Ganoderic acid B’s influence towards the therapeutic window of trifluoperazine (TFP)

Jun Guo1,2, Chenming Ni1,2, Xiaoyang Liu1, Tao Liu3
1. Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi’an 710038, P. R. China
2. Laboratory of Pharmacology, Department of Pharmacy, Jinan Military General Hospital, Jinan 250031, P. R. China
3. Department of Hepatobiliary Surgery, Jinan Military General Hospital, Jinan 250031, P. R. China

Introduction
Ganoderma lucidum, a well-known traditional Chinese medicine, has been utilized for longevity and treatment of multiple diseases in Asia for many years.1,2 Ganoderic acid B is an important bioactive ingredient isolated from Ganoderma lucidum, and exhibits various pharmacological activities.3,4

Aims: To investigate the influence of Ganoderic acid B towards the therapeutic window of trifluoperazine (TFP).

Methods: In vitro human liver microsomes (HLMs) incubation system was used to determine the inhibition of Ganoderic acid B towards the glucuronidation of trifluoperazine (TFP). Dixon plot was used to determine the inhibition type. The intersection point was located in the second quadrant in Dixon plot, indicating the competitive inhibition of Ganoderic acid B towards TFP glucuronidation. Through fitting the data using competitive nonlinear fitting equation, the inhibition kinetic parameter was calculated to be 56.7 μM.

Conclusion: All this data indicated the potential influence of Ganoderic acid B-containing herbs towards therapeutic window of TFP. Given that the glucuronidation reaction of TFP is the probe reaction of UGT1A4, the data obtained from the present study also indicated the potential influence of Ganoderic acid-containing herbs towards the therapeutic window of drugs mainly undergoing UGT1A4-mediated metabolism.

Keywords: Ganoderic acid B, trifluoperazine (TFP), UDP-glucuronosyltransferase (UGT) 1A4

DOI: http://dx.doi.org/10.4314/ahs.v15i1.20

Results
Multiple concentrations of Ganoderic acid B were used to screen the inhibition potential of Ganoderic acid B towards TFP glucuronidation, and the results showed that 0, 20, 40, 60 and 100 μM of Ganoderic acid B inhibited the glucuronidation activity of TFP by 0, 26.6%, 52.9%, and 66.9%, respectively (Fig. 1). The equations (1) and (2) were employed for competitive and noncompetitive fitting, respectively: The terms in the equations were defined as followed: V is the velocity, S is the concentration of substrate, Km is the kinetic parameter, I is the inhibition parameter.

Materials and Methods
Chemicals and Reagents
Tris-HCl, 7-hydroxycoumarin, and uridine-5-diphosphoglucuronic acid (UDPGA) (trisodium salt) were obtained from Sigma-Aldrich (St. Louis, MO). Sigma-Aldrich also offers the trifluoperazine dihydrochloride for the research needs. Pooled human liver microsomes (HLMs) were prepared according to previous reports10,11.

Ganoderic Acid B’s inhibition towards the glucuronidation of TFP
The formation of TFP glucuronide and the chromatography conditions were carried out as previously described12. In brief, the incubation system (200 μL) contains 50 mM Tris-HCl (pH = 7.4), 25 μg/mL lamethicin (from Trichoderma viride), 0.1 mg/ml HLMs, 5 mM MgCl2, 5 mM UDPGA, and various concentrations of TFP and Gaboderic Acid B. The incubation time was 20 min, and the incubation temperature was 37°C. The incubation conditions ensure the linear reaction of TFP glucuronidation. The reaction was terminated with the equal volume of methanol, and the aliquots (10 μL) were used for analysis. The inhibition kinetic type was determined through Dixon plot (Reaction velocity versus the concentrations of Gaboderic acid B), and the inhibition kinetic parameters were calculated using the nonlinear regression equations as followed according to previous literatures13-15: V=(VmaxS)/(Km(1+I/Ki)+S) (1) V=(VmaxS)/(Km+S) (1+I/Ki) (2)

Fig. 1 Concentration-dependent inhibition of Ganoderic acid B towards the therapeutic window of trifluoperazine (TFP).

The severe adverse effects. For example, HIV therapeutic drug indinavir inhibited UGT1A1-mediated bilirubin glucuronidation to induce the elevation of unconjugated bilirubin.

Trifluoperazine (TFP) is a typical antipsychotic of the phenothiazine chemical class, and its major clinical application is to treat schizoaesthesia.1 The adverse effects of TFP contain extrapyramidal reactions (e.g., Parkinson-like symptoms, dystonia, etc.), drowsiness, fatigue, muscular weakness, and hypotension.

According to the reports from Drugs.com website, a total of 1056 drugs can induce the drug-drug interaction (DDI) with TFP. TFP has relatively narrow therapeutic window, and major drug metabolizing enzyme contribute to the metabolism of TFP is UGT1A4. The present study aims to investigate the inhibition of Ganoderic Acid B towards the metabolism of TFP.

Corresponding author:
Tao Liu,
Department of Dermatology,
Tangdu hospital, the Fourth
Military Medical University,
No. 569 Xinsi Road, Xi’an, 710038,
People’s Republic of China
Email: ltfmmu@163.com
Tel: +86-29-84777729
Fax: +86-29-84777729

African Health Sciences Vol 15 Issue 1, March 2015 146

African Health Sciences Vol 15 Issue 1, March 2015

147
Furthermore, the Dixon plot using the 1/reaction velocity versus the concentrations of Ganoderic acid B was drawn to determine the inhibition kinetic type, and the intersection point was located into the second quadrant, indicating the competitive inhibition type (Fig. 2). Through fitting the data using competitive nonlinear fitting equation, the inhibition kinetic parameter (Ki) was calculated to be 56.7 uM.

Fig. 2 Determination of inhibition kinetic type using the Dixon plot. The Dixon plot used the reaction velocity versus the concentrations of Ganoderic acid B. Each data point represents the mean of the duplicate experiments.

Discussion
In vitro incubation system is an useful tool to investigate the metabolic behavior of xenobiotics and metabolism-mediated adverse effects. Through adding different co-factors, the phase I and phase II metabolic pathways can be well separated, and the inhibition behavior towards the metabolism can be studied through co-incubation with another compound. The present study investigated the inhibition potential of Ganoderic acid B towards TFP glucuronidation, and the competitive inhibition of Ganoderic acid B was demonstrated, indicating the utilization risk when co-administration of Ganoderic acid B-containing herbs and TFP. Previous literatures have shown that other herbal components also exhibited inhibitory effects towards the glucuronidation of TFP. Therefore, much attention should be paid to the clinical co-utilization of TFP and Ganoderic acid B-containing herbs.

It should be noted that the glucuronidation reaction of TFP has been widely employed as the probe reaction of UGT1A4. Many endogenous and xenobiotic compounds have been demonstrated to be the good substrates of UGT1A4. For example, UGT1A4 can conjugate 25-hydroxyvitamin D3 (25OHD3) which is a clinical biomarker for assessment of vitamin D status. UGT1A4 majorly contributed to the glucuronidation of tacrolimus which is a potent immunosuppressant. UGT1A4 also catalyzed the metabolic elimination of primary, secondary, and tertiary amines, carcinogenic aromatic amines (β-naphthylamine, 4-amino-biphenyl, and benzidine), androgens, progesterone, and plant steroids (hecogenin, diosgenin, and tigogenin). When Ganoderic acid B-containing herbs were co-administered with these drugs, the potential influence towards the therapeutic window of these drugs might occur.

Conclusion
The potential influence of Ganoderic acid B-containing herbs towards the therapeutic window of trifluoperazine (TFP) was reported in the present study, as indicated by the in vitro inhibition of Ganoderic acid B towards the glucuronidation of TFP. Additionally, many compounds with similar structures with Ganoderic acid B are speculated to be the inhibitors of TFP glucuronidation, and will be investigated in the future.

Acknowledgement
This study was supported in part by National Natural Science Foundation of China (No. 30900772).

References