Anti-inflammatory and antioxidant properties of Eriobotrya japonica leaves extracts

Kammoun Maher^{1,2}, Ben Ali Yassine¹, Bezzine Sofiane¹

- 1. Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax BP1173-3038, University of Sfax, Tunisia.
- 2. Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax BP1173-3038, University of Sfax, Tunisia.

Abstract

Background: In the present work we determined phenolic and flavonoids content of Eriobotrya japonica leaves extracts and fractions and their antioxidant and anti-inflammatory properties.

Objectives: To evaluate the inhibition of inflammatory PLA2 and antioxidant effects of extracts and fractions from Eriobotrya japonica leaves

Methods: Antioxidant activity was evaluated with DPPH radical scavenging assay and anti-inflammatory effect of fractions was measured by their inhibition potency on the human pro-inflammatory phospholipase A2 (group IIA).

Results: The EtOH/EtOAc 2:1 extract exhibited a potent inhibition of the hG-IIA with an IC50 values of 8 μ g/ml. It also shows an antioxidant activity measured on DPPH with an IC50 of 42 μ g/ml. Fractionation shows that CH2Cl2/MeOH 0:1 fraction was the rich one on flavonoids compounds (4.3 mg/g dry weight) and demonstrates a high antioxidant activity with an IC50 of 12 μ g/ml. The anti-inflammatory evaluation demonstrates that the same fraction was the best one to inhibit the pro-inflammatory phospholipase A2 group IIA with an IC50 of 4 μ g/ml.

Conclusion: Study conducted on Eriobotrya japonica shows that CH2Cl2/MeOH 0:1 fraction inhibits efficiently the hG-IIA phospholipase.which is considered as pro-inflammatory enzyme.

Keywords: Eriobotrya japonica, extraction, flavonoids, anti-inflammatory.

DOI: http://dx.doi.org/10.4314/ahs.v15i2.39

Introduction

Eriobotrya japonica Lindl, also known as 'loquat', belongs to the Rosaceae family. This plant is an evergreen shrub or small tree with narrow leaves that are dark green on the upper surface and have a lighter color under surface. It is originated from south-eastern China and later became naturalized in Korea, Japan, India and many other countries.

Leaves of Eriobotrya japonica (LEJ) Lindl (Rosaceae) have been used as traditional medicines for lung and stomach diseases and have been found to be effective in chronic bronchitis, inflammation, asthma, low back pain and tumor.^{1–3,4} Studies have demonstrated that

Corresponding author:

Bezzine Sofiane Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax BP1173-3038, University of Sfax, Tunisia E-mail : sofiane_bezzine@yahoo.com LEJ has anti-inflammatory activity in a 12-O-tetradecanoylphorbol-13-acetate induced inflammation model. These reports strongly suggest that LEJ can be used as an anti-inflammatory agent.

Various triterpenes, sesquiterpenes, flavonoids, tannins and megastigmane glycosides have been found in the LEJ and previous studies showed that some of these components have anti-tumor, antiviral, hypoglycemic, antioxidant and anti-inflammatory properties^{3,5–8}.

During the inflammatory process, macrophages produce nitric oxide, cytokine and pro-inflammatory enzymes such as secreted phospholipase A2 (sPLA2)^{9,10} that catalyze the hydrolysis of membrane phospholipids to produce free arachidonic acid and lysophospholipids. Indeed, several studies showed that sPLA2 are the chief actors on the biosynthesis of lipid mediators in inflammatory cells¹¹. sPLA2 enzymes are a heterogenic family that are divided on 11 groups (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA and XIIB)^{12–14}. The sPLA2 group IIA was initially detected in synovial fluid of patients with rheumatoid arthritis^{15,16}. Several studies demonstrated that the sPLA2 group IIA was involved A2 inhibitors have been discovered and their effectiveness have been proved as a treatment of inflammatory diseases²⁰⁻²².

Because overproduction of these inflammatory mediators might cause inflammatory damage, we focused in the present study on the evaluation of the anti-inflammatory effect of LEJ extracts by measuring the inhibition of the pro-inflammatory sPLA2 group IIA as well as their antioxidant activity.

Material and methods Plant material

Leaves of Eriobotrya Japonica (Rosaceae) (LEJ) were collected in the region from Sfax (Tunisia) in June 2010. The plant was identified by Pr. M. Chaieb (Faculty of Sciences, Sfax University, Tunisia) and a voucher specimen has been deposited in the Chemical Laboratory of Narural Products (Sfax, Tunisia: No. LCSN 108)

Extraction and fractionation of flavonoids

The dry leaves of plant sample were ground to fine powder in a mill, and 100 g of powder was extracted in 1 L of MeOH/H2O 7:3. After filtration, the methanol was removed by evaporation and 250 mL of n-butanol was added. The organic phase was evaporated and the The extract concentration providing 50% inhibition extract was dissolved in 200 mL of EtOH/EtOAc 2:1. The issue sample was separated on four fractions using CH2Cl2/MeOH at 8:2, 7:3, 5:5 and 0:1 proportion, respectively.

Total phenols determination

Total phenols determination of the fractions of Eriobotrya japonica leaves extracts was determined by colorimetric assay according to the method described by 23 . 1 ml of sample at 1 mg/ml was mixed with 1 ml of Folin-Ciocalteu reagent. After 3 min of incubation, 1 ml of saturated Na₂CO₃ solution was added and the 0.055 mM red phenol as colorimetric indicator in 100 volume was adjusted to 10 ml with distilled water. The reaction mixture was kept in the dark for 90 min, after to 7.6. The hG-IIA or the pig pancreatic phospholipase which the absorbance was read at 725 nm. The total phenolic content was determined using gallic acid as a standard.

Determination of flavonoids content

Total flavonoids were determined by following the procedure²⁴. Briefly, 1 mL of aliquots of leaves extracts and fractions were placed in two test tubes, respectively. 7 mL of methanol were added to one tube. In the other one, 1 mL of 2 % ZrOCl2-8H2O and 6 mL of meth-

in inflammatory process¹⁷⁻¹⁹ and many phospholipases anol were added. The solution was mixed again and placed into water bath at 30 °C for 1 h. The absorbance was measured at 420 nm and ΔOD was calculated. The amount of total flavonoids was calculated as a quercitin equivalent from the standard curve (figure 1), and expressed as mg quercitin/g dry leaves plant material (mg/g dry weight).

DPPH radical scavenging assay

The antioxidant activity of LEJ extract and fractions were measured as equivalent of hydrogen-donating or radical scavenging ability, using the DPPH method²⁵⁻²⁷ with some modifications. Briefly, 1.5 mL of DPPH solution at 10-5 M was incubated with 1.5 mL of extracts containing variable amounts of dry weight (between 0.01 and 1 mg). The reaction mixture was shaken and incubated in the dark for 30 min at room temperature. Control experiment was performed as described above without adding any LEJ extract. The OD of the solution was measured at 517 nm. The radical scavenging activity was calculated using the following equation: Scavenging effect (%) =

$$(1 - \frac{OD \ sample}{OD \ control})^{\chi} 100$$

(IC50) was calculated from the plot of the scavenging effect (percentage) against the extract concentration. BHT was used as standard.

Anti-inflammatory activity

The anti-inflammatory activity of extracts was followed by the inhibition of the human inflammatory phospholipase A2 group IIA (hG-IIA). The hG-IIA activity was measured as described by²⁸. Briefly, the substrate consisted of 3.5 mM lecithin (Sigma Aldrich) in a mixture of 3 mM NaTDC, 100 mM NaCl, 10 mM CaCl2 and mL H2O. The pH of the reaction mixture was adjusted A2 group IB (pG-IB) phospholipases were solubilized in 10% acetonitrile at a concentration of 0.02 and 0.002 $\mu g/\mu l$, respectively. A volume of 10 μl of these PLA2 solutions was incubated for 20 min at room temperature with 10 µl of each LEJ extracts and fractions. Then, 1 mL of the PLA2 substrate was injected in the medium, and the kinetic of hydrolysis was followed during 5 min by reading the decrease of OD at 558 nm. The inhibition percentage was calculated by comparison with a control experiment and the IC50 values were determined from the blot. The control experiment contained 10 µl of the enzyme (hG-IIA or pG-IB) and 10 µl of the corresponding organic solvent.

Statistical analysis study

Experimental results were given as mean value \pm SD of three separate experiments. Statistical analysis was conducted using Microsoft Excel software using the Duncan test performed after analysis of variance (ANOVA).

Table 1. Extraction yields of LEJ			
Solvents	Yields (g/100 g dry weight)		
Methanol/water (70/30)	15		
Butanol	12		
Ethanol-Ethyl acetate (2/1)	9		
CH ₂ Cl ₂ -MeOH (8/2)	1.2		
CH ₂ Cl ₂ -MeOH (7/3)	2.4		
CH ₂ Cl ₂ -MeOH (5/5)	3.1		
Methanol	2.3		

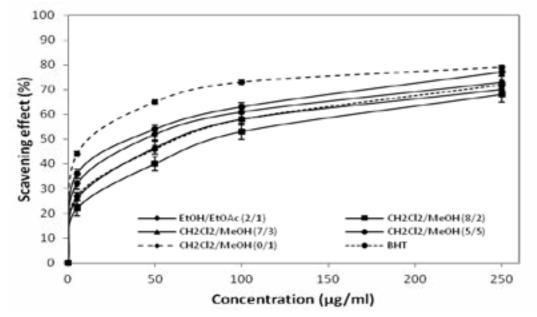
the two species contain 47.5 and 54.9 mg GAEs/g DW Total phenolic and flavonoids content Total phenolic content, expressed as mg GAEs/g DW as phenolic content and 109.3 and 119 mg QE/g DW as and flavonoids content, expressed as mg quercitin/g flavonoids content, respectively. Therefore, the EtOH/ DW of LEJ extracts were presented in Table 2. Results EtOAc 2:1 extract of LEJ was further fractionated into show that phenolic and flavonoids content in EtOH/ CH2Cl2/MeOH (8:2, 7:3, 5:5 and 0:1) soluble fractions. EtOAc 2:1 extract were about 28 mg GAEs/g DW and Results reported in Table 2 show that CH2Cl2/MeOH 7 mg EQ/g DW, respectively. These concentrations (0:1) extract was the richest on phenolic and flavonoids were lower than those from E. japonica cv. Zaozhong compound with 13 mg GAEs/g DW and 4.3 mg QE/g No. 6 and E. japonica Lindl²⁹. These studies show that DW, respectively.

Table 2. Phenolic and Flavonoids content in each fraction and their antioxidant activity.

Component (mg/g ury weight)				
Fractions	Phenolic	Flavonoids	IC ₅₀ on DPPH radical (μg/mL)	
Ethanol-ethyl acetate (2/1)	28 ± 1.3	7 ± 0.52	42 ± 2.1	
CH ₂ Cl ₂ -MeOH (8/2)	2 ± 0.04	0.4 ± 0.03	83 ± 3.0	
CH ₂ Cl ₂ -MeOH (7/3)	5 ± 0.07	0.8 ± 0.03	67 ± 2.4	
CH ₂ Cl ₂ -MeOH (5/5)	8 ± 0.09	1.4 ± 0.08	35 ± 1.7	
CH ₂ Cl ₂ -MeOH (0/1)	13 ± 0.4	4.3 ± 0.1	12 ± 0.8	
BHT	-	-	69 ± 3.2	

DPPH radical scavenging activity

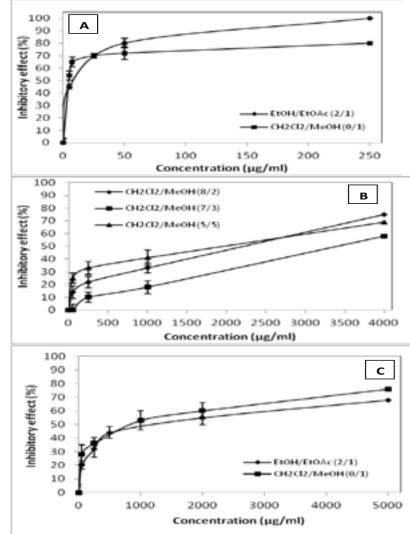
ing this extract, the most potent fraction obtained with The antiradical activities of the extracts were deter-CH2Cl2/MeOH 0:1 shows an IC50 value about 12 µg/ mined using the DPPH free radical assay (figure 2) mL, being 3.5 times more active than the initial extract. and the radical scavenging activities were expressed This result shows that there is correlation between the as the mean of the IC50 values ($\mu g/mL$). IC50 values enrichment of phenolic and flavonoids compounds and and BHT were reported in Table 2. Our results show the antiradical activity. Consequently, we can hypothethat the EtOH/EtOAc 2:1 extracts exhibit a capacity size that phenolic or flavonoids compounds might be to reduce the DPPH with an IC50 of 42 µg/mL. Usresponsible for the antiradical activity.


Results

Extraction yields of plant material

Dried and powdered LEJ were extracted with MeOH/ H2O 7:3 and then fractionated after that with butanol, EtOH/EtOAc 2:1 and CH2Cl2/MeOH at different percentage. Table 1 summarizes the extraction yield of LEJ.

Component (mg/g dry weight)


Figure 2: Radical scavenging activities of LEJ extracts and fractions measured on DPPH.

Evaluation of the anti-inflammatory effect

the ability of these extracts and fractions to inhibit the To evaluate the anti-inflammatory effect, we measured inflammatory hG-IIA (figure 3A, 3B) and the digestive pG-IB (figure 3C) phospholipases A2.

Figure 3: Inhibitory effect of LEJ extracts and fractions on PLA2. A and B: proinflammatory PLA2 (hG-IIA), C: digestive PLA2 (pG-IB).

Results show that the EtOH/EtOAc 2:1 extract in- tially hG-IIA with a relative specificity inhibition factor hibits the hG-IIA PLA2 and the pG-IB with an IC50 of about 150. Fractions from this extract were tested of 8 µg/mL and 1200 µg/mL, respectively (Table 3). for their ability to inhibit these two PLA2 and results This finding proves that this extract inhibits preferenrevealed that CH2Cl2/MeOH 0:1 fraction is the most interesting one (Table 3).

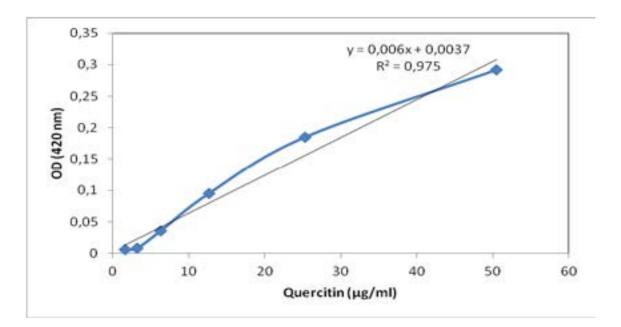

d =C ID =h

Table 3. Inhibitory effect of LEJ extracts on hG-IIA and pG-IB phospholipases.					
Fractions	IC ₅₀ values on hG-IIA (μg/mL)	IC ₅₀ values on pG-IB (µg/mL)	Inhibition specificity (IC ₅₀ pG-IB /IC ₅₀ hG-IIA)		
Ethanol-ethyl acetate (2/1)	8 ± 0.4	1200 ± 50	150		
CH ₂ Cl ₂ -MeOH (8/2)	2300 ± 100	> 5000	> 2.17		
CH ₂ Cl ₂ -MeOH (7/3)	3500 ± 120	> 5000	> 1.42		
CH ₂ Cl ₂ -MeOH (5/5)	1000 ± 40	> 5000	> 5		
CH ₂ Cl ₂ -MeOH (0/1)	4 ± 0.3	800 ± 20	200		

In fact, this fraction inhibits preferentially the hG-IIA hibitory potency of this fraction toward hG-IIA is enzyme with an IC₅₀ of 4 μ g/mL versus 800 μ g/mL 200 times higher than its toward pG-IB. This fraction measured on pG-IB PLA2. To highlight the specificiwas likely able to inhibit preferentially the inflammatoty inhibition of hG-IIA versus pG-IB, we calculate the ry PLA2 (hG-IIA) and not the digestive one (pG-IB). specificity factor [C50 (pG-IB) Moreover, we can strongly suggest that phenolic or flavonoid compounds in CH2Cl2/MeOH 0:1 were re-IC50 (hG-IIA) which is around 200. This value indicates that the insponsible for the hG-IIA inhibition.

Figure 1: Standard curve of quercitin

Discussion

and flavonoids compounds present in LEJ. In fact, sev- Indeed, the ethanol-ethyl acetate (2/1) extract contains eral previous works described the importance of the 28 mg GAE/g DW of phenolic compounds and 7 mg biological functions of these molecules such as antiox- EQ/g DW of flavonoid contents and show an impor-

idant^{24,30-32}, anti-inflammatory^{33,34}, anti-atherosclerot-In this study, we targeted the extraction of phenolic ic^{35,36}, anticancer^{35,37,38} and antimicrobial activities^{39,40}.

tant antioxidant activity measured on DPPH with an Trachelosermum jasminoide show IC₅₀ values of 112, IC50 of 42 μ g/mL. These results are in agreement with 54 and 33 μ g/mL, respectively⁴³. Compared to these those obtained by⁴¹ and²⁴ who reported that there is a works, the fractions that we obtained are more efficient close relationship between phenolic and flavonoid con- to inhibit the pro-inflammatory PLA2 with an IC50 of tent and the antioxidant activity in Eriobotrya japonica $4 \mu g/ml$. extracts.

On the purpose to identify natural anti-inflammatory compounds, several studies were performed using Eriobotrya japonica due to its well known potent anti-inflammatory effects⁴² and these have demonstrated that leaf of Eriobotrya japonica was able to suppress LPS-induced cytokine production in a dose dependent manner. Moreover,⁸ they have proved that water extract of Eriobotrya japonica leaves regulates production of pro-inflammatory cytokines such as TNFa, IL6 and IL8 in mast cells. We also reported in this study that the ethanol-ethyl acetate (2/1) extract of Eriobotrya japonica inhibits the pro-inflammatory PLA2 (hG-IIA) with an IC₅₀ of 8 μ g/mL. The selective inhibition was performed using the digestive PLA2 (pG-IB) and our results reveal that the EtOH/EtOAc 2:1 extract inhibits the pancreatic enzyme with an IC₅₀ of $1200 \,\mu\text{g/mL}$.

This result confirms that the extract inhibits preferentially the pro-inflammatory PLA2 with a relative selectivity factor of 150. These results have encouraged us to split over this extract. On this purpose, liquid-liquid extraction was performed using CH₂Cl₂/MeOH at various percentages. Obtained fractions were evaluated for their phenolic and flavonoids content and their ability to possess antioxidant and anti-inflammatory activities. Results presented in Table 2 show that CH₂Cl₂/MeOH Acknowledgements 0:1 fraction was the richest on phenolic and flavonoids content with values of 13mg EAG/g DW and 4.3 mg EQ/g DW, respectively, and with the most antioxidant effect (IC₅₀ = $12 \,\mu g/mL$). In the same way, this fraction has demonstrated the best capacity to inhibit hG-IIA versus pG-IB with IC50 values of 4 µg/mL and 800 µg/mL, respectively. These results suggest that the phenolic and flavonoids compounds in CH₂Cl₂/MeOH 0:1 are responsible for preferential inhibition of hG-IIA compared to the digestive pG-IB one.

potent natural therapeutic virtues and only few of them were described for their capacity to inhibit the inflammatory PLA2 enzyme. The ethanol extract of the stem of Sinomenium acutum, Spatholobus suberectus and Itoh Y, Yoshida T. Polyphenols from Eriobotrya japon-

Conclusion

The aim of the present study was to evaluate the anti-inflammatory and the antioxidant activities of phenolic and flavonoids content in Eriobotrya japonica leaves. To that end, we performed fractionation of EtOH/ EtOAc 2:1 using CH₂Cl₂/MeOH in different proportions. The evaluation of these fractions shows that a correlation may exist between phenolic and flavonoids compounds and the anti-inflammatory and the antioxidant activities.

So far we are using extract from LEJ and its fraction; the compound responsible for the preferential inhibition of the hG-IIA PLA2 is still not identified. The efforts in purification and identification of active components from LEJ are ongoing.

Abbreviations: IC₅₀: inhibitory concentration at 50 %, sPLA2: secreted phospholipase A2, hG-IIA: human secreted phospholipase A2 group IIA, pG-IB: pig secreted phospholipase A2 group IB, LEJ: leaves of Eriobotrya japonica, DPPH: 2,2-diphényl 1-picrylhydrazvl, CH₂Cl₂: dichloromethane, MeOH: methanol, DW: dry weight, GAE: gallic acid equivalent, QE: quercitin equivalent, NaTDC: sodium taurodeoxycholate

This research was supported by « Ministère de l'enseignement supérieur et de la recherche scientifique-Tunisia » through a grand to « Laboratoire de Biochimie et de Génie Enzymatique des Lipases-ENIS » (Tunisia).

References

1. Kimura T, But PPH, Guo J-X, Sung CK, editors. International Collation of Traditional and Folk Medicine: Northeast Asia. World Scientific Pub Co Inc; 1996.

2. Zhu Y-P. Chinese Materia Medica: Chemistry, Phar-Several studies investigated medicinal plants for their macology and Applications. Harwood Acad. Publ.; 1998.

> 3. Ito H, Kobayashi E, Takamatsu Y, Li SH, Hatano T, Sakagami H, Kusama K, Satoh K, Sugita D, Shimura S,

ica and their cytotoxicity against human oral tumor cell ogy of mammalian secreted phospholipases A2. Annu. lines. Chem. Pharm. Bull. 2000 May;48:687-693. Rev. Biochem. 2008;77:495-520.

4. Banno N, Akihisa T, Tokuda H, Yasukawa K, Taguchi 15. Dennis EA. The growing phospholipase A2 super-Y, Akazawa H, Ukiya M, Kimura Y, Suzuki T, Nishino family of signal transduction enzymes. Trends in Bio-H. Anti-inflammatory and antitumor-promoting effects chemical Sciences. 1997 Jan;22:1-2. of the triterpene acids from the leaves of Eriobotrya 16. Murakami M, Shimbara S, Kambe T, Kuwata H, japonica. Biol. Pharm. Bull. 2005 Oct;28:1995-1999. Winstead MV, Tischfield JA, Kudo I. The functions of

5. Shimizu M, Fukumura H, Tsuji H, Tanaami S, Hayasfive distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secrehi T, Morita N. Anti-inflammatory constituents of topically applied crude drugs. I. Constituents and antory phospholipase A2S are functionally redundant and ti-inflammatory effect of Eriobotrya japonica LINDL. act in concert with cytosolic phospholipase A2. J. Biol. Chem. Pharm. Bull. 1986 Jun;34:2614-2617. Chem. 1998 Jun;273:14411-14423.

6. De Tommasi N, De Simone F, Cirino G, Cicala C, Pizza C. Hypoglycemic effects of sesquiterpene glycosides and polyhydroxylated triterpenoids of Eriobotrya japonica. Planta Med. 1991 Oct;57:414-416.

7. Taniguchi S, Imayoshi Y, Kobayashi E, Takamatsu 1954. Y, Ito H, Hatano T, Sakagami H, Tokuda H, Nishino 18. Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 H, Sugita D, Shimura S, Yoshida T. Production of bisubclasses in acute respiratory distress syndrome. Biooactive triterpenes by Eriobotrya japonica calli. Phytochim. Biophys. Acta. 2009 Oct;1792:941-953. chemistry. 2002 Feb;59:315-323. 19. Granata F, Frattini A, Loffredo S, Staiano RI, Petra-

8. Kim S-H, Shin T-Y. Anti-inflammatory effect of roli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Maleaves of Eriobotrya japonica correlating with attenurone G, Triggiani M. Production of vascular endothelial ation of p38 MAPK, ERK, and NF-kappaB activation growth factors from human lung macrophages induced in mast cells. Toxicol In Vitro. 2009 Oct;23:1215–1219. by group IIA and group X secreted phospholipases A2. J. Immunol. 2010 May;184:5232-5241. 9. Tsukahara Y, Morisaki T, Horita Y, Torisu M, Tanaka M. Phospholipase A2 mediates nitric oxide production 20. Snyder DW, Bach NJ, Dillard RD, Draheim SE, Carlby alveolar macrophages and acute lung injury in panson DG, Fox N, Roehm NW, Armstrong CT, Chang CH, creatitis. Ann. Surg. 1999 Mar;229:385-392. Hartley LW, Johnson LM, Roman CR, Smith AC, Song

10. Granata F, Frattini A, Loffredo S, Del Prete A, Sozzani S, Marone G, Triggiani M. Signaling events involved [[3-(aminooxoacetyl)-2-ethyl-1- (phenylmethyl)-1H-inin cytokine and chemokine production induced by sedol-4-yl]oxy] acetate, a potent and selective secretory cretory phospholipase A2 in human lung macrophages. phospholipase A2 inhibitor: A new class of anti-in-European Journal of Immunology. 2006;36:1938-1950. flammatory drugs, SPI. J. Pharmacol. Exp. Ther. 1999 11. Kudo I, Murakami M. Phospholipase A2 enzymes. Mar;288:1117–1124. Prostaglandins & Other Lipid Mediators. 2002 Aug;68-21. Reid RC. Inhibitors of secretory phospholipase A2 group IIA. Curr. Med. Chem. 2005;12:3011-3026. 69:3-58.

12. Valentin E, Lambeau G. Increasing molecular diver-22. Rosenson RS. Future role for selective phospholisity of secreted phospholipases A2 and their receptors pase A2 inhibitors in the prevention of atherosclerotic and binding proteins. Biochimica et Biophysica Acta cardiovascular disease. Cardiovasc Drugs Ther. 2009 (BBA)- Molecular and Cell Biology of Lipids. 2000 Feb;23:93-101. Oct;1488:59-70. 23. Singleton VL, Rossi JA. Colorimetry of Total Phe-

13. Murakami M, Kudo I. Diversity and regulatory functions of mammalian secretory phospholipase A2s. Advances in Immunology [Internet]. Academic Press; 2001 [cited 2013 Feb 13]. p. 163-194. Available from: http://www.sciencedirect.com/science/article/pii/ S0065277601770174.

14. Lambeau G, Gelb MH. Biochemistry and physiol-

17. Pruzanski W, Albin-Cook K, Laxer RM, MacMillan J, Stefanski E, Vadas P, Silverman ED. Phospholipase A2 in juvenile rheumatoid arthritis: correlation to disease type and activity. J. Rheumatol. 1994 Oct;21:1951-

M, Fleisch JH. Pharmacology of LY315920/S-5920,

nolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965 Jan;16:144-158.

24. Zhou C, Sun C, Chen K, Li X. Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl. Int J Mol Sci. 2011;12:2935-2945. 25. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28:25-30.

26. Chen Y, Wang M, Rosen RT, Ho CT. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum thunb. *J. Agric. Food Chem.* 1999 Jun;47:2226–2228.

27. Naik GH, Priyadarsini KI, Satav JG, Banavalikar MM, Sohoni DP, Biyani MK, Mohan H. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. 2003 May;63:97–104.

28. Lôbo de Araújo A, Radvanyi F. Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon. 1987;25:1181–1188.

29. Hong Y, Lin S, Jiang Y, Ashraf M. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species. Plant Foods Hum Nutr. 2008 Dec;63:200–204.

30. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. *J. Agric. Food Chem.* 2001 Jun;49:2774–2779.

31. Majo DD, Giammanco M, Guardia ML, Tripoli E, Giammanco S, Finotti E. Flavanones in Citrus fruit: Structure–antioxidant activity relationships. Food Research International. 2005 Dec;38:1161–1166.

32. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352.

33. Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 2001 Feb;8:135–153.

34. Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, Smith PT, Shanmugam K, Munch G, Wu MJ, Satyanarayanan M, Vysetti B. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. *BMC Complement Altern Med.* 2012 Oct;12:173. 35. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993 Oct;342:1007–1011.

36. Lee M-K, Moon S-S, Lee S-E, Bok S-H, Jeong T-S, Park YB, Choi M-S. Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorg. Med. Chem. 2003 Feb;11:393–398.

37. Elangovan V, Sekar N, Govindasamy S. Chemopreventive potential of dietary bioflavonoids against 20-methylcholanthrene-induced tumorigenesis. Cancer Lett. 1994 Nov;87:107–113.

38. Ogasawara M, Matsunaga T, Suzuki H. Differential effects of antioxidants on the in vitro invasion, growth and lung metastasis of murine colon cancer cells. Biol. Pharm. Bull. 2007 Jan;30:200–204.

39. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. *Int. J. Food Microbiol.* 2000 May;56:3–12.

40. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents. 2005 Nov;26:343–356.

41. Song F-L, Gan R-Y, Zhang Y, Xiao Q, Kuang L, Li H-B. Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. *Int J Mol Sci.* 2010;11:2362–2372.

42. Lee C-H, Wu S-L, Chen J-C, Li C-C, Lo H-Y, Cheng W-Y, Lin J-G, Chang Y-H, Hsiang C-Y, Ho T-Y. Eriobotrya japonica leaf and its triterpenes inhibited lipopolysaccharide-induced cytokines and inducible enzyme production via the nuclear factor-kappaB signaling pathway in lung epithelial cells. *Am. J. Chin. Med.* 2008;36:1185–1198.

43. Li RW, David Lin G, Myers SP, Leach DN. Anti-inflammatory activity of Chinese medicinal vine plants. *J Ethnopharmacol.* 2003 Mar;85:61–67.