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ABSTRACT  

Purpose: A paucity of proven failure criteria for brittle engineering materials exists, and this 

paper intends to present and validate a novel concept of equivalent stress criterion for 

predicting the failure of brittle isotropic homogeneous materials based on the concept of 

effective causative failure stress.  

Design/Methodology/Approach: Mathematical modelling is first performed based on strain-

state equivalence, followed by conversion to the equivalent causative stress. The model is then 

validated with experimental and other data and with comparisons to traditional models. The 

material studied is BS 1452 Grade 250 continuous-cast grey cast iron with a Young’s Modulus 

of 39 000 MPa and ultimate tensile strength of 290 MPa. The test samples were prepared square 

in shape 12 mm x 12 mm to enable stresses in two perpendicular directions. Data is generated 

from uniaxial and bi-axial tests, performed using a standard universal testing machine, 

INSTRON 880, improvised to enable bi-axial recordings. 

Findings: Results point consistently to higher fidelity and transparency of the new model in 

representing the state of stress, especially in the second and fourth quadrants of the principal 

stress diagram, where Rankine’s criterion completely ignores stress differences and Mohr 

handles shear stresses in a suboptimal fashion. Both the maximum principal stresses and 

maximum shear stresses predicted by the proposed model are found to be somewhat greater 

than those from the traditional models, indicating higher accuracy and greater aggressiveness 

in prediction. The findings have further revealed that shearing effects play a greater role in the 

failure of engineering brittle materials than traditional failure theories have considered.  

Research Limitation: The study involved improvisation to enable biaxial stress recordings. 

This process was not perfect, resulting in smaller-than-ideal values of the lateral stresses. 

Practical implication:  The study recommended process and equipment development toward 

perfecting multiaxial tests. 

Social implication: The survey will enrich the literature with pertinent design methodology to 

help in product design, including social-interest products.   

Originality / Value: Since truly homogeneous materials are known to withstand very high 

hydrostatic pressures, direct stresses alone do not constitute valid failure criteria for all loading 

conditions. 

 

Keywords: Brittle.  failure. modelling. shearing. stress.   
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INTRODUCTION 

Material failure modelling and testing have been active areas of study for a great many years. 

The purpose of this paper is to present a novel concept of equivalent causative stress theory for 

predicting the failure of primarily brittle materials.  

 

A long-standing failure theory for brittle materials, Mohr’s criterion, suffers from a lack of 

mathematical rigour due to simplifying assumptions in its derivation, suboptimal treatment of 

shear stresses, and at times a lack of transparency regarding the mode of failure. Further back 

still, in time, Saint Venant’s theory (maximum-normal-strain criterion), predicted the yielding 

failure of a specimen subjected to any combination of loads when the maximum normal strain 

at any point in the specimen reached the failure strain at the proportional limit (Karp & Durban,  

2011; He, Ma, Karp, & Li, 2014). It was widely recognized and applied to engineering practice 

for many decades  (He et al, 2014). The theory had the advantage that strains are often easier 

to measure than stresses Despite this, it became defunct due to its failure to account for 

hydrostatic effects and shear-stress effects (Wei, Zistl,  Gerke, & Brünig, 2022).  

 

In the modern era, there have been many attempts to develop criteria that apply to both ductile 

and brittle materials. These works include: a two-parameter yield criterion in principal stress 

space by Yu and Wang (2019), a strain-energy-based criterion by Lazzarin, Campagnolo, and  

Berto (2014) that averages energy over a material-dependent control volume; paraboloid and 

polynomial-invariant criteria distinguishing hydrostatic tension and compression effects (Gu & 

Chen (2018a, 2018b); unified criteria involving convex and other failure surfaces by Giraldo-

Londoño and Paulino (2020); Qu et. al (2016); a general framework for ductile 

failure prediction based on size effects by Zheng et al (2022); a nonlinear generalized criterion 

based on fracture mechanics (Wang et al., 2022; Zuo et al., 2021); a failure initiation criterion 

for brittle materials with sharp notches (Yosibash et. Al., 2016a,  2016b); predictions of failure 

load and failure initiation angle to predict failure loads in steel structures by Yosibash et. al 

(2022); failure of pre-cracked brittle materials based on strain gradient elasticity by Vasiliev 

et. al (2021); analysis of elastic properties of brittle materials via indentation methods by Wu 

et. al (2019); a unified finite strain continuum approach for Modelling failure of quasi-brittle 

materials by Sun et al  (2022) and a 3-D failure initiation criterion for a V-notched elastic brittle 

structures by Neuner et al (2022). Yu (2019) developed a theory based on the invariant M-

integral to predict the structural integrity of damaged materials containing locally distributed 

defects. Pijak (2022) evolved a universal failure criterion for isotropic materials using energy 

formalism and polynomial invariants expansion while Pereira et al (2018) estimated the 

properties of isotropic materials as a basis for comparing numerical and experimental results.  

 

This paper develops a theory to predict the failure of brittle isotropic engineering materials, 

attempting to address problems with traditional failure criteria. In the overall approach, a 

representation of equivalent causative stress is first developed and compared with the 

traditional models using both experimental and standard data. 

 

https://www.sciencedirect.com/science/article/pii/S0734743X14001237#!
https://www.sciencedirect.com/topics/engineering/ductile-failure
https://www.sciencedirect.com/topics/engineering/ductile-failure
https://www.sciencedirect.com/science/article/pii/S1674775522001172#!
https://www.sciencedirect.com/topics/engineering/brittle-material
https://www.sciencedirect.com/science/article/pii/S0167844216300155#!
https://www.sciencedirect.com/science/article/pii/S0013794422002533#!
https://www.sciencedirect.com/science/article/pii/S0013794421004914
https://www.sciencedirect.com/science/article/pii/S0020768322003158#!
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METHODOLOGY  

Initial Modelling 

The aim of this section is to resolve the failure problem into a physically meaningful 

mathematical form that is objective and robust enough to be applicable to all cases.  

 

In dealing with the age-long yet inconclusive debate over whether failure criteria should be 

formulated in terms of stresses or strain, the major argument in favour of stress says that 

specifying failure in terms of strains is inappropriate and internally inconsistent since it offers 

no compatibility with fracture mechanics in the brittle range and with dislocation mechanics in 

the ductile range. Furthermore, force (stress) is the overwhelmingly preferred form for 

molecular dynamics simulations. The counterargument says that since strains are a result of 

stresses, direct or indirect, it is the extent of strain in the material that eventually triggers its 

failure, and therefore any failure modelling must take this into account. Despite these well-

grounded reasons in favour of either approach, the authors attempt to gain the best of both 

worlds by using both parameters, starting first with strain and then converting to stress. 

 

In the main research approach, strain-state equivalence in the complex material is first 

established mathematically, followed by extraction of the equivalent causative stress, which is 

the single equivalent uniaxial direct stress that produces the same strain at failure as in uniaxial 

loading. Next, the equivalent maximum shear stress is determined from the equivalent causative 

stresses. This procedure can be shown to be more accurate than simply equating the maximum 

principal stress to its value in simple tension, as is done in the Rankine approach. In determining 

the equivalent causative stress, de-superposition of the principal stresses is employed (Figure 

2).  

 

Materials and data generation 

Data for model validation is generated from uniaxial and ingenious bi-axial tests, performed 

using a standard universal testing machine (INSTRON 8801) improvised to enable bi-axial 

recordings. Uniaxial tests are natural to the machine and thus easy to perform. The material 

studied is BS 1452 Grade 250 continuous-cast grey cast iron with the following properties from 

the supplier: E = 39 000 MPa and σUT = 290 MPa, where E is Young’s Modulus, and σUT is 

ultimate tensile strength. Outputs from the lab experiments include Young’s Modulus, ultimate 

tensile strength, maximum load, tensile strain at rupture, and shear strength. The biaxial tests 

required improvisation to adapt the machine by measuring strains in the second (lateral) 

dimension with strain gauges and then calculating the stress from σ = Eɛ using the average 

value of Young’s Modulus outputted by the machine during the strength determinations. The 

test samples were prepared square in shape 12 mm x 12 mm so that the forces applied in two 

perpendicular directions easily constituted the principal stresses σ1 and σ2. 

 

Validation 
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Model validation is done using both experimental data and comparisons with the traditional 

models. Further validation is performed using published standard material data for comparisons 

between the improved model and traditional theories.  

 

MODELLING, RESULTS, AND VALIDATION 

Modelling  

Considering the biaxial load regime shown on the extreme left-hand side in Figure 1, strain 

equivalence in the x- or horizontal direction requires that  
 

 

 

  

                               ≡                                +     ≡           or 

 

  

 (Strain coupling present)       (No strain coupling present) 
 

Figure 1. De-superposition (separation) of stresses to determine “equivalent” stress 

 

𝜀𝑥𝑎𝑐𝑡𝑢𝑎𝑙 = 𝜀𝑥1 + 𝜀𝑥2 =  
𝜎1

𝐸
+  

𝜐𝜎2

𝐸
=  

𝜎1𝑒𝑞

𝐸
=  𝜀1𝑒𝑞                    (1) 

 

where, clearly, the stress σxeq is equal to σ1 + υσ2, and where ɛx1 and ɛx2 are the strains in the x-

direction due to principal stresses 1 and 2 respectively, and υ is the Poisson’s ratio for the 

material under investigation.  

 

A similar expression for the y- or vertical direction may likewise be written as  

 

𝜀𝑦1 + 𝜀𝑦2 =  
𝜎2

𝐸
+  

𝜐𝜎1

𝐸
=  

𝜎2𝑒𝑞

𝐸
=  𝜀2𝑒𝑞          (2) 

 

Expressions for two other biaxial stress-state loading regimes, along with the above result, are 

displayed in Table 1.  

 

The easy observation is that when the stresses are of opposite signs, the strains reinforce each 

other, thereby reducing load-carrying capacity, whereas if they are of like signs, the opposite 

effect occurs. Thus failure (brittle or yielding) by direct stress would occur under any state of 

stress if either the maximum normal strain corresponding to the greater of 𝜎1𝑒𝑞 and 𝜎2𝑒𝑞 reaches 

the critical value obtained from simple tests, or the maximum shear stress (Equation 3), reaches 

the limiting value, i.e., the strength of the material according to:  

 

                                   𝜏eqmax = (
𝜎1eq−𝜎2eq

2
)                                            (3) 

σ1 σ1 

σ2 

σ2 

σ1 σ1 

σ2 
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The proposed equivalent-causative-stress criterion is now formally stated as follows:  

Failure of a structural member under complex stresses occurs when the equivalent 

causative direct stress or the maximum equivalent shear stress exceeds the strength 

of the material. 

 

Expressed mathematically, failure of a part under complex stresses occurs when: 

𝜎1𝑒𝑞 ≥ 𝜎𝑈𝑇 , 𝜎𝑈𝐶                                     (4)       or 

𝜎2𝑒𝑞 ≥ 𝜎𝑈𝑇 , 𝜎𝑈𝐶                                      (5)        or 

𝜏eqmax  ≥ 𝜏U,                              (6) 

whichever occurs first, i.e., whichever of (4) or (5) or (6) specifies a limiting failure stress value 

first is the one that determines the failure behaviour of the component under investigation. In 

the above equations, σUT, σUC, and τU are the failure stresses in tension, compression, and shear, 

respectively for the material. In the Rankine methodology, the greater of σ1 and σ2 simply would 

have been used instead, while with Mohr’s approach the shear aspects are not adequately 

addressed. 

 
Table 1 Equivalent stresses for three different stress-states 

 Stress-state  Equivalent Principal Stresses Remarks 

Biaxial tension-compression 

 

 

 

 

 

𝜎1𝑒𝑞 = 𝜎1 + 𝜐|𝜎2| 

 

𝜎2𝑒𝑞 = −|𝜎2| − 𝜐𝜎1 

 

 

σ1eq  is greater than σ1: load-

carrying capacity reduces  

Biaxial tension 

 

 

 

 

 

 

𝜎1𝑒𝑞 = 𝜎1 − 𝜐𝜎2 

 

𝜎2𝑒𝑞 = 𝜎2 − 𝜐𝜎1 

 

 

All stresses are  positive 

  

σ1eq  is smaller than σ1: load-

carrying capacity increases 

Biaxial compression 

 

 

 

 

 

 

𝜎1𝑒𝑞 = −|𝜎1| + 𝜐|𝜎2| 

 

𝜎2𝑒𝑞 = −|𝜎2| + 𝜐|𝜎1| 

 

 

All stresses are  negative 

 

σ1eq  is smaller than σ1: load-

carrying capacity increases 

 

It may be observed from Table 1 that whenever the principal stresses are of the same sign (rows 

2 and 3) hydrostatic effects come into play. It may thus be insightful to investigate the stiffness 

behaviour of the material under different stress states, including hydrostatic pressure. 

Then, for the biaxial compression case, the net lateral strain in the y- and x-directions are:  

σ1 σ1 

σ2 

σ2 

σ1 σ1 

σ2 

σ2 

σ1 σ1 

σ2 

σ2 
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                      ɛ2 = –(σ2 – υσ1)/E = –(k – υ) σ1/E                                               (7a) 

 ɛ1 = –(σ1 – υ σ2)/E                                                                    (7b) 

where k = σ2/ σ1.  Combining Equations (7a) and (7b), we get:  

                                     ɛ2 = – (σ2 /E) (1– υ2 – υɛ1E/ σ2)                                             (7c) 

But       ɛ1E/ σ2 = – E(σ1 – υ σ2)/σ2E = – (σ1/ σ2 – υ)   = (k–υ)  

Therefore, Equation (7c) becomes:  

ɛ2 = – (σ2 /E) (1– υ2 – υ(k–υ))                                             (8)                    

The effective Young’s modulus thus increases to:  

                  E′ = E/[1– υ2 – υ(k–υ)] = E/(1– υk)                                (8b) 

In the above equations, k varies between 0 and 1. For σ2 > σ1 the positions of σ2 and σ1 are 

reversed in order not to violate this rule. It should be noted for example, that for a biaxial state 

of stress, σ2= 0.5σ1 is equivalent to σ1= 0.5σ2 in terms of the actual stress conditions created in 

a homogenous isotropic material, and therefore k must be 0.5 in each case. 

 

For immovable lateral restraints, the strain ɛ2 in that direction disappears giving, from (7a),  

                                      0 = – (k – υ) σ1/E             or                    k = σ2/ σ1 = υ  

This reduces Equation (8a) to 

                        E′ = E/(1– υ2 ) = 1.1E ,                           (9) 

if υ is taken typically as 0.3, for illustration.  

 

For the case where k = 1, so that σ1 = σ2, we get the equibiaxial loading condition which, from 

Equation (8a), yields  

                        E′ = E/(1- υ ) = 1.43E                            (10) 

again with υ = 0.3. 

The result represented by Equation (9) is already well-known. It is easily verified that when k 

takes on the values: k = 0, 0.3 (=υ, say), 0.5, and 1, then E′ correspondingly varies as: E′ = 

1.0E, 1.1E, 1.2E, and 1.43E respectively. These hydrostatic effects can be compensated for in 

traditional failure theories, at least in part, provided the above adjustments in material stiffness 

can be made; something that most at best failure theories until now have neglected to do.  

 

Results and Validation  

The proposed model is now validated on the basis of both experimental data (Tables 2 and  3) 

and standard material data (Tables 4 and 5). Table 2 presents a summary of the data for the 

indicated material. Excluding outlier specimens 1 and 8, the key parameters are determined as:  

E = 40 000 MPa 

σUT = 300 MPa 
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ɛ = 1.8% 

τU = 320 MPa 

These values are in agreement with the material data from the supplier: 

E = 39 000 MPa 

σUT = 290 MPa (250 MPa minimum) 

 
Table 2 Experimentally determined properties of BS 1452 Grade 250 Grey Cast Iron 

Specimen Tensile stress at Maximum 

Load (MPa) 

Tensile strain (extension) Break 

(%) 

Modulus, E 

(MPa) 

1 230.661 0.6 57139 

2 318.341 0.9 60178 

3 328.026 1.5 39256 

4 312.950 1.1 45216 

5 311.093 1.2 43908 

6 286.385 1.8 43398 

7 316.341 1.4 40953 

8 219.171 2.5 29110 

9 288.266 2.3 12742 

10 296.590 1.1 37209 

11 199.016 1.3 60776 

Mean 282.440 1.4 42717 

Standard deviation 44.902 0.6 14057.756 

 

Table 3 lays out data for the biaxial cases, while Figures 2 and 3 display graphically an example 

each of loading in the uniaxial and biaxial regimes.  
 

Table 3:  Biaxial loading cases (with exception of row 1) 

Case  Specimen Strain ɛ2 Stress σ2 (MPa) Stress σ1 (MPa) 

1   3 0 0 328 

2  7 10 x 10-6 0.43 316 

3  8 420 x 10-6 16.8 219 

4  9 170 x 10-6 7.3 288 

5  10 330 x 10-6 14.1 297 

Data source: Experimental tests (Biaxial) 
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Figure 2: Uniaxial loading results (Specimen 4) 

 

 
Figure 3: Biaxial tension–compression loading results (Specimen 10) 

 

Other results involving both experimental and published standard material are laid out in Tables 

4 and 5. In both tables column 4 determines whether the failure is predicted by any of the failure 

criteria by comparing the maximum stress (shear: τmax or τeqmax or direct: σ1, σ2 or σeq1, σeq2) 

determined by calculation from each failure prediction model with the material’s own strengths.    
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Table 4: Validation based on experimental data: brittle materials 

 

Case 1 

 

 

 

Criterion 

τmax = R 

(MPa) 

Effective principal stress (MPa) 

 

Failure Predicted?  

Y/N 

Remarks 

BS 1452 Grade 250 continuous-cast Grey Cast Iron              υ = 0.21 

 

 τU = 330 MPa  σUT = 300 MPa,  σUC = -660 MPa (estimated) 

Mohr τmax = 200 σ1 = 100 

 

σ2 = -300 

 

N Lacks clarity; for full 

evaluation τU needed 

Rankine  τmax = 200 σ1 = 100 

 

σ2 = -300 

 

Y 
|𝜎2| > σUT 

Wrong prediction. σUC 

not considered 

Proposed 

model 

τeqmax = 234 σ1eq = 151 σ2 = -317 N 

σ1eq<σUT, σ2eq<σUC 

But τU needed for full 

evaluation  

 

Table 5: Validation based on published standard data: brittle materials 

 

Case 2 

 

 

 

Criterion 

τmax = R 

(MPa) 

Effective principal stress (MPa) 

 

Failure Predicted?  

Y/N 

Remarks 

   Cast Aluminium       υ = 0.32 

 

    τU = N/A            σUT = 80 MPa     σUC = -200 MPa    

Mohr τmax = 72.1 σ1 = 32 σ2M = -112 N Lacks clarity; for full 

evaluation τU needed 

Rankine  τmax = 72.1 

 

σ1 = 32 

 

σ2R = -112 Y 
|𝜎2| > σUT 

Wrong prediction. σUC 

not considered 

Proposed 

model 

τeqmax =95.2 σ1eq = 69 

 

σ2eq = -122 N 

σ1eq<σUT, σ2eq<σUC 

But τU needed for full 

evaluation  

     

 

Case 3 

Cast Aluminium       υ = 0.32 

 

    τU = N/A             σUT = 80 MPa    σUC = -200 MPa    

Mohr τmax = 53.2 

 

σ1 = 68 

 

σ2 = -38 

 

Y  

 

Lacks clarity τU rqd. 

for full evaluation  

Rankine τmax = 53.2 

 

σ1 = 68 

 

σ2 = -38 

 

N 

σ1 < σUT, σ2< σUC 

τU rqd. for full 

evaluation 

Proposed 

model 

τeqmax =70.2 

 

σ1eq = 80.4 

 

σ2eq = -59.96 

 

Y 

σ1eq > σUT 

Tensile failure, but τU 

required for check 

  

 

Case 4 

Grey Cast Iron              υ = 0.2 

 

τU = 240 MPa   σUT = 170 MPa, σUC = -655 MPa 

Mohr τmax = 200 σ1 = 100 

 

σ2 = -300 

 

Y Failure mode and 

reason not clear.  

Rankine  τmax = 200 σ1 = 100 

 

σ2 = -300 

 

Y 
|𝜎2| > σUT 

Wrong prediction. 

σUC not considered 

Proposed 

model 

τeqmax = 234 σ1eq = 151 σ2eq = -317 N 

σ1eq<σUT, τeqmax< τU 

More realistic. Offers 

clarity. 

 

Material properties source for cases 2, 3, and  4: (Beer, 1992)  
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In these tables failure prediction by Mohr’s criterion is done using the equations: 

𝜎2𝑀 =  |
𝜎𝑈𝐶

𝜎𝑈𝑇
| 𝜎1 − |𝜎𝑈𝑐|            (10)           Fourth quadrant, 

𝜎2𝑀 =  |
𝜎𝑈𝑇

𝜎𝑈𝐶
| 𝜎1 − |𝜎𝑈𝑇|            (11)           Second quadrant. 

 

Taking σ1 as the independent variable we observe that a point in the second or fourth quadrant 

would fall outside Mohr’s hexagon (indicating failure) if its value in absolute terms is greater 

than σ2 in Equation (10) or (11). 

 

DISCUSSION  

From Tables 4 and 5, and Figures 2 and 3, it is clear that as the lateral compressive stress 

increases Young’s modulus reduces, generally (a reverse of the hydrostatic case). This is one 

point where Saint Venant’s theory failed, in not accounting for hydrostatic effects, which tend 

to strengthen the material to sustain higher loads than indicated by that theory (Wei, 2022; He, 

et al., 2014; Karp & Durban, 2011). In the actual experiments, it is observed that rupture in most 

of the biaxial cases occurred at the point of application of the lateral stress. This shows that 

compressive transverse stress reduces load-carrying capacity (He, et al., 2014). It has been 

shown that the stiffening effects can be accommodated by measured adjustments to the 

effective Young’s modulus. The main advantage of the theory, that strains are often easier to 

measure than stresses, remains, though. Another inherent flaw of Saint Venant’s criterion in 

that it ignores shear stress effects, as is somewhat the case with Mohr’s criterion has been 

addressed by the new model. 

 

For Case 2 (Table 5), Mohr’s criterion and the proposed model both correctly predict no failure, 

unlike Rankine’s. For case 3, even though the two criteria are again in agreement, this time 

they both predict failure while Rankine again predicts a contrary result; and whereas the 

proposed model reveals tensile action as the cause of this failure, with Mohr’s criterion it is not 

so clear by what mode this predicted failure occurs. In all the above cases material strength 

evaluation is not complete until the shear strength of the material, τU, is also applied.  

 

For case 4, Mohr’s criterion and the proposed model are seen to be at variance concerning 

predicted values, but the former is in agreement with Rankine’s. Once again Mohr’s criterion 

fails to offer clarity regarding the cause of failure, whereas in the case of the proposed model 

the reasons for its prediction of no failure are obvious. As before, τU is required before full 

evaluation can be made. 

 

Other attempts in the modern era to develop criteria that apply to brittle materials including a 

polynomial-invariant criterion distinguishing hydrostatic tension and compression effects by 

Gu and Chen (2018a, 2018b) are automatically covered by the rigour of the proposed theory. 
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Lastly, a recent attempt by Christensen (2016, 2018) to bridge the gap between failure criteria 

for isotropic homogeneous ductile and brittle materials warrants special comment in this 

context. In his work, Christensen developed a three-dimensional stress-based failure criterion 

built primarily on the von Mises criterion. For brittle materials, our analysis has shown that this 

criterion yields more conservative results for pure tensile stresses in the first and third quadrants 

of the principal stress diagram than both the Maximum Normal Stress and the Coulomb-

Mohr criterion and thus could result in unnecessary overdesign as well as leave too large a 

room under mixed (tension and compression) loadings for error in its predictions.  

 

CONCLUSION 

It is unlikely that any major field falling under material applications research has had more 

effort expended with less to show for it than brittle materials failure modelling. Even the most 

prominent theories still need optimization. The primary aim of this paper has been to present 

and validate a criterion for predicting the failure of brittle materials based on the concept of 

effective causative failure stress to address problems with traditional failure criteria.  

 

It has been shown that shearing effects play a greater role in the failure of brittle materials than 

traditional failure theories have considered, and this has been addressed in the proposed 

approach. The significance of this is that in evaluating a material’s failure possibilities using 

non-energy methods, applied shear stresses and the material’s shear strength must always be 

included in the analysis. In addition, truly homogeneous materials are known to withstand very 

high hydrostatic pressures without failing, indicating that maximum direct stresses alone do not 

constitute valid failure criteria for all loading conditions. 
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