiological inverse relationship did not disappear in all groups. All these findings support the suggestion that there is no correlation between the severity of brucellosis and a higher titer in the SAT test.

Conclusion
MPV value was thought to be used in evaluation of platelet function in patients with brucellosis. Additionally, it was thought that the SAT titer was not useful to evaluate the severity of the disease.

References
10. Aydêmir H, Piskin N, Akduman D, KOKturk F, Aktaş E. Platelet and mean platelet volume kinetics in adult patients with sepsis. Platelets 2012 [Epub ahead of print].