ORIGINAL ARTICLE

PATTERN OF MUSCULOCUTANEOUS AND MEDIAN NERVE COMMUNICATION IN ADULT CADAVERS
Mya Thein Shin, Phone Myint Htoo
Department of Human Anatomy, UCSI University Spring Hill Campus Negri Sembilan Malaysia.
Corresponding Author: Professor Mya Thein Shin. Email: myatheinshin009@gmail.com
ORCID ID: https://orcid.org/0009-0004-1733-0222

ABSTRACT

Background: Variations in connections between the musculocutaneous and median nerves in the arm are not as uncommon as was once thought. Lesions of the communicating nerve may give rise to patterns of weakness that may impose difficulty in diagnosis. Objective: The aim of this study is to determine the variation of the musculocutaneous nerve (MCN) and analyze the incidence of nerve communication between the musculocutaneous and median nerves. Methods: Anatomical dissection was performed in the present work by using 62 arms from 31 adult cadavers, age ranging from eighteen to eighty years, which was donated to Medical Universities in Myanmar. Among the 62 studied arms, 26 arms (41.9%) were male, and 36 arms (58.1%) were female. Results: Nerve variation patterns were seen in four out of 62 studied arms (6.4%) and one arm (1.6%) showed no musculocutaneous nerve. One out of 62 studied arms (1.6%) revealed the musculocutaneous nerve did not pierce the coracobrachialis muscles but communicated with the median nerve in the upper third of arm. One out 62 studied arms (1.6%) revealed a musculocutaneous nerve piercing the coracobrachialis muscle and communicated with the median nerve in the upper third of arm. Communicating branch was found in two upper limbs (3.22%). Conclusion: The knowledge of these variations will allow physicians to correctly interpret anomalous innervation patterns of the upper limb. Keywords: Anatomical variations, Musculocutaneous nerve, Median nerve DOI: https://dx.doi.org/10.4314/aja.v12i3.9

INTRODUCTION

The musculocutaneous nerve, a mixed peripheral nerve, arose from the lateral cord of the brachial plexus (C5, C6, and C7) opposite to the lower border of the pectoralis minor. It pierced the coracobrachialis muscle and then continued distally between the biceps and brachialis and innervated the muscles of the anterior compartment of the arm. At the lateral border of the tendon of the biceps, the musculocutaneous nerve became the lateral cutaneous nerve of the forearm [Sunderland, S, 1978; Snell, 2019]. The muscles supplied by the musculocutaneous nerve include coracobraclialis, biceps brachii, and brachialis. While the branch to the coracobrachialis left the musculocutaneous nerve before it entered the muscle, but branches to the biceps and brachialis left after passing through the muscle [Krishnamurthy et al, 2007; Hayashi M et al, 2017 and Darvishi M, Moayeri A, 2019] description of the anatomical relationships of the musculocutaneous nerve and the motor branches to the biceps muscle had been widely documented in the literature [Linell,1921; Bergman, 1988; Buchanan and Erickson, 1996; Eglseder and Goldman, 1997; Chiarapattanakom et al, 1998 and Sungpet et al, 1998]. Instead of penetrating the coracobrachialis muscle the nerve may pass behind it or between it and the short head of the biceps muscle. Occasionally, the nerve perforates not only the coracobrachialis but also the brachialis or the short head of the bicep's muscles [Bergman et al, 1988; Buchanan T.S, Erickson J.C, 1996; Eglseder and Goldman, 1997; Nakatani et al, 1997; and Prasada et al,2000]. This nerve arises from
The lateral cord (90.5%), from the lateral and posterior (4%), from the median nerve (2%), as two separate bundles from the medial and lateral cords (1.4%), or from the posterior cord (1.4%) [Budhiraja V et al, 2011; Hussain NS, 2016; Nasrabadi HT et al, 2017 and Chrysikos D et al, 2020].

The variations of the musculocutaneous and median nerve may be classified in five types [Le Minor, 1992]. (Fig. 1).

**Type I:** there are no receiving fibers between the musculocutaneous and median nerve.

The musculocutaneous nerve pierces the coracobrachialis muscle and innervates the coracobrachialis, the biceps brachii, and the brachialis muscle.

**Type II:** although some fibers of the medial root of the median nerve unite the lateral root of the musculocutaneous nerve and form the median nerve, other fibers run into the musculocutaneous nerve and after some distance leave it to join their proper trunk.

**Type III:** the lateral root of the median nerve from the lateral cord runs into the musculocutaneous nerve and after some distance leaves it to join their proper trunk.

**Type IV:** the fibers of the musculocutaneous nerve unite the lateral root of the median nerve after some distance, the musculocutaneous nerve arises from the median nerve.

**Type V:** the musculocutaneous nerve is absent. The fibers of the musculocutaneous nerve run into the median nerve along its course. The musculocutaneous nerve does not pierce the coracobrachialis muscle in this type.

Fig. 1. shows illustrations of five types of the musculocutaneous and median nerve. (I-V). [Le Minor, 1992]

Several variations in the course and distribution of the musculocutaneous nerve (MCN) have been reported. Instead of piercing the coracobrachialis muscle, the nerve may adhere to the median nerve for some distance down the arm and then, either as a single trunk or as several branches pass between the biceps and brachialis muscles to supply all three muscles. Sometimes only a part of the nerve follows this course; this part then rejoins the main trunk after it transits through and supplies the coracobrachialis. In
some cases, instead of the whole trunk of the nerve piercing the coracobrachialis, only its muscular branch or only its cutaneous branch, pierces the muscle [Bergman et al, 1988; Venieratos D, Anagnostopoulou S, 1998; Krishnamurthy et al, 2007; Prasada R et al, 2001; Loukas M, Aqueelah H, 2005; Uzel AP et al, 2011; Parchand MP et al, 2016 and Chrysikos D et al, 2020]. The knowledge of the absence of MCN is important especially when performing plexus bloc or Latarjet's procedure [Uzel AP et al., 2011].

The musculocutaneous nerve and the lateral root of the median nerve originate from the lateral cord of the brachial plexus. It is possible that in embryonic development, some nerve fascicles that originally were part of the median nerve were transferred to the musculocutaneous nerve, and through these nerve communications in the arms, these fascicles are recovered by the median nerve [Uysal II et al, 2009, Ballesteros LE et al, 2015].

The communication between the musculocutaneous nerve and median nerve were clinically important, particularly in relation to the correct interpretation of clinical neurophysiology, understanding median and musculocutaneous nerve dysfunction. Variant nerves, having abnormal origin, course, and distribution might be prone to accidental injury and entrapment neuropathies. Lack of awareness of such variations in the median nerve and musculocutaneous nerve might thus complicate surgical repair of the nerves [Sunderland, 1978; Yang et al, 1995; Eglseder and Goldman, 1997; Nakatani et al, 1997; Rosen et al, 1998; Sungpet A et al, 1998; Prasada et al, 2000; Choi et al, 2002; Saeed M, 2003; Guerri RA, 2009; Maeda et al, 2009; Mehta V et al, 2009; El Falougy H et al, 2013; Caetano et al, 2016 and Emamhadi M et al, 2016]. Variable interconnections between the musculocutaneous and median nerves must be considered in the diagnosis of nerve lesions in the axillary and arm regions, making us aware of why debility after trauma to the lateral aspect of the upper arm may be more than expected, and this study considers the clinical and surgical importance of these variations of the MCN.

Anatomical variations of the brachial plexus and especially those of the MCN are quite common. Awareness of these variations is of paramount importance in clinical practice, mainly in achieving the best results in minimal invasive or surgical procedures. Knowledge of such anatomical variations is helpful for surgeons treating neoplasm or repairing trauma.

One of these variations belongs to the musculocutaneous nerve. However, a good knowledge of nerve pathways and their variations is essential for surgeons in posttraumatic evaluation, exploratory interventions, and/or administration of neuromuscular blocks in the axillary region for surgical therapy. Compound musculocutaneous and median nerve neuropathy would occur in lesions of the interconnecting branches. Injury of the musculocutaneous nerves, proximal to these branches can cause particular and unexpected symptoms, such as weakness of forearm flexors and thenar muscles.

The objective of this study is to demonstrate through anatomical dissection in the arms of adult cadavers, to determine the presence of anastomoses (nerve communication) between the musculocutaneous and median nerves and variations of the MC.

**MATERIALS AND METHODS**

It is a dissection-based cross-sectional descriptive study, using adult cadavers (62 arms), among the 62 studied arms, 26 arms (41.9%) were male, and 36 arms (58.1%) were female. Included arms from the Myanmar adult cadavers, age range from twenty to eighty years, which were donated to the Departments of Anatomy, University...
of Medicine 1 and University of Medicine 2, Myanmar. Excluded those with upper limb deformities and those with disease or abnormalities of the upper limb. A straight incision was made in the anterior compartment of the arm following the anterior midline, beginning in the supraclavicular region, and ending in the cubital fossa. Two flaps including the skin and subcutaneous tissue were folded on the medial and lateral sides, respectively. The same was done in relation to the arm fascia, thereby exposing the whole musculature. Dissection was done from proximal to distal, following the median and musculocutaneous nerve, certifying the presence or absence of variation and nerve communication. At the end, all dissections were photographed and cataloged.

Data were collected by a data master sheet and then installed into Statistical Package for Social Sciences SPSS 16.0 software. Data were checked for missing values. Consent was obtained from each family members for the cadavers donated to the Medical Universities for teaching and research purposes.

RESULTS

Nerve variation pattern was seen in 4 out of 62 studied arms (6.4%) (Table 1). One arm (1.6%) showed absence of a musculocutaneous nerve in the right arm of a male cadaver (Fig 2). One out of 62 studied arms (1.6%) revealed the musculocutaneous nerve did not pierce the coracobrachialis muscles in the left arm of the male cadaver (Fig.3). One out 62 studied arms (1.6%) revealed the musculocutaneous nerve did not pierce the coracobrachialis muscle and communicated with the median nerve in the upper one-third of the left arm of the female cadaver (Fig.4). One out of 62 studied arms (1.6%) revealed a musculocutaneous nerve communicating with the median nerve after piercing the coracobrachialis muscle in the left arm of the female cadaver (Fig.5).

Figure 2. Photograph of medial view of the right arm showing absence of musculocutaneous nerve. (a) the lateral cord does not pierce the coracobrachialis muscle, (b) nerve to the biceps brachii muscle arises from the lateral cord, (c) median nerve formation in the mid arm of the right side. (Cadaver No 6, male)

Figure 3. Photograph showing the musculocutaneous nerve did not pierce the coracobrachialis muscle in the left arm. (Cadaver No11, male).
Table 1: Nerve variation pattern

<table>
<thead>
<tr>
<th>Sex</th>
<th>Side</th>
<th>Nerve variation pattern</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case No (6) Male</td>
<td>Right</td>
<td>No musculocutaneous nerve; Median nerve formed at the mid arm; lateral cord supply muscles of the anterior compartment of arm (Figure.2)</td>
<td>1</td>
</tr>
<tr>
<td>Case No (11) Male</td>
<td>Left</td>
<td>Musculocutaneous nerve does not pierce the coracobrachialis muscle. (Figure.3)</td>
<td>1</td>
</tr>
<tr>
<td>Case No (9) Female</td>
<td>Left</td>
<td>Musculocutaneous nerve did not pierce the coracobrachialis muscle but communicated with the median nerve in the upper 1/3 of arm (Figure.4)</td>
<td>1</td>
</tr>
<tr>
<td>Case No (14) Female</td>
<td>Left</td>
<td>Musculocutaneous nerve pierced the coracobrachialis muscle and communicated with the median nerve in the upper 1/3 of arm (Fig.5)</td>
<td>1</td>
</tr>
</tbody>
</table>

DISCUSSION


The most frequently reported variants include (i) the presence of a communicating branch on the median nerve, (ii) the musculocutaneous nerve did not perforate the coracobrachialis muscle. (iii) absence of MCN. According to the above authors, the absence of musculocutaneous nerve was variant. Choi et al (2002) reported the absence of MCN in 5% of cases, in this study, the incidence of unilateral absence of MCN is only 1.6%. In this study, the incidence of communicating branches between MCN and MN is 3.22%. Venieratos and Anagnostopoulou (1998) classified the communication of the MCN and MN in the upper arm into three types. Type I: communication proximal to the entry of the MCN into the coracobrachialis muscle, Type II: communication distal to the coracobrachialis muscle, and Type III: the MCN as well as the communicating branch did not pierce the coracobrachialis muscle. In this study, Type II and III communication were found. Kosugi K (1992) and Guerrin-Guttenberg RA (2009) reported MCN-MN communication incidence higher than 40% of cases, but according to Uysal II (2009), Bhattarai C (2009) less than 15%. Caetano EB et al (2016), Ballesteros LE (2015), and Kervancioglu (2011) recorded nerve communication in 25% incidence in limbs of dissected fetuses. Multiple factors such as the sample size and the biological characteristics of the studied population may interfere with the variability of the results.

In this study, there was no bilateral occurrence of communication between MCN and MN. The low incidence of bilateralism was also recorded by [Kosugi K (1992), Venieratos D and Anagnostopoulou S (1998), Prasada Rao (2000), Choi D et al (2002), Loukas M (2005)]. The present study could place into categories II and III the classification of the above authors. It is useful for orthopedic surgeons while dealing with injuries in the arm and elbow region. Knowledge of these communications may help to explain when a high median nerve paralysis exists in the axilla or proximal part of the arm in a patient presenting weakness of forearm flexion and supination and useful in avoiding unnecessary distal release of the median nerve.

MCN was absent in amphibians and reptiles whose muscles in the upper arm were solely innervated by the median nerve [Prasada and Chaudhary, 2000]. Because of the anatomical findings reported in dogs, monkeys, and some apes, it has been suggested that these communications might present a primitive nerve supply of the anterior arm muscle.

There were several studies in the literature which reported the concurrent occurrence of MCN and MN communication with accessory heads of the biceps brachii muscle. Maeda et al (2009) reported 148 (25.8%) cases of accessory heads of the biceps brachii muscle out of 574 cases, communications between MCN and MN were observed in 71 (48%) of those 148 cases. Kosugi et al (1992) found a third head of biceps brachii in 75 out of 546 arms (13.7%). In 43 arms out of 75 there were communications present between MN and MCN (57.3%). It was concluded that the presence of a supernumerary head seemed to affect the course and branching pattern of the musculocutaneous nerve.

Presence of a third head on the left side and absence of musculocutaneous nerve on the right side were found only in one case in this study (1.6%). The third head associated with the communication between MN and MCN on the same side was not found in this study.

The findings in this study are consistent with the literature concerning to the predominance of unilateral occurrence over bilateral occurrence [Kosugi.K et al, 1992; Choi.D et al, 2002; Loukas.M and

This study describes the presence of Type I MCN-MN communication. This communication is reported by most authors as the most common with an incidence of 45–72%. [Maeda S et al, 2009; Choi D et al, 2002; Venieratos D and Anagnostopoulou S, 1998]. Similarly, the communicating branch that arose from the mid-segment of the MCN (subtype b) indicated by some authors [Bhattarai C, Poudel PP, 2009; Chiarapattanakom P et al, 1998; Maeda S et al, 2009] as the most common one agrees with the findings of this study.

The communications reported by other studies that are present before the MCN pierces the coracobrachialis muscle [Venieratos D and Anagnostopoulou S, 1998; Choi D et al, 2002; Loukas.M and Aqueelah.H, 2005] were not found in this study. It is probably due to the differences of the researcher’s interpretation about how the lateral and medial fascicles form the MN. Most authors only refer that the communicating branch goes from MCN to MN [Venieratos D and Anagnostopoulou S, 1998; Beheiry.EE, 2004; Loukas.M and Aqueelah.H, 2005; Pacha Vicente D et al, 2005; Bhattarai C, Poudel P.P, 2009; Uysal II et al, 2009; Budhiraja V et al, 2011; Krishnamurthy A et al, 2007; Prasada Rao P.V, Chaudhary S.C, 2000], however Type II communication from MN to MCN was not found in this study in 2.8% according to reported in other studies with an incidence of 4.4–12.8%, [Chiapattanakon P et al, 1998; Krishnamurthy A et al, 2007; Maeda S et al, 2009], whereby the communication between MCN and MN may occur both ways.

Most research has made a qualitative description about MCN-MN communication, and only a few prior studies have reported the length of the communicating branch [Elgseder and Goldman, 1997; Loukas.M and Aqueelah.H, 2005; Chitra R, 2007;]. In this study, the length of the communication branch is not measured.

The MCN-MN communicating branch was associated with an additional head of the biceps brachii in 1.6% cases in this study, it has also been highlighted by other authors [Kosugi K, Shibata S et al, 1992; Maeda S et al, 2009; Ozturk N.C et al, 2010]. During the planning of surgical procedures in the arm, it is important to remember that approximately 1 in 4 upper limbs assessed may present an MCN-MN communication associated with an additional head of the biceps brachii.

MCN entrapment is rare. It can occur due to an inadequate positioning of the arm during sleep (Merrell G.A et al, 2001 and Yang L.J et al, 2012) because the coracobrachialis muscle and brachialis muscle act as an anchor point for MCN. If this situation coexists with a communicating branch where a part of MN passes through the coracobrachialis muscle, the clinical signs could be like those found in MN neuropathy in the hand [Wertsch J.J, Melvin J, 1982; EL Falougy H et al, 2013;]. The diagnosis of MCN-MN communication in this clinical presentation by electromyographic methods could prevent unnecessary release of the carpal tunnel.

The MCN-MN communication should be considered for clinical examination of nerve injuries at the axilla and the arm, as well as in surgical procedures on this region like neuromuscular flaps, peripheral nerve repair or even for nerve blocks at the upper extremities in anesthetic practice. The MCN or MN injuries proximal or distal to the
communicating branches could determine beneficial or deleterious modifications in the function and movement of the upper extremity [Loukas.M and Aqueelah.H, 2005; Bhattarai C, Poudel P.P, 2009]. The MCN injury proximal to the MCN-MN communication can lead to an unexpected weakness of the forearm flexor muscles and thenar muscles with clinical signs like those seen in a MN injury at the level of the arm. Furthermore, the MN injury proximal to the MN-MCN communication can lead to a clinical presentation characterized by functional preservation of the forearm and hand muscles innervated by MN [EL Falougy H et al, 2013].

It was well known that MCN innervates the elbow flexors, and function could be improved by intercostal nerve transfer or graft to the musculocutaneous nerve or its motor branches [Samii et al, 1997; Chung I.H, 1998; Millesi H, 1988]. For clinical investigation and surgical treatment of peripheral nerve injury, a more precise knowledge than that found in classical anatomical texts, was necessary. In view of the above applications and the increase in reconstructive brachial plexus surgery, the incidence of communication between the musculocutaneous and median nerves is essential in this study. Spastic flexion deformity of the elbow is mainly mediated by the biceps brachii and the brachialis muscles, innervated by the musculocutaneous nerve. Selective neurectomy of the musculocutaneous nerve showed promising results to relieve excessive spasticity in the long term but lacks a consensual surgical strategy. [Malessy, M.J, Thomeer, R.T, 1998; Merrell G.A et al, 2001; Cambon-Binder A, 2014; Leclercq C and Gras M, 2016].

Such variations have also clinical importance, especially in posttraumatic evaluation and exploratory innervation of the arm for peripheral nerve repair.

Table 2. Incidence of musculocutaneous – median nerve communication in a diverse population according to several authors.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Population</th>
<th>Sample size</th>
<th>MC-MN(%)</th>
<th>MN-MCN(%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosugi et al., 1992</td>
<td>Japanese</td>
<td>75</td>
<td>54.7</td>
<td>–</td>
<td>54.7</td>
</tr>
<tr>
<td>Yang et al., 1995</td>
<td>Singaporean</td>
<td>24</td>
<td>12.5</td>
<td>–</td>
<td>12.5</td>
</tr>
<tr>
<td>Eglseder et al., 1997</td>
<td>American</td>
<td>108</td>
<td>36</td>
<td>–</td>
<td>36</td>
</tr>
<tr>
<td>Chiarapattanakon et al., 1998</td>
<td>Thai</td>
<td>112</td>
<td>11.6</td>
<td>4.4</td>
<td>16</td>
</tr>
<tr>
<td>Venieratos et al., 1998</td>
<td>Greek</td>
<td>158</td>
<td>13.9</td>
<td>–</td>
<td>13.9</td>
</tr>
<tr>
<td>Prasada Rao PV, Chaudhary SC., 2000</td>
<td>Zimbabwe</td>
<td>24</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Choi et al., 2002</td>
<td>British</td>
<td>276</td>
<td>26.4</td>
<td>–</td>
<td>26.4</td>
</tr>
<tr>
<td>Beheiry. 2004</td>
<td>Egyptian</td>
<td>60</td>
<td>5</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Loukas et al., 2005</td>
<td>American</td>
<td>258</td>
<td>46.1</td>
<td>–</td>
<td>46.1</td>
</tr>
<tr>
<td>Pacha et al., 2005</td>
<td>Spanish</td>
<td>46</td>
<td>28.3</td>
<td>–</td>
<td>28.3</td>
</tr>
<tr>
<td>Krishnamurthy et al., 2007</td>
<td>Indian</td>
<td>44</td>
<td>9.1</td>
<td>6.8</td>
<td>15.9</td>
</tr>
<tr>
<td>Bhattarai et al., 2009</td>
<td>Nepalese</td>
<td>32</td>
<td>6.3</td>
<td>–</td>
<td>6.3</td>
</tr>
<tr>
<td>Guerri-Guttenberg et al., 2009</td>
<td>Argentinian</td>
<td>56</td>
<td>53.6</td>
<td>–</td>
<td>53.6</td>
</tr>
<tr>
<td>Maeda et al., 2009</td>
<td>Japanese</td>
<td>453</td>
<td>18.8</td>
<td>12.8</td>
<td>41.5</td>
</tr>
<tr>
<td>Uysal et al., 2009</td>
<td>Turkish</td>
<td>140</td>
<td>10</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>Budhiraja et al., 2011</td>
<td>Indian</td>
<td>116</td>
<td>20.7</td>
<td>–</td>
<td>20.7</td>
</tr>
<tr>
<td>Kervancioglu et al., 2011</td>
<td>Turkish</td>
<td>20</td>
<td>25</td>
<td>–</td>
<td>25</td>
</tr>
<tr>
<td>Ballesteros et al., 2015</td>
<td>Colombiant</td>
<td>106</td>
<td>17</td>
<td>2.8</td>
<td>19.8</td>
</tr>
<tr>
<td>Caetano et al., 2016</td>
<td>Brazil</td>
<td>40</td>
<td>25</td>
<td>–</td>
<td>25</td>
</tr>
</tbody>
</table>
The knowledge of the variations of this communication between the musculocutaneous and median nerves in the distal third of the arm is important in the anterior approach for the fracture of the humerus. This knowledge is also important for the clinicians to avoid unnecessary release of the carpal tunnel by them. Lesions of the communicating nerve may give rise to patterns of weakness that may impose difficulty in diagnosis. Clinical implication of this could be that injury of the musculocutaneous nerve proximal to the anastomotic branch between the musculocutaneous and median nerves may lead to an unexpected presentation of weakness of the forearm flexors and thenar muscles [Sunderland, S. 1978].

CONCLUSION
Variations of the median nerve, musculocutaneous nerve, and their communicating branches are of interest for anatomists and surgeons. These variations may be vulnerable to damage in surgical procedures. It is essential to know these anatomical variations, especially when considering clinical examination, diagnostic, prognostic, and surgical treatment.

This present study provides the evidence of variation of musculocutaneous nerves in Myanmar adults. The knowledge of the anatomical variations of the peripheral nerve system can help explain an incomprehensible clinical sign. In conclusion, this study confirms many aspects of the previously mentioned literature, the better understanding of the variations of MCN, and the presence of a communicating branch to the median nerve that emerges from this study will aid in developing better surgical repair procedures and postoperative results.

Conflict of interest
No conflict of interest

REFERENCES