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ABSTRACT 

Purpose: This paper addresses issues bearing on accuracy neglected by earlier failure theories 

such as Rankine’s and Mohr’s. The overall aim is thus to present a thorough analysis of Mohr’s 

failure criterion and offer an improved model. 

Design/Methodology/Approach: The foundation of the methodology is Mohr’s criterion for 

predicting the failure of brittle isotropic homogeneous materials, built on the foundation of test 

results from three simple cases namely, pure tension, pure compression, and pure torsion. Thus 

the methodology involves first carrying out a critical analysis of Mohr’s model, followed by 

encapsulation of Mohr’s three simple monolithic cases in one generic equation of a circle whose 

parameters can be varied to match specific principal loading conditions more correctly. 

Experimental data are then used to validate the improved model. 

Findings: The work’s output is a material evaluation procedure that consists of a set of simple 

mathematical tests, any one of which predicting failure first, would then indicate the overall 

failure of the structural component under investigation. Results show clearly that this approach, 

i.e. using one parametric generic equation to represent material strength, is not only feasible but 

also robust. It offers an accurate method for predicting the failure of a brittle material under 

complex stresses. 

Research Limitation: Improvised conditions for biaxial data collection were less than ideal.  

Practical implication:  The study recommended that other brittle materials beyond cast iron 

be included in any further studies to broaden the scope of applicability of the findings. 

Social implication: The research adds new literature and findings to an old subject. With this 

new knowledge, bookmakers could shape the way brittle materials are used in engineering 

design.   

Originality / Value: The value of the study lies in the fact that to date very few failure theories 

exist that cater fully satisfactorily to brittle materials. The rigour of the methodology confers 

potential for its application beyond brittle materials. 
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INTRODUCTION 

This paper intends to develop an improved criterion of failure for brittle homogeneous isotropic 

materials. The first credible failure criterion was proposed by Coulomb in the 1800s for 

isotropic materials under three-dimensional stress conditions. A hundred years later Mohr 

reformulated Coulomb’s criterion into the Coulomb-Mohr form within the context of his 

famous “Mohr’s Circle”. Despite being easy to use, it is an unsatisfactory representation of the 

failure behaviour of engineering materials due to its failure to account for many physical 

effects.  

 

After Coulomb-Mohr, there have been many attempts to develop criteria that apply to both 

ductile and brittle materials. These works include a two-parameter yield criterion in principal 

stress space by Yu and Wang (2019), a strain-energy-based criterion by Lazzarin, Campagnolo 

and  Berto (2014); paraboloid criteria distinguishing between tension and compression effects 

(Gu & Chen, 2018a, 2018b); criteria involving convex failure surfaces by Giraldo-Londoño 

(2020) and Qu, Zhang, Zhang, Liu and  Zhang (2016); failure prediction fusing size effects by 

Zheng, Wang,  Jiang,  Wan, and  Meng  (2022); a nonlinear criterion based on fracture (Wang, 

2022; Zuo et al., 2021)); a failure initiation criterion (Yosibash and  Mittelman, 2016; Yosibash, 

Mendelovich, Gilad & Bussiba, 2022); failure of pre-cracked materials by Vasiliev (2021); 

analysis of brittle materials via indentation by Wu et. al (2019); a unified finite strain continuum 

for quasi-brittle materials by Sun and Xiang (2022) and a 3-D failure initiation criterion for 

elastic brittle structures by Yosibash and  Mittelman (2016). Jeong (2012) investigated a stress-

based method applicable to mechanical structures, while Yu (2019) proposed a theory based 

on material configuration forces. Tiraviriyaporn and  Aimmanee (2022) evolved a criterion for 

isotropic materials using energy formalism while Pereira, Costa, Anflor,  Pardal, and 

Leiderman (2018) employed a method based on a comparison of numerical and experimental 

results.  
 

In a further attempt to bridge the gap between failure criteria for ductile and brittle materials, 

Christensen published a series of papers (2016, 2018, 2019) developing a three-dimensional 

stress-based failure criterion for homogeneous isotropic materials, establishing strength 

relationships among shear (S), tension (T) and compression (C) and linking strength properties 

and Poisson's ratio through a concept of associated flow to assess failure potential of certain 

material-load regimes. His theory (Equation 1), built primarily on the von Mises criterion, states 

that failure occurs when the combined normalized stress effect exceeds 1. For brittle materials, 

Christensen’s criterion seems more conservative (indicating the possibility of overdesign) for 

pure tensile stresses in the first quadrant than both the Maximum Normal Stress and 

the Coulomb-Mohr criteria. Under mixed (tension and compression) loadings it falls between 

these two criteria. For compression loadings a, large room exists for prediction errors.  

https://www.sciencedirect.com/topics/engineering/ductile-failure
https://www.sciencedirect.com/science/article/pii/S1674775522001172#!
https://www.sciencedirect.com/science/article/pii/S1674775522001172#!
https://www.sciencedirect.com/science/article/pii/S0013794422002533#!
https://www.sciencedirect.com/science/article/pii/S0013794421004914
http://www.failurecriteria.com/Failure_Criteria_Site/AboutTheAuthor.html
http://www.efunda.com/formulae/solid_mechanics/failure_criteria/failure_criteria_ductile.cfm#vonMises
http://www.efunda.com/formulae/solid_mechanics/failure_criteria/failure_criteria_brittle.cfm#MaxStress
http://www.efunda.com/formulae/solid_mechanics/failure_criteria/failure_criteria_brittle.cfm#Mohr
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Even though a large number of failure criteria now exist, the maximum distortion energy, the 

maximum shear stress, and the Coulomb–Mohr criteria (Yu, 2019; Barsanescu, 2017) are the 

most commonly used and referenced by engineers and scientists globally. Nevertheless, there 

exists a paucity of theories relating to brittle materials despite the prominent, long-standing 

maximum principal stress theory, by Rankine.  Rankine’s major issues are its failure to account 

for stress differences and significant dissimilarities in the tensile and compressive behaviour of 

brittle materials.  A good attempt at addressing these issues was made by Mohr in his modified 

theory for brittle materials. Like Rankine, Mohr's theory treats shear stresses sub-optimally in 

the 2nd and 4th quadrants of the principal stress diagram.  

 

Despite the extensive nature of the above works none has proven satisfactory enough regarding 

indicators for ductile-brittle differentiation. This paper intends to develop an improved criterion 

of failure for brittle homogeneous isotropic materials using Mohr’s criterion for brittle materials 

as a starting point. The authors now turn to a detailed review of this theory (Figure 1). 

  

Mohr’s modified shear stress theory (the internal friction theory) for brittle materials 

For brittle materials, Mohr proposed a three-circle construction based on his stress circle in the 

application of the maximum shear stress theory (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mohr’s theory on σ-τ axes 

 

These circles are those for pure tension, pure compression, and pure shear, tests that can be 

easily performed in the laboratory. Failure is indicated when a loaded material’s stress circle 

cuts into the dotted envelope. Figure 2 gives a visual impression of Mohr’s modified criterion. 

 

 

https://www.sciencedirect.com/topics/engineering/maximum-shear-stress
https://www.sciencedirect.com/science/article/pii/S0020740322004313#bib0001
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Figure 2. The theoretical expression of Mohr’s theory  

 

Equations (1) and (2) represent the mathematical expression of Mohr’s modified criterion for 

a point in the 4th and 2nd quadrants. 

|𝜎1|

𝜎𝑓𝑡
+

|𝜎2|

𝜎𝑓𝑐
< 1          (1)                       

|𝜎1|

𝜎𝑓𝑐
+

|𝜎2|

𝜎𝑓𝑡
< 1         (2) 

 

Figure 3 portrays some critical stress scenarios relating to Mohr’s theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Possible failure by shear (Circle F, superimposed), not considered by Mohr  

Mohr’s theory, while certainly an improvement on the maximum principal stress criterion, 

suffers from the following issues: 
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1. Equations 1 and 2 lack rigour and accuracy. Owing to simplifying assumptions in their 

derivation, the model excludes certain stress combinations that could cause failure. The 

line GFE, if it were superimposed on the original plot in Figure 1, would exclude a 

portion of the pure-shear circle, which supposedly must be fully contained within the 

failure envelope. Mohr’s presupposition of tangents is not necessarily true. 

2. Equations 1 and 2 may fail to predict failure under some specific loading conditions, 

especially when the principal stresses are equal, or very nearly equal in magnitude but 

carry opposite signs (Circle F in Figure 3).  

3. It does not consider the limits of the application of Mohr’s stress circle, whose 

mathematical representation can best be described as a theoretical calculating formula. 

The maximum shear stress corresponding to Circle E in Figure 3 violates physical 

reality since it indicates that τmax can be greater than the material’s strength in pure shear 

as depicted by circle C. Likewise, in the tension domain τmax (= σft/2) is often unequal 

to the material’s strength in pure shear. A more realistic representation of the three 

monolithic strengths would be an ellipsoid. 

4. It does not consider the irregular behaviour of brittle materials regarding the τmax 

indicated by Mohr’s stress circle and the actual shear strength, τf of the material. 

 

Thus the absence of a satisfactorily rigorous theory for brittle materials taking full account of 

shearing effects and the unrealities of Mohr’s circle has been demonstrated and the need for a 

viable representation is established. The purpose of this work is to develop an improved 

procedure which, while offering failure prediction of brittle materials with a fair level of 

accuracy, addresses the above issues of Mohr’s criterion as well in the process. This is done by 

evolving a suitable representation of the stress state of the complex system and comparing it 

with Mohr’s model using experimental data to reveal the improvements.  

 

The next sections deal with the methodology, failure modelling, results, discussion of results, 

and conclusions drawn from the results. 

 

METHODOLOGY  

In the methodology for this work, a critical analysis of Mohr’s model is first carried out by 

encapsulating Mohr’s three simple monolithic cases in one generic equation of a circle whose 

parameters are then varied to suit specific principal-stress loading conditions. This leads to the 

development of a procedure involving a set of tests to be performed on several equations to 

determine the failure status of the material. Experimental data are then used to validate the 

proposed model which, as a double check, is then compared with the Mohr criterion. 

 

Data for model validation came from uniaxial and bi-axial tests, performed using a standard 

universal testing machine (INSTRON 8801) improvised to enable bi-axial recordings.  
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Several materials were employed: ASTM 30, ASTM 40, ASTM 50, Grey Cast Iron ASTM, 48 

and BS 1452 Grade 250 continuous-cast grey cast iron with the following properties from the 

supplier: E, Young’s Modulus, = 39 000 MPa and σUT, ultimate tensile strength, = 290 MPa. 

Regarding the last material, outputs from the lab experiments (some for confirmation) include 

Young’s Modulus, ultimate tensile strength, maximum load, tensile strain at rupture, and shear 

strength. Uniaxial tests are natural to the machine and easy to perform but the biaxial tests 

required improvisation to adapt the machine to enable measurement of strains in the second 

(lateral) dimension with strain gauges.  

 

The test samples were prepared square in shape 12 mm x 12 mm and the material was loaded 

biaxially in two perpendicular directions to obtain two principal strains. Principal stresses σ1 

and σ2 stress were then calculated from σ = Eɛ using the average value of E outputted by the 

machine during the strength determinations. Table 1 lays out partial data for the biaxial cases, 

while Figure 4 displays graphically an example of loading in this regime.  

 

Table 1: Biaxial loading cases (with exception of row 1) 

Case  Specimen Strain ɛ2 Stress σ2 (MPa) Stress σ1 (MPa) 

1   3 0 0 328 

2  7 10 x 10-6 0.43 316 

3  8 420 x 10-6 16.8 219 

4  9 170 x 10-6 7.3 288 

5  10 330 x 10-6 14.1 297 

Data source: Experimental tests (Biaxial) 

 

MODELLING AND RESULTS  

Analysis of Different Principal Stress Systems and Comparison with Mohr’s Model   

We begin this section by considering that since the three circles forming the basis of Mohr’s 

approach depict, in effect, material strengths, we would represent them with one generic 

equation of a circle containing parameters that can be adjusted to suit specific loading 

conditions. 
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Figure 4: Biaxial tension-compression loading results (Specimen 10) 

 

In what follows, τmax is the maximum shear stress indicated by Mohr’s stress circle, and a is the 

variable centre of this circle.  Then the generic equation representing the three simple cases in 

Figure 3 is: 

𝜏2 + (𝜎 ± 𝑎)2 = 𝜏𝑚𝑎𝑥
2                (3) 

and a is given as 

𝑎 =
(𝜎1+𝜎2)

2
                      (4) 

It is easily observed that as a approaches zero (i.e. the σ-τ axes origin), torsional effects become 

overriding and important, especially if σ1 approaches the failure stress, σft, at the same time. 

Various load regimes are now considered under different categories as follows: 

 

Category 1: Monolithic Loading Conditions (pure shear or tension or compression) 

Case 1.1(pure shear) 

If a = 0 (pure shear) then σ1= -σ2  = τmax, and the failure criterion must be  

σ1 =  -σ2 =  𝜏max = 

𝜎1−𝜎2

2
  ≥ τf         if  σ1 =  < σft   

 

or     σ1 ≥ σft or  σ2 ≥ σfc ,    otherwise;   

 

where σfc and τf are the ultimate strengths of the be material in pure compression, and pure 

shear, respectively. A possibility remains that σ1 could be less than σft (Region DA in Figure 3), 

and yet failure would still occur on account of shear stresses. 
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Case 1.2 (pure tension) 

If a ≠ 0, but σ1> 0 and σ2 = 0 (pure tension), then and τmax = σ1/2 = σft /2, and the failure 

criterion must be  

σ1 ≥ σft 

Case 1.3 (pure compression) 

If a ≠ 0, but σ2 < 0 and σ1 = 0, (pure compression), then ignoring the unrealities of Mohr’s stress 

circle regarding the shear stress by noting that the indicated τmax in Mohr’s stress circle cannot 

be greater than τf, the failure criterion is 

 

|σ2| ≥ |σfc|      or    τmax =  |σ2|/2 ≥ τf, 

whichever happens first. 

 

Category 2: τmax out of a plane  

Case 2.1 (Non-zero principal stresses having positive sign) 

If a ≠ 0, but then σ1, σ2 > 0, then the failure criterion, with σ1 assumed greater in magnitude, is  

σ1 = σft  or  τmax = σ1 /2 ≥ τf   

 

Case 2.2 (Non-zero principal stresses having negative sign) 

If a ≠ 0 and σ1, σ2 < 0, then the failure criterion (with σ2 assumed greater in magnitude) is  

  |𝜎2| ≥ |𝜎𝑓𝑐|   or   τmax = |σ2|/2 ≥ τf 

 

Category 3: Principal stresses unequal, with opposite signs (Second/ fourth quadrants) 

To overcome the shortcomings of the Coulomb-Mohr failure criterion in the 2nd and 4th 

quadrants, we adopt a different approach than we did above. We will adopt the expression  
 

σ1eq = σ1 + νσ2               (5) 

to create the equivalent unilateral stress in the direction of σ1. Here ν is the Poisson’s ratio for 

the material. We now formally state the proposed criterion for this category as follows: 

If a ≠ 0 but σ1 > 0 and σ2 < 0, or σ1 < 0 and σ2 > 0, then if  |σ2|<|σ1|, the failure criterion is 

 

σ1eq  ≥ σft           or         τmax = 
(𝜎1−𝜎2)

2
≥ 𝜏𝑓.   

But if  |σ2|>|σ1| then it is 

| σ2eq | = | σfc |           or         τmax = 
(𝜎1−𝜎2)

2
≥ 𝜏𝑓  
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This gives   

σ1eq = σ1 + νσ2 ≥ σft               (6) 

or, considering the lower limit,  

σ2P = (σft - σ1)/ν               (7) 

Equation (7) is then employed to determine the value of lateral stress that would mark the 

lower failure boundary, similar to Mohr’s polygon boundary value, σ2M. In tables 2 and 3 this 

is designated as σ2P in a column heading. 

 

Application 

To apply the proposed criterion after determining the principal stresses,  

1. Calculate a is the centre of the prevailing circle 

2. Determine if σ1= σ2         or   σ1 > σ2      or    | σ1| < |σ2|         

3. Select the appropriate category from the above case list 

4. Apply the remainder of the test procedure to determine failure status or potential. 

 

Model Validation  

The proposed model is now validated using standard data. 

The mathematical representation of Mohr’s criterion can be expressed as: 

𝜎2𝑀 =  |
𝜎𝑓𝑐

𝜎𝑓𝑡
| 𝜎1 − |𝜎𝑓𝑐|            (6)           fourth quadrant, 

𝜎2𝑀 =  |
𝜎𝑓𝑡

𝜎𝑓𝑐
| 𝜎1 − |𝜎𝑓𝑡|            (7)          second quadrant. 

A point in the second or fourth quadrant will fall outside Mohr’s hexagon (not shown), 

indicating failure, if its absolute value is greater than σ2M in equation (5) or (6), respectively. 

Table 1 displays results for various brittle materials of measured tensile, compressive, and, in 

some cases, shear strengths under specific principal stress loading conditions. The values in 

column 7 are determined from Equation (5) or (6), whichever applies. 
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 Table 2. Indications of the possibility of failure under specific principal stress load regimes of selected materials of measured tensile, compressive, and/or shear 

strength (C: compression basis; T: tension basis; S: shear basis) 

 

Material  Ultimate Strengths 

(MPa) 

Principal 

stresses 

σ1, σ2 

(MPa) 

Max. shear 

stress 

σ2M, Mohr 

polygon 

boundary  

(MPa) 

σ2P   from 

proposed 

model 

(MPa) 

Experimental 

test results 

with σ1 and σ2 

Failure Predicted?  

 Yes(Y)/No(N) 

σft σfc τf 
τmax 

(MPa) 

Mohr   Improved 

model 

1 

 

Gray Cast 

Iron 4.5% C, 

ASTM A-48 

80 -200 - 
σ1 = 32 

σ2 = -112 

 

72 -119.7 -165.5 No failure N N 

170 -655 240 
σ1 = 100 

σ2 = -300 
200 -269.7 -241.4 Failure Y Y 

80 -200 - 
σ1 = 68 

σ2 = -38 

 

53 -29.6 -41.4 No failure Y N 

60 -120 - 
σ1 = 40 

σ2 = -70 

 

55 -40 -69 Failure Y Y 

2 ASTM 30 210 -750 276 

σ1 = 150 

σ2 = -300 

 

 

225 

 

-214.3 -206.9 Failure Y Y 

4 ASTM 40 280 -970 393 

σ1 = 200 

σ2 = -300 

 

 

250 

 

-277.1 -275.9 Failure Y Y 

5 ASTM 50 345 -1130 503 

σ1 = 214 

σ2 = -400 

 

 

307 

 

-425.8 -451.7 No failure N N 
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DISCUSSION 

Of the large number of failure criteria now exist, the maximum distortion energy, the maximum 

shear stress, and the Coulomb–Mohr criteria are the most commonly used and referenced by 

engineers and scientists globally (Yu, 2019; Barsanescu, 2017).  

 

Examining the results in Table 1, it can be seen from rows 3, 5, and 7, that τmax or σ1 or σ2 do 

not have to equal or exceed the material’s respective strengths before failure can occur. It is 

commonly acknowledged that failure depends not only on the properties of the material but 

also on the stress system to which it is subjected (Injeti et al, 2019). This is the essence of 

quadrants 2 and 4 of the principal stress diagram, where Mohr's modified criterion for brittle 

materials performs sub-optimally (Gu & Chen, 2018). A recent model developed by 

Christensen (2018) is more consistent in these quadrants than Mohr but is prone to error 

regarding quadrant 1, probably due to hydrostatic complications. Christensen’s (2016) theory 

states that failure occurs when the combined normalized stress effect exceeds 1, with an 

additional constraint for brittle materials that says no principal stress shall exceed the tensile 

strength of the material. The inference to be drawn is that whereas Christensen’s criterion 

represents an improvement on the Coulomb-Mohr form, the proposed criterion, in turn, 

improves upon Christensen’s since it covers all four quadrants.  

 

Examining Table 1 once again, and judging from the data in row number 3, it is difficult to 

identify the prevailing mode of failure since all indicated stress values are significantly below 

the material’s strength; however, since the least Factor of Safety (FS) among the three entries 

in this category is (-241.4)/(-300) = 0.805, one might be justified to conclude that the failure 

mode is tensile. Any issues stemming from hydrostatic tension and compression effects on 

brittle materials as discussed by Gu and Chen (2018a, 2018b) are addressed by the proposed 

theory since its results apply to all four quadrants of the principal stress diagram. 

 

The outputs from both the proposed and Mohr models correlate well with the experimental test 

results, but the proposed model is cast strongly as a more accurate predictor of failure. If one 

were to allow a small margin of tolerance, say ± 2 MPa on the magnitude of the principal stress, 

then the -41.4 MPa stress in row number 4 would be seen to fall within this margin of error if 

compared with the corresponding principal stress value of 38 MPa. If this was done, the 

proposed model would turn out 100% in agreement with the test results. 

 

Finally, Table 3 isolates grey cast iron 4.5% ASTM A-48 for further analysis under a different 

loading regime. Two parameters are considered as follows:  

 

Case 1: Extent of correlation with test data 

https://www.sciencedirect.com/topics/engineering/maximum-shear-stress
https://www.sciencedirect.com/topics/engineering/maximum-shear-stress
https://www.sciencedirect.com/science/article/pii/S0020740322004313#bib0001
http://www.efunda.com/formulae/solid_mechanics/failure_criteria/failure_criteria_brittle.cfm#Mohr
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Referring to the last three columns of Table 3 there are strong indications that the proposed 

model correlates well with the test data.  Whereas Mohr’s model is at variance with the test 

results in three places, the proposed model delivers 100% correlation with them. 

 

Case 2: Efficiency 

It can be easily noticed that the proposed model tends toward conservative results, indicating 

greater accuracy; and where both models correctly predict failure, the proposed criterion does 

so with a smaller margin of error, a fact which renders it more efficient. 
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Table 3. Indications of the possibility of failure under various principal stress load regimes for one material of measured tensile, compressive, and shear strength 

(C: compression basis; T: tension basis;  S: shear basis) 

Material  Ultimate Strengths 

(MPa) 

Principal 

stress 

σ1, σ2 

(MPa) 

Max. shear 

stress 

σ2M, Mohr 

polygon 

boundary 

point (MPa) 

σ2P   from 

improved 

model 

(MPa) 

Experimental 

test results 

with σ1 and σ2 

Failure Predicted?  

 Yes(Y)/No(N) 

σft σfc τf τmax 

(MPa) 

Mohr   Improved 

model 

A 

   

B 

  

C 

   

D 

     

E 

 

F 

      

Gray Cast 

Iron 4.5% 

C, ASTM 

A-48 

170 -655 

     

 

240 

 

 

σ1 = 50 

σ2 = -250 
150 -462.4 -413.8 N N N 

σ1 = 75 

σ2 = -200 
137.5 -366.0 -327.6 N N N 

σ1 = 100 

σ2 = -250 
175 -269.7 -241.4 Y N Y 

σ1 = 125 

σ2 = -150 
212.5 -173.4 -155.2 N Y N 

σ1 = 150 

σ2 = -150 
150 -77.1 -69.0 Y Y Y 

σ1 = 200 

σ2 = -110 
150 -115.6 -103.4 Y N Y 
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CONCLUSION 

 Several issues were raised with Mohr’s method of failure prediction for brittle materials, and 

the proposed failure prediction criterion, more transparent and rigorous, has been shown to 

contribute to correcting these issues. 

 

In summary, the proposed model is a procedure consisting of a set of tests applied in turn until 

failure is indicated by one of them. Variations between the proposed model and Mohr’s 

criterion are in respect of the mode of representing and handling primary data and the 

adjustments in the relationships among the three fundamental stress circles necessary to 

accommodate the peculiarities of brittle material under specific principal loading conditions. 

The irregular behaviour of cast iron and other brittle materials means complete test data for 

shear strength must be available before a full evaluation of the failure potential of such materials 

under complex loading can be made. This would add more rigour to the investigation as both 

shear and direct stress effects are taken into consideration.  
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