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SUMMARY 

“Modern Anatomy” includes molecular biology which encompasses molecular embryology and 

genetics. Molecular biology is, indeed, rapidly gaining prominence in Human Anatomy 
departments. In the field of assisted reproduction, worldwide success rates culminating in live 
births from in – vitro fertilization are rapidly increasing. The role played by anatomists to this  
solution to the contemporary problem of infertility in Sub-Saharan Africa remains unclear. The 
article outlines the progress of in - vitro fertilization in Nigeria to illustrate the emerging roles of 
the 21st Century Anatomist. In Nigeria, during 1980s, there were only a few dedicated fertility 
centres, located in teaching hospitals. Most of them had no human sperm or gamete banks. 
Research work and full in vitro fertilization work started in Lagos University Teaching Hospital in 
1983, culminating in the birth of the first in vitro fertilization baby in Nigeria and Sub Saharan 
Africa in 1984. Subsequently, the demand for in vitro fertilization services increased 
exponentially. The local sperm and embryo cryopreservation programme was hence initiated at 
Department of Anatomy, Lagos University. These revealed that freezing in ultra-low electrical 
freeze before storage in liquid nitrogen produces a significantly better post – thaw mortality 
after 4 weeks storage. In conclusion, the advent of assisted reproductive technology created a 
definite role for Anatomists and especially embryologists in the field of assisted conception. This 
implies that the 21st Century Anatomist has a huge potential role in applying molecular anatomy 
and other related fields hitherto not in the domain of morphology. 

Key words: In Vitro Fertilization, Anatomist, Nigeria  

 

INTRODUCTION  

Infertility affects both the male and female 
patients equally (Cates et al., 1985; Gerais 
and Rushwan, 1992; Ashiru et al., 1993; 
Dyer, 2007; Maheshwari et al., 2012). The 
treatment, across the world is very 
expensive, and largely unaffordable by 
many patients especially in low-resourced 
areas of the world including parts Africa 
(Okonofua, 2003; Akande, 2008). However, 
all over the world, success rates and live 
births from in vitro fertilisation (IVF) are 

continually on the increase. In Nigeria, prior 
to the birth of baby Olusola Ehosa Oni, 
preliminary scientific work in assisted 
reproductive technologies (ART) started at 
the Lagos University Teaching Hospital 
(LUTH) with the involvement of Professors 
Ashiru of Anatomy Department and Giwa-
Osagie of Obstetrics and Gynaecology 
Department of the College of Medicine 
University of Lagos (CMUL). It is, however, 
noteworthy that in the early 1980s, 

Review 
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research by Professor Ashiru and Dr. 
Abisogun, laid the foundation for IVF 
success. Further research by Profs Ashiru, 
Giwa Osagie, Dr Abisogun, Mr Sanyaolu and 
Mr Aro gave rise to the establishment of full 
human reproductive medicine research and 
assisted reproductive technology at LUTH. 
The research work took about five years 
and culminated in the successful pregnancy 
and birth of Olushina Eghosa 
Oluwaremilekun to the family of Mr and 
Mgrs. Pius Oni (Ashiru et. al., 1986; Giwa-
Osagie et. al., 1988). This pioneering work 
by Ashiru led to the active involvement of 
Anatomists and Embryologist in clinical 
medicine with regards to infertility. 
 
1980-1984   
Robert Edwards and Patrick Steptoe 
pioneering research work in IVF led to the 
delivery of Louise Brown in July 25, 1978 
(Steptoe and Edwards, 1978). The IVF was 

repeated successfully by Drs Howard and 
Georgeanna Jones in the United States and 
Elizabeth Carr was delivered in  
December 28, 1981 by Caesarean section 
(Jones et al., 1984). The first success in 
Africa was  
reported in 1984 by the Nigerian team of 
Professors Giwa-Osagie and Ashiru, Dr 
Abisogun, Mr. Sanyaolu and Mr. Aro. The 
birth of baby Olusola Ehosa Oni in 1989 
followed diligent research work in IVF which 
had commenced in 1983, by the team at 
the LUTH. Their research and success was 
investigated and corroborated by a 
governmental investigative panel of 2 
eminent professors at that time, Professors 
Adeleye and Grillo. The case was titled “IVF 
in Lagos, Nigeria - by Ashiru & Giwa-
Osagie” and presented at Annual meeting of 
The Anatomical Society of West Africa 
(ASWA).  

 

 
 
Ashiru and Blake in 1978 at the University of Nebraska started research in reproductive endocrinology on the effects of 
luteinizing hormone releasing hormone (LHRH) in phenobarbital-blocked rats (Ashiru and Blake, 1978; Ashiru and Blake, 
1979; Blake et al., 1980). LHRH injection into the experimental animals restored their peri-ovulatory follicle-stimulating 
hormone surges. Other notable achievement by Ashiru and Blake in 1979 includes the stimulation of endogenous follicle-
stimulating hormone release during oestrus by exogenous follicle-stimulating hormone or luteinizing hormone at proestrus 
in the phenobarbital-blocked rat (Ashiru and Blake in 1979).  
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Ashiru, Blake, Rush and others continued 
their research using experimental animals to 
elucidate follicle stimulating hormone (FSH), 
luteinizing hormone (LH) and estradiol 
patterns after LHRH infusion in long-term, 
unanesthetized, ovariectomized and 
hypophysectomised rats (Blake et. al., 
1980). The research shed further light on 
the interactions in hypothalamic-pituitary-
ovarian axis in the periovulatory periods, 
showing that there is a significant increase 
in periovulatory plasma gonadotropins in 
the cyclic ovariectomised rat after 
exogenous estrogen and LHRH 
administration. Ashiru, Fagbohun, Dada, 
Blake and others also reported the effects 
of the blockade of the selective increase in 
serum FSH on the oestrous cycles of rats 
(Ashiru and Blake, 1980; Fagbohun, 1990).  
 
At the college of medicine of the University 
of Lagos, with Okalawon and others the 
research continued with the study of the 
effects of food additives including maggi, 
local medications for example chloroquine 
phosphate (CQ, an antimalarial with 
amphiphilic properties), quinine and other 
environmental pollutants like 4-tert-
octylphenol, on the reproductive functions 
of male and female experimental animals 
particularly in the Sprague-Dauley rat. 
Starting from 1992, Okanlawon, Noronha 
and Ashiru carried out series of experiments 
into the effects of CQ on reproductive and 
fertility potentials of male and female rats. 
CQ is known to induce generalized lipidosis. 
The studies suggested an adverse effect of 
administered CQ on the hypothalamo-
pituitary-ovarian axis of the experimental 
animals (Okanlawon and Ashiru, 1992; 
Okanlawon et al., 1993). Using the optical 
dissector (with simple-point sampling of 
linear intercept lengths), the effects of CQ 
on rat testicular morphology were 
described. The rats were injected 
intraperitoneally with CQ and significant 
reductions in testicular weight, sperm 
production, total spermatid count per testis 

and the star volume of the seminiferous 
tubules were noted. They noted, however, 
an increase in the total spermatocyte count 
per testis. These findings suggested that in 
CQ-treated rats there was a significant 
reduction in seminiferous tubular size and 
disruption of spermatogenesis (Okanlawon 
and Ashiru, 1998). Untreated females rats 
mated with treated male rats showed a 
dose-dependent decrease in the number of 
litter per female rat. In-vitro, more than 
80% of spermatozoa were immotile in CQ-
treated media suggesting an antifertility and 
sperm immobilising effects of CQ. It was 
also noted that in the female rat, 
administration of CQ disrupted ovulatory 
cycles; decreased serum oestrogen and 
luteinizing hormone with the exception of 
FSH which was unaltered (Okanlawon et al., 
1993).  
 
Nigeria is the second largest economy in 
Africa and represents the hub of the 
regional West African and sub-Saharan 
economic activity. In the early 1980s, there 
were few dedicated fertility centers in 
Nigeria. Most of the established fertility 
clinics then were located in the teaching 
hospitals; most had no human sperm or 
gamete bank. Research work and full IVF 
started at the LUTH in 1983 with part 
funding for the project from the Rockefeller 
foundation to Professor Ashiru. The 
research work centered on reproductive 
endocrinology and human fertility 
culminating in the delivery of the first IVF 
baby in Nigeria and Sub-Saharan Africa in 
1984. Following the birth of the first IVF 
baby at LUTH, the demand for the service 
by patients increased beyond all 
expectations, the need thus arose to 
develop a local sperm and embryo 
cryopreservation programme at LUTH in the 
Anatomy Department of the CMUL to meet 
the demands. The research conducted by 
Akinola and Ashiru focused on the 
comparisons of semen cryopreservation 
protocols using different concentrations of 
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cryomedia including DMSO and Glycerol. 
The freezing protocols started at sub-zero 
temperatures (-20°C, ultralow-electrical 
refrigerator) to -196°C in liquid nitrogen. 
Fifteen semen samples were collected from 
consenting patients attending our fertility 
clinics for the study. The sperm count range 
was 50 – 200 million/ml and the motility 
ranges from 30 – 82%. The result 
demonstrated that freezing in ultralow-
electrical freezer (-90°C) before storage in 
liquid nitrogen (-196°C) produced a 
significantly better post-thaw motility after 4 
weeks of storage. Thus cryobanking of 
semen samples for assisted conception 
began in the Anatomy department of the 
College of Medicine, University of Lagos 
(Akinola and Ashiru, 1993). 
 
The knowledge gained from several 
researches into the mechanism of ovarian 
sex steroid biosynthesis and research on 
pathophysiology of hypothalamo-pituitary-
ovarian and testicular axis (Beall and 
DeCherney, 2012) has made treatment of 
infertility associated with ovulatory 
dysfunctions and other causes of infertility 
now feasible. The introduction of 
recombinant gonadotropins in the 1980s 
largely replacing urinary-derived human 
menopausal gonadotropin (HMG) made in 
the 1960s has further revolutionized ART 
treatments.  Recent randomized controlled 
trials (RCTs) and metanalysis have 
demonstrated no significant difference in 
IVF outcomes when comparing the use of 
highly purified preparations of HMG for 
controlled ovarian hyperstimulation for IVF/ 
intracytoplasmic sperm injection (ICSI) and 
recombinant FSH (Youssef et al., 2011). 
Afnan (2009), however, suggested a 
significantly higher pregnancy and live birth 
rate with urinary HMG compared to rFSH 
treatment regimes. Furthermore, with the 
advent of ICSI, it is now also possible to 
treat infertility associated with a number of 
previously thought untreatable causes of 
male infertility like severe oligozoospermia.  

 
Through the processes of IVF, about 5 
million live births have been reported so far 
throughout the world, and in Nigeria it is 
estimated that altogether about 4,000 live 
births a year are delivered. Recent 
technology advances in IVF treatments 
including drug modifications, advent of new 
technologies, improvements in IVF 
equipments and expertise have led to better 
successes in outcomes and live births 
following fertility treatment. Improved 
patient selection processes to give patient-
specific treatments, ICSI in selected cases 
(Tournaye et al., 2002; Fauser et al., 2009) 
and the advances in the in vitro culture 
equipments/environment and media 
(Thomas and Pool, 2004; Biggers and 
Summers, 2008) have further increased the 
treatment outcomes. World-wide pregnancy 
and live birth rates per treatment cycle have 
significantly increased from 10-15% in the 
mid to late 1970s to 50-60% lately. 
Interestingly, a number of ways that are 
hitherto social taboos are becoming socially 
acceptable including egg-donation, 
surrogacy, in vitro maturation (IVM) of 
immature oocytes, ovarian tissue/uterus 
transplant and other cutting edge 
treatments have further expanded the reach 
of fertility treatments (Siristatidis et al., 
2011; Meseguer et. al., 2012). Other 
advances and modifications that have also 
occurred include individualisation of 
controlled ovarian hyperstimulation 
treatment processes, monitoring of 
treatment cycles, embryological processes 
and selections, mechanism of embryo 
implantation and cryopreservation (Beall 
and DeCherney, 2012). The live birth rate 
has increased significantly now up to 50% 
or more in well-established fertility clinics.  
 
Suggestions for risk prevention in IVF 
include using, eligible patients, elective 
single embryo transfer, better management 
of controlled ovarian hyperstimulation, and 
close adherence to safe and quality 
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processes. This has resulted in further 
improvements in IVF outcome measures by 
recent optimization in culture techniques, 
media and embryo selection processes 
(Kirkegaard et al., 2012). Interests in the 
ovarian hyperstimulation techniques of 
mildly or minimally hyperstimulating the 
ovaries for IVF have gradually been 
explored in some centers around the world 
and are reported with at least equal success 
rates and in some centers better outcomes 
compared to the conventional IVF (Verberg 
et al., 2009 a,b). Conventional 
superovulation is reported to increase the 
incidence of chromosomal abnormalities of 
embryos (Verberg et al., 2009 a,b). Tarin et 
al. (1990) reported an increased incidence 
of diploid oocytes in patients with high 
response to gonadotrophins. High levels of 
FSH have also been related to the alteration 
of oocyte maturation, increased risk of 
aneuploidies in the MII oocyte (Roberts et 
al., 2005). In addition, high FSH 
concentrations used in the culture media for 
in vitro maturation of oocytes (IVM) 
experiments are reported to increase the 
proportion of aneuploidies in MII oocytes 
(Roberts et al., 2005). More improvements 
in outcome measures and results from 
mild/minimally stimulation of ovaries for IVF 
in centers actively using these techniques 
are awaited. 
 

Oocyte and embryo: Assessment and 

scoring for IVF  

Recent trend in IVF treatment processes 

have concluded that the outcome and goal 

of IVF should be for patients to 

safely/successfully deliver healthy singleton 

live births at the end of the processes 

(ASRM, 2012 a, b). Multiple and higher 

order gestations as a result of IVF 

treatment is a disadvantageous outcome. 

This is largely to avoid the associated 

obstetrics, maternal and fetal morbidity and 

mortality of multiple and higher order 

gestations/ births; and to reduce the 

enormous physical, psychological and 

financial burden on the individual patients, 

their families and the society at large 

(ASRM, 2012a, b). Therefore, selection of 

quality embryos for elective single embryo 

transfer to curtail multiple/higher order 

pregnancy and associated complications, 

look promisingly as the norm in qualified 

patients. Furthermore, the significant 

improvement in the embryo culture 

systems including media, sequential- /co- 

culturing of embryos and equipments gave 

further boost to improvements in IVF 

treatment outcomes. 

The use of proteomics, metabolomics, 

transcriptomics, and other newer non-invasive 

embryo assessment technologies including 

metabolic pathway identifications are still 

largely experimental with little practical 

applications (Katz-Jaffe et al., 2006). The 

non-invasive assessment of human embryos 

in vitro to select quality embryos prior to 

transfer in IVF treatment processes is 

therefore, currently based on their 

morphological features and development 

growth (Balaban et al., 2011).  

Presently, there are many variations from 

one laboratory to the other in the scoring 

processes and no worldwide consensus yet. 

Based on published reports by Hardarson et 

al. (2001) and van Royen et al. (2003), the 

Association of Clinical Embryologists (ACE) and 

the British Fertility Society (BFS) (Cutting et 

al., 2008) recommended the following 

parameters for cleavage-stage embryo 

scoring: a combination of blastomere 

number, size symmetry and the degree of 

fragmentation (Cutting et al., 2008). For 

blastocysts based on the work of Gardner 
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and Schoolcraft (1999a, b) and Stephenson 

et al. (2007), the BFS and ACE suggested a 

three-part grading system looking at the 

expansion status, the inner cell mass and 

trophectoderm morphologies. ESHRE and 

SIG Embryology Atlas project (Gianaroli et al., 

2000) has made conscious efforts to forge a 

common ground and build a worldwide 

agreeable consensus on oocyte, zygote and 

embryo grading system to guide quality 

selection, thereby improve treatment 

successes, facilitates research studies and 

clinical trials comparability of new fertility 

drugs and technologies. Other goals include 

the need for durable international clinical 

and training quality assurance systems for 

oocyte and embryo morphology grading. 

 

Oocyte: Assessment and scoring  

Human oogenesis and embryogenesis is a 

rapidly evolving field. Optimal oocyte mor-

phology consists of a spherical structure 

enclosed in a uniform zona pellucida. It 

normally has a translucent uniform cyto-

plasm without any inclusions and a polar 

body. Generally oocytes grading includes 

the assessment of the oocyte–corona–

cumulus–complex and cytoplasmic / extra-

cytoplasmic dysmorphisms (Balaban et al., 

2011). Abnormalities of the oocyte will have 

grave consequences on its ability to fertilise 

and later preimplantation development. This 

can result in embryos that fail to implant; 

and if implanted are likely to be miscarried. 

Therefore oocyte grading and selection of 

normal oocytes prior to fertilisation in IVF 

will have positive consequences on 

treatment outcomes. Assessment of the 

human oocyte quality is based on the 

nuclear (genetic) and cytoplasmic 

morphology. Any abnomalities in the meiotic 

process resulting in nuclear or cytoplasmic 

dysmorphism of the oocyte before 

fertilization with human sperm impact 

significantly on the implantation of the 

consequent embryos and therefore the 

success of IVF treatment (Van Blerkom & 

Henry 1992; Ebner et al., 2006). The 

intrinsic causes of oocyte dysmorphism and 

its consequent effects on the developmental 

biology of the oocyte and the embryo are 

largely unknown. However, embryos 

generated from a fertilised dysmorphic 

oocyte are reported to have significantly 

poor implantation rate and a higher risk of 

miscarriage (Balaban et al., 2011). 

Significant cytoplasmic anomalies also cause 

poor oocyte fertilising and developmental 

potential. These anomalies are sub-divided 

into intracytoplasmic and extracytoplasmic 

dysmorphisms. Intracytoplasmic 

dysmorphism includes aggregation of 

smooth endoplasmic reticulum, dense 

granulation vacuoles and refractile bodies; 

and extracytoplasmic dysmorphisms (first 

polar body morphology, perivitelline space 

size and granularity, discoloration, zona 

pellucida defects, shape anomalies). 

Abnormal aggregation of smooth-surfaced 

endoplasmic reticulum (sER) in the oocyte 

causes poor calcium signaling and 

mitochondrial functions (Otsuki et al., 2004; 

Ebner et al., 2008; Akarsu et al., 2009) and 

predictably have the worst prognosis. The 

zygotes and embryos generated from these 

oocytes have abnormal developmental 

process, early fetal demise and imprinting 

disorders e.g. Beckwith-Wiedemann 

Syndrome (Otsuki et al., 2004). Compared 

to oocytes derived from controlled 

ovarian hyperstimulation using minimal 

dose of gonadotropins; oocytes derived 
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from cycles stimulated with high dose of 

gonadotropins as in conventional IVF cycles 

are reportedly associated with 

significantly higher abnormalities of 

oocyte attributed to desynchronization of 

nuclear and cytoplasmic maturation of 

the oocyte (Miao et al., 2009). A normal 

fertilized oocyte should be spherical, have 

two polar bodies, and two centrally-

juxtaposed symmetric pronuclei.  

 

Pronuclear embryo  

Grading of embryo to gauge their potential 

development and implantation capabilities 

is at the cleavage and blastocyst stages 

within a fixed time period (usually about 16 

hours) post insemination. For zygote grading 

or scoring cellular polarization, the presence 

of a cytoplasmic halo, the number of 

pronuclei and pronuclear appearance are 

determined, while the expansion rate, 

trophectoderm and inner cell mass 

morphometry are assessed for the 

blastocyst. At the pronuclear stage, the 

determinants of good quality embryos 

include the position and symmetry of the 

pronuclei as well as the number and the 

relative position of the nucleolar precursor 

bodies (NPB). Therefore, in a normally 

fertilized oocyte, the pronuclear embryo 

should possess two similar-sized and closely 

apposed pronuclei that are usually centrally 

located (Balaban et al., 2011) and about five 

to seven NPB. It is pertinent to note that 

pronuclear embryo scoring at days 1 and 2 

provides a good measure of gamete quality 

and scoring embryos at days 3–5 reflects 

more about gene expression, 

differentiation and developmental controls.  

Cleavage stage embryo  

Zygote scoring and assessment using time-

lapse technology is useful to determine the 

cleavage rates and identify abnormal 

morphological changes that are predictive of 

poor processes of embryogenesis, embryo 

quality and implantation potential (Lemmen 

et al., 2008). When assessing zygote or early 

cleavage stage embryo, the developmental 

time difference between those obtained from 

ICSI and standard IVF is paramount, as the 

ICSI process bypasses initial steps of oocyte 

fertilization including (Nagy et al., 1998).  

Cleaving embryos reach up to 7 or 9 cells by 

day 3, usually with <15% fragmentation and 

without any cellular multinucleation. The 

cleavage rates, fragmentation, the presence 

of multinucleation and the relative size of 

the cleavage cells are considered for 

scoring. Optimally cleaving and developing 

embryos with less than 10% fragmentation 

are considered to be good with good 

implantation potential (Van Royen et al., 

2001). Embryos with cleavage rate 

abnormalities (including accelerations, 

stagnations and/or slowing) and those with 

unequal blastomere size, significant number 

of multinucleated blastomere and excessive 

fragmentation (for example >35%) are 

associated with higher risk of chromosomal 

aberrations, poor implantation potential, 

miscarriages and pregnancy failures (Van 

Royen et al., 2003, Magli et al., 2007, 

Munné, 2007). Factors responsible for 

cellular multinucleation include culture 

media temperature (Winston et al., 1991), 

abnormal genetic composition and 

aberrations of the meiotic processes (Munné 

and Cohen, 1993).  

Morula and Blastocyst stage 
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Embryos at Day 4 should have started 

compacting or are fully compacted. This 

process of morulation; must include all 

blastomeres; therefore cellular exclusions 

(especially involving >50% of the cells) 

portends abnormalities of morulation 

usually associated with poor development 

and implantation potential (Tao et al., 

2002). Morular or Day 4 embryos are 

graded good, fair or poor (Balaban et. al., 

2011). An optimal or good morula will be in 

cleavage stage 4, with all cells compacting 

or are fully compacted. Fair grade includes 

those where almost all the cells are 

involved in compaction and those with less 

<50% cellular compactions are graded as 

poor. Parameters considered in blastocyst 

grading include expansion, inner cell mass 

and the trophectoderm morphologies.  

 

Grading / scoring of Blastocyst – 1AA score for an optimally developed blastocyst  

Blastocyst 

expansion 

 

1 Blastocoele <50% of the embryo volume 

2 Blastocoele >50% of the embryo volume 

3 Blastocoele completely fills  embryo volume 

4 Fully expanded blastocyst with zona thinning 

5 Hatching blastocyst 

6 Hatched blastocyst 

 

Inner Cell Mass 

(ICM) 

 

A tightly packed ICM with many cells 

B loosely grouped ICM with many cells 

C ICM with very few cells 

 

Trophectoderm 

(TE) 

 

A many cells forming cohesive epithelium 
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B few cells forming loose epithelium 

C TE with very few cells 

 

 

 

 

 

Embryos and blastocysts at different stages of development 

Research reports on embryogenesis have 

suggested that only few embryos with 

chromosomal abnormalities progress to the 

blastocyst stage (Munné 2007, Sandalinas 

et al., 2001; Magli et al., 2000). With 

extended in vitro culture processes it is 

feasible to monitor the proportion of Day 

2-3 embryos that will progress to the 

morula and blastocyst stages. Extended or 

sequential embryo culturing is often 

considered favourably as surrogate to 

select viable/normal embryos as it 

eliminate embryos with post-meiotic 

abnormalities, but not those with 

aneuploidies, more commonly found in older 

women beyond 35 years of age. 

Chromosomal analysis of surplus 

blastocyst suggested little correlation 

between blastocyst morphology and 

chromosomal abnormalities, therefore, 

extended culturing compared to PGD might 

not be the ultimate screening method to 

avoid selection of chromosomally abnormal 

embryos (especially aneuploid embryos) 

(Schoolcraft et al., 2010; Fragouli et al., 

2010). Compared to embryo morphological 

scoring methods, newer embryo scoring 

using logistic regression modeling to calculate 

cleavage scores significantly predict embryo 

developmental potential, blastulation and 

implantation (Holte et al., 2007). 

 

CONCLUSION  

Further support from by the government, 
practicing reproductive medicine specialists, 
organizations and the society in most 
developing countries is required to optimize 
benefits from recent advancements in IVF. 

2-PN   

 

 

  

2-cell embryo 4-cell embryo Cleaving embryos 

6-cell embryo  

 

 

  

8-cell embryos Early blastocysts Hatching blastocyst 
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Exploitation of infertile individuals or 
couples also presents as a major concern 
that needs to be addressed. A government 
regulatory strategy, akin to the HFEA in UK, 
will protect the society from abuse and 
exploitation of the ART process. In tandem 
with this, recent efforts by the Association 
of Fertility and Reproductive Health (AFRH) 

in Nigeria are directed towards guidance on 
the code of practice of ART treatments for 
local practitioners, provision of a robust 
acceptable code of practice, periodic public 
consultations, periodic revision of the 
practice code in line with cutting-edge 
researches and societal beliefs. 
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