Effect of low-dose ketamine on post-operative serum IL-6 production among elective surgical patients: a randomized clinical trial.

Tonny Stone Luggya¹, Tony Roche¹,², Lameck Ssemogerere¹, Andrew Kintu¹, John Mark Kasumba³, Arthur Kwizera¹, Jose VB Tindimwebwa¹

¹. Department of Anesthesia Makerere University
². Anesthesia and Pain Medicine Department, University of Washington, Seattle, USA
³. Department of Anaesthesia Mulago National Referral Hospital's

Abstract

Background: Surgery and Anesthesia cause an excessive pro-inflammatory response. Mulago Hospital is faced with staff shortage making post-operative pain management difficult. Interleukin-6 (IL-6) drives inflammatory pain, endothelial cell dysfunction and fibrogenesis. Ketamine is cheap and readily available. We hypothesized that its attenuation of serum IL-6 was a surrogate for clinical benefit.

Materials and methods: Institutional Review Board’s approval was sought and RCT was registered at clinical trials.gov (identifier number: NCT01339065). Consenting patients were randomized to receive pre-incision intravenous ketamine - 0.5mg/kg or 0.9% saline placebo in weighted dosing. Blood samples were collected and laboratory analyzed at baseline, post-operatively in PACU, 24 and 48 hours respectively.

Results: We recruited 39 patients of whom 18 were randomized to the ketamine arm and 21 in the placebo arm with follow up at 24 and 48 hours. Serum IL-6 and IL-1β levels were analyzed using ELIZA assay of pre-coated micro wells. Ketamine suppressed serum IL-6 at PACU with reduced increase at 24 hours. There was no reaction in 98% of IL-1β assayed.

Conclusion: Low-dose ketamine attenuated early serum IL-6 levels due to surgical response with reduced 24 hour increase, but the difference was not statistically significant and we recommend more studies.

Keywords: Ketamine, post-operative inflammation, interleukin 6, interleukin 1- β.

DOI: https://dx.doi.org/10.4314/ahs.v17i2.25

Introduction

Anaesthesia and surgery cause immune system impairment expressed as excessive pro-inflammatory responses leading to exacerbated pain, poor wound healing, psychological stress coupled with complications such as sepsis or acute respiratory distress syndrome (ARDS)¹-⁴. Post-operative pain management remains a challenge even in advanced health systems like the USA, where 50-70% patients experience post-operative pain⁵. Enhanced surgical inflammation and pain is mediated by hormonal and cytokine cascade responses⁶,⁷. Interleukin 6 (IL-6) affects the immune system homeostatic processes with context-dependent pro- and anti-inflammatory properties that have become a prominent target for clinical intervention to improve disease outcome and patient well-being by focusing on how and when to block it⁸. Mulago National Referral and Teaching Hospital (MN-RTH) is Uganda’s only tertiary hospital with a bed capacity of 1500 beds and an accident and emergency department that receives about 48,000 patients per year⁹. There is poor staff motivation, overcrowding, limited quality assurance and a cumbersome procurement system¹⁰. This is compounded by a poorly funded health system due to meagre resources as Uganda is classified as a Low Income Country (LIC) and Heavily Indebted Poor Country (HIPC)¹¹.
Ketamine is an N-Methyl-D-Aspartate (NMDA) receptor antagonist which in low sub-anaesthetic doses produces analgesia by desensitization of sensitized Central Nervous System (CNS) NMDA receptors thus inhibiting pain transmission12-14. Ketamine is used as a ‘third line’ treatment for chronic pain relief when conventional treatments have failed14. It is the favoured induction anaesthetic for non-contraindicated and hypovolemic patients due to its catecholamine release effects and sedation15,16. It also attenuates post-operative delirium after major cardiac surgery17.

Surgical inflammation is consistently associated with IL-6 whose serum levels increase by 1–3 hours, peaking at 4–24 hours and remaining elevated for 48–72 hours18. The greater the surgical trauma, the greater the serum IL-6 response e.g. abdominal surgery produces a bigger response than hip replacement19. Comparatively IL-1\textbeta and TNF are detectable in much lower serum levels than IL-6 after elective surgery although in both haemorrhagic and septic shock, results have shown significantly elevated levels of IL-1\textbeta, TNF and IL-6 with increased risk of ARDS, multiple organ failure and death20-22. Ketamine affects post-operative inflammation in cardiopulmonary bypass by cytokine production attenuation23. We thus hypothesized that pre-incision low dose intravenous ketamine would attenuate post-operative IL-6 and IL-1\textbeta production. This reduction would be a surrogate of good post-operative clinical course as studies showed good post-operative pain reduction when using ketamine as an adjuvant in multi-modal management strategy24.

Materials and methods

This study was approved by the Makerere University’s School of Medicine Research and Ethics Committee (SOMREC) and was registered at clinicaltrials.gov (Identifier: NCT01339065). We conducted a prospective, randomized, double-blind, placebo-controlled trial from January to March 2011 among patients due for elective abdominal or perineal surgery in MNRTH.

We enrolled consenting patients with inclusion criteria of American society of anaesthesiologist (ASA) class 1 and 2, adult Patients (18-70 years) scheduled for elective abdominal or perineal surgery. We excluded hypertensives or those having blood pressures above 140/100 for 3 consistent readings 15 minutes apart, septic or febrile patients(T >38°C), pheochromocytoma patients, neuro-surgery patients, epileptics, emergencies’ or spinal and local infiltration anaesthesia plus those that received intra-operative blood transfusion. Sample size calculation was done using Stuart JP’s formula basing on power of 90% with standard deviation of 75 of post-operative IL-6 level at 4 hours after surgery in the cardiopulmonary bypass study23. This gave us a total patient estimate (N) of thirty (30) with fifteen (15) in each arm.

Randomization and concealment: Participants were randomly assigned according to body weight to receive either ketamine 0.5mg/kg or placebo using blocks of 4. A statistician independent of the study generated sequential random treatment codes using a computer program. To enable blinding, a pharmacist at a separate location pre-mixed the two interventions in similar brand and consistency sterile 10 mls syringes and these syringes had 10 mg/ml colourless solution that catered for a lowest possible weight of 20 kg and highest possible weight of 200 kg. **Concealment** was achieved by labelling each syringe according to the sequential random treatment codes and placed in an opaque carrier bag that was brought to the main operating room (OR) on the morning of surgery.

Procedure: patients were taken through the consent process during the pre-operative visits and at the OR a syringe was blindly picked from the opaque carrier bag in presence of a theatre nurse with its code becoming the patient’s study number. The patients’ baseline weight, blood pressure and temperature were recorded as per flow chart.
In theatre a 5 mls baseline blood sample was collected under asepsis from an accessible vein and was stored at room temperature to allow some clotting before lab centrifuge for analysis. General anaesthesia was induced by slow thiopentone (2mg/kg) bolus, followed by opiate analgesia of intravenous morphine (0.1 mg/kg) and suxamethonium 100 mg for intubation then Isoflurane-oxygen mixture was used for anaesthesia maintenance. At pre-incision, we administered the clear colourless syringe contents to patients according to randomization. Fluid and volume replacement and monitoring were done as per MNRTH OR protocols. Surgery duration was noted and patients were extubated awake at the end of surgery. Post-operatively, patients were monitored in the post-anaesthesia care unit (PACU) where a second 5 mls of blood was collected before transfer back to ward. Patients were followed up at 24 and 48 hours post-operatively also get blood samples for IL-1β & IL-6.

In theatre a 5 mls baseline blood sample was collected under asepsis from an accessible vein and was stored at room temperature to allow some clotting before lab centrifuge for analysis. General anaesthesia was induced by slow thiopentone (2mg/kg) bolus, followed by opiate analgesia of intravenous morphine (0.1 mg/kg) and suxamethonium 100 mg for intubation then Isoflurane-oxygen mixture was used for anaesthesia maintenance. Fluid and volume replacement and monitoring were done as per MNRTH OR protocols. Surgery duration was noted and patients were extubated awake at the end of surgery. Post-operatively, patients were monitored in the post-anaesthesia care unit (PACU) where a second 5 mls of blood was collected before transfer back to ward. Patients were followed up at 24 and 48 hours post-operatively also get blood samples for IL-1β & IL-6.

Data collection and management: Interviewer-administered and pre-tested questionnaires were used for data collection. The data was cleaned, coded, and double-entered into Epidata version 3.1 using Epi-Info 6.04® and analysed using SPSS version 16 (SPSS Inc., Chicago, IL, USA). The participants’ characteristics were summarized using means, medians and standard deviations that were presented using tables and histograms. Categorical vari-
ables were summarized using proportions, percentages and presented using pie charts or bar charts. Our primary specific objective was to determine change in levels of IL-6 inflammatory marker after surgery from baseline, immediately after surgery in PACU, at 24 hours and 48 hours. Our secondary objective was to assess the IL-1β levels at similar time points. Data was analysed using ANOVA or the Kruskal–Wallis tests as appropriate for association between changes of levels of IL-6 and IL-1β with each predictor, proportions compared using chi-square and odds ratios. Data was assessed for normal distribution of variance using normality plots and the Kolmogorov–Smirnov test. Categorical data was analysed using Fisher’s exact test and naive pooled analysis was performed for each subject providing one data point for the fit. A p-value of ≤ 0.05 was considered statistically significant.

Results

We enrolled 39 patients that were randomized to receive 0.5mg/kg of ketamine (18) or 0.9% normal saline placebo (21) respectively. The baseline characteristics were similar in both groups i.e. age, sex, ASA score and type of surgery. The majority of patients were aged 18-28 years (Table 1).

Mean weight was 60 kgs with mean surgery duration of 1 hour (shortest procedure being 20 minutes for examination under anaesthesia and longest being 4.5 hours for ureteroplasty). Statistically no relevant change was noticed in clinical variables of our study participants as vital signs did not deviate from normal values during and after surgery (table 2 and table 3). Gender had no statistically significant bearing on the outcome (p= 0.522).

Table 1: Age characteristics of enrolled patients

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Ketamine n[%]</th>
<th>Placebo n[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-28</td>
<td>4 (25)</td>
<td>10 (43.5%)</td>
</tr>
<tr>
<td>29-38</td>
<td>5 (31.3)</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>39-48</td>
<td>2 (12.5)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>49-58</td>
<td>3 (18.8)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>58-70</td>
<td>2 (12.5)</td>
<td>4 (17.4)</td>
</tr>
</tbody>
</table>

Table 2: Baseline characteristics for study participants

<table>
<thead>
<tr>
<th>Age in years</th>
<th>n (%)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 28</td>
<td>14(35.9)</td>
<td>35.9</td>
</tr>
<tr>
<td>29 - 39</td>
<td>9 (23.08)</td>
<td>23.08</td>
</tr>
<tr>
<td>Over 40</td>
<td>16(41.03)</td>
<td>41.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Ketamine n[%]</th>
<th>Placebo n[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>22(56.41)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>17(43.59)</td>
<td></td>
</tr>
</tbody>
</table>

Mean ±(SD)

<table>
<thead>
<tr>
<th>Clinical Parameter</th>
<th>Before (n +/- SD)</th>
<th>After(n +/- SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP (mmHg)</td>
<td>88.82±8.82</td>
<td>88.82±8.82</td>
</tr>
<tr>
<td>NIBP (mmHg)</td>
<td>127.38/74.08±11.25/12.52</td>
<td>127.38/74.08±11.25/12.52</td>
</tr>
<tr>
<td>HR</td>
<td>86.77±14.76</td>
<td>86.77±14.76</td>
</tr>
<tr>
<td>SPO2</td>
<td>99.41 ± 0.94</td>
<td>99.41 ± 0.94</td>
</tr>
</tbody>
</table>
On sample analysis in the laboratory, we noted that IL-6 levels in the ketamine group dropped from baseline in the PACU while those in the placebo group started increasing. At 24 hours Eliza analysis showed a median IL-6 level increase in both groups with a much higher increase in the placebo group (90+/−167 picogrammes/ml) than in the ketamine group (50+/−285 picogrammes/ml). At 48 hours IL-6 median concentrations showed a drop in the placebo group while the ketamine group remained stable (table 4 and figure 1).

<table>
<thead>
<tr>
<th>COLLECTION TIME</th>
<th>KETAMINE GROUP Median IL-6 pg/ml (n± SD)</th>
<th>PLACEBO GROUP Median IL-6 pg/ml (n± SD)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10 ±167</td>
<td>15 ±261</td>
<td>0.508</td>
</tr>
<tr>
<td>PACU</td>
<td>6.5 ± 232</td>
<td>20 ± 171</td>
<td>0.412</td>
</tr>
<tr>
<td>24 hours</td>
<td>50 ± 285</td>
<td>90 ± 167</td>
<td>0.402</td>
</tr>
<tr>
<td>48 hours</td>
<td>50 ± 316</td>
<td>48 ±54</td>
<td>0.373</td>
</tr>
</tbody>
</table>

Generally, when compared to the ketamine group the placebo group showed IL-6 increase from baseline peaking at 24 hours as illustrated in figure 2. However the above findings had P-value of ≥0.05 which was statistically insignificant. There were no detectable ELIZA readings in 98% IL1-β pre-coated antibodies micro wells analysed. We had no mortality at the end of the study.

Side effects: There was one case of excess salivation after induction which had 0.4mg of atropine administered and suctioning done. We also had a PACU case of awakening hallucination managed with diazepam 1mg.

Figure 1: Median serum IL-6 levels for primary outcome

Figure 2: Showing median changes from baseline readings for IL-6
Discussion

This study was done to determine and compare the effect of pre-incision 0.5mg/kg ketamine on the post-operative serum IL-6 and IL-1 β cytokine levels. We found that ketamine group had an early marked reduction of IL-6 serum levels in the PACU with reduced elevation at 24 and 48 hours when compared to the placebo group, a finding similar to cardiac bypass surgery studies that showed IL-6 serum level reduction over a 7 day post-operative period23. We focused on IL-6, its serum concentration is a good indicator of inflammatory cascade activation and a predictor of subsequent morbidity and mortality21,24,25.

Also cytokine attenuation reduces acute neutrophil infiltration which causes surgical inflammation followed by tissue damage from accumulation of neutrophil-secreted proteases and reactive oxygen-species26.

Ketamine was chosen because it is inexpensive, readily available in MNRTH and it has multiple beneficial properties with regard to modulating inflammation as shown by systematic reviews27. Its other clinical benefits such as its bronchodilator effects are used in ICU to improve severe bronchospasm, asthma exacerbation or status asthmaticus28, and its anti-inflammatory effects render it the drug of choice for use in septic surgical patients29-30.

Surgical tissue damage causes glutamate release sensitizing the central pain pathway by activation of post-synaptic NMDA receptors in the spinal cord, manifesting clinically as heightened pain sensation31 and ketamine’s NMDA blockade hence reduces post-operative pain sensation.

The IL-6 serum level reduction would reduce patients morbidity i.e. pain and infections as it is involved in the acute phase response to injury and infection32. This explains our study’s increased IL-6 levels for both the intervention and control group after 24-48 hours. Our postulated improvement of post-operative clinical course was also strengthened because the NMDA receptor that ketamine antagonises has a role in CNS processing of pain12,31. Cytokine attenuation is also clinically beneficial in the paediatric setting for Neisseria meningitis management with erythropoietin33.

Limitations

Our study limitations include: (a) a small sample size that gave statistically insignificant but remarkable IL-6 serum level reduction, (b) inability to follow up other clinical outcomes past the 48 hours study time.

Conclusion and recommendations

Low-dose ketamine attenuated early IL-6 response to surgery with reduced increase at 24 and 48 hours, but the difference did not reach statistical significance probably because of small sample size and wide variations in IL-6 values.

We recommend further and larger sample sized studies to explore ketamine’s post-operative benefits as pain management remains a challenge in Uganda with inadequate supply of analgesics among anesthetic providers with only 45% having either pethidine or morphine available and 21% never having them available34. In MNRTH this is further compounded by overwhelming patient numbers and glaring staff shortages of a nurse: patient ratio of 1:40 at a given time35.

Competing interests

This was an academic thesis research for Dr. TS Luggya’s Masters of Medicine in Anaesthesia and Critical Care36 and the authors declare that they have no competing interests.

Co-author contribution:

- JMK and TR supervised, guided and reviewed the research.
- LS and A Kintu assisted with patient recruitment, data management, lab follow up and final manuscript proof reading.
- JVBT and A Kwizera helped with conceptualization, proposal development and literature search guidance.

Author’s information/details:

a) TSL: Lecturers in the Department of Anaesthesia and is head of the Mulago Trauma Unit
b) TR: Is an Anesthesiologist at Seattle hospital and Honorary lecturer at Makerere University
c) SL: is a Cardiac and Critical Care Anaesthesiologist at the Uganda Heart Institute
d) JMK: is an Anaesthesiologist and deputy clinical head Mulago Hospital
e) AK and AK are lecturers in the Department of Anaesthesia Makerere University
f) JVBT: is a retired lecturer in the Department of Anaesthesia

Acknowledgement

A vote of thanks goes to the members and colleagues.
in the Department of Anaesthesia, Makerere University and dedicated staff in Mulago hospital. Also to our departments partners; Association of Anaesthesiologists of Great Britain and Ireland (AAGBI) and Global Partners in Anaesthesia and Surgery (GPAS).

References

36. The effect of ketamine on production of inflammatory markers in post-operative patients in Mulago hospital: a randomized clinical trial. Dr Luggya Tonny’s thesis at the Department Anaesthesia, College of Health Sciences of Makerere University.