Effects of Zingiber officinale extract on antioxidation and lipid peroxidation in mice after exposure to 60Co-γ-ray

Xiaogang Du¹#, Yanyan Geng¹#, Zhou Huang¹#, Yanger Chen¹, Huaiyu Zhang¹, Hanmei Liu¹, zhiyu Chen¹, Zhihuan Wu², Tianzeng Song³ and Xianyin Zeng¹*

¹Applied Biophysics and Immune Engineering Laboratory, College of Life Science, Sichuan Agricultural University, Ya’an 625014, Sichuan, China.
²Department of Pharmaceutical Engineering, Shijiazhuang Science and Technology Vocational College, Hebei 050000, China.
³Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850000, China.

Accepted 4 November, 2011

Zingiber officinale extract (ZOE) has been demonstrated to protect mice against radiation-induced sickness and mortality. In this study, we investigated protective ability of ZOE against anti-oxidative damage induced by non-lethal dose of 60Co-γ-ray. The optimum dose was selected by giving mice 0, 100, 200, 400, 800 or 1600 mg/kg body weight (B.W.) of ZOE (oral gavage) p.o. once daily for five days. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities increased, and malondialdehyde (MDA) contents decreased along with an increase in the ZOE dose of up to 800 mg/kg body weight. ZOE at dose of 800 mg/kg B.W. showed the best effect by enhancing anti-oxidative function and reducing lipid peroxidation. The activities of SOD, CAT and GSH-Px increased significantly, while MDA content decreased significantly in ZOE (800 mg/kg) + irradiation(IR) group when compared with double distilled water (DDW) + IR group ($p<0.05$). These results indicate that ZOE at 800 mg/kg body weight could provide protection against anti-oxidative damage in irradiated mice.

Key words: Zingiber officinale extract, 60Co, γ-ray, mice, free radical, superoxide dismutase (SOD), radiation, antioxidants.

INTRODUCTION

Radiation is widely used in medicine, health, energy, technology and other fields, and the deleterious effects attracted people’s attention. It is generally considered that many radiation-induced biological effects could be attributed to the activated water reaction, which produced different kinds of free radicals, for example, ·OH, H₂O₂, O₂⁻ and so on (Patt et al., 1949). These free radicals can lead to inhibition or inactivation of anti-oxidative enzymes and other materials. Radiation could also directly damage the structure and function of the bioactive molecules in cells and tissues (Jensh, 1985), leading to bone marrow suppression and immunosuppression. There was an urgent need to explore physical and/or chemical means to protect against these harmful effects. Cysteine was reported firstly for protecting mice and rats against radiation-induced sickness (Patt et al., 1949). Since then, several chemical compounds and their analogues have been reported for their radio-protective effects. However, the toxicity of synthetic compounds at the radioprotective dose made it difficult for practical application. Several cytokines such as IL-1, IL-3, IL-6, G-CSF and GM-CSF have been screened for their radio-protection effect on mice, but their use was also limited because of the deleterious effects, such as headache, diarrhea, abdominal
pain and so on (Neta et al., 1992; Patchen, 1995; Neta, 1997). Thus, it is very necessary to explore the effective and nontoxic radio-protective agents.

Traditional herbs have been widely used by mankind for the treatment of various ailments since human history. There are abundant studies on herb anti-radiation effects such as antioxidant effect, decreasing mortality, improving immune function and so on (Ohnishi et al., 1990; Pande, 1998; Yuan et al., 2002; Jegetia et al., 2003; Sancheti and Goyal 2007). Recently, the herbs exact, embelin, was shown to have an effective function against ionizing radiation during the radiation therapy, and inhibits the growth of prostate cancer (Dai et al., 2011). Therefore, traditional herbs and extracts of herbs are the safest choice for alternative radio-protectors.

Zingiber officinale Roscoe is commonly used worldwide as one of the important spices and traditional herbs. The history of ginger as one clinical drug can be traced back to 2500 years ago (Shukla et al., 2007), and it has good effects on fever, vomiting, cough, diarrhea and so on. Its roots contain complicate ingredients in which polyphenol compounds (6-gingerol and shogaols) have an attractive antioxidant activity (Stolova et al., 2007). Ginger was also reported to improve dietary condition and reducing artherosclerosis (Platel et al., 1996; Bhandari et al., 1998). In addition, many researchers have demonstrated that the ginger and ginger products have lots of pharmacological activities, include analgesic, anti-inflammation (Grazanna et al., 2005; Tsai et al., 2005), anti-tumor effect (Liu et al., 2002; Manju et al., 2005; Takada et al., 2005; Habib et al., 2008), improving immunity (Chang et al., 1995; Imanishi et al., 2004; Habib et al., 2008) and antioxidant effect (Motawi et al., 2011). Besides, US FDA has listed the ginger in “Generally Recognized as Safe” (GRAS), because ginger powder at a dose of 0.5 to 1.0 g ingested two to three times for periods ranging from three months to 2.5 years do not cause any adverse effects (Langner et al., 1998).

The wide use, the common acceptability, the innocuity and various pharmacological properties stimulated researchers to evaluate the radioprotective effect of ginger. Jegetia et al. (2003, 2004) demonstrated that Z. officinale extract (ZOE) could scavenge free radicals, enhance anti-oxidative status and reduce lipid peroxidation in mice, thus providing protection against radiation-induced sickness and mortality in mice. It was also reported that ZOE had regulatory effect against γ-rays-induced immunosuppression by means of protecting DNA against the radiation (Du et al., 2010). In this study, we further examined the effect of ZOE on antioxidant effect and lipid peroxidation in irradiated mice.

MATERIALS AND METHODS

Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) kits were purchased from Jiancheng Bioengineering Institute, Nanjing, China. Sodium chloride, sodium bicarbonate, acetic acid and ethanol were bought from Reagent Co. (Ya’an, China).

Six to eight weeks old female Balb/c mice, 25 to 30 g, were obtained from the Laboratory Animals Center of Sichuan University (Sichuan, China). Mice were maintained under controlled conditions with temperature (23 ± 2°C), humidity (50 ± 5%), light (14 and 10 h of light and dark) and pathogen-free food and water. Anesthetic procedures and handling of animals were approved by the Animal Care and Use Committee of Sichuan Agriculture University and conducted according to the National Guidelines for the Care and Use of Laboratory Animals in China (Approval No: 09ZA072).

Selection of optimum dose

ZOE (Xiaocao Botanical Development Co. Ltd., Xi’an, China), which was extracted from dry powder by ethanol and tested by high liquid performance chromatography (HPLC), was dissolved in DDW. 60 mice were randomly divided into six groups (n = 10). The optimum dose of ginger was selected by giving the animals 100, 200, 400, 800 or 1600 mg/kg B.W. ZOE p.o. once daily for five consecutive days. Mice were given 0.02 ml/g body weight (B.W.) of ZOE or DDW p.o. Mice given DDW p.o., served as control group.

Effect of ZOE on anti-oxidation of irradiated mice

To evaluate the radioprotective ability of ZOE, 20 mice were divided into two groups with ten mice per treatments: (1) DDW + irradiation group received 0.02 ml/g B.W. of DDW p.o. before irradiation; and (2) ZOE + irradiation group was given 800 mg/kg B.W. of ZOE once daily for five consecutive days before irradiation.

Irradiation

Each mouse, in a wooden container, was put in the 60Co-γ irradiator (Model 220, Sichuan Academy of Agricultural Science, China), and irradiated with five Gy at the dose rate of 0.8 Gy/min. The dosimetry was carried out with Baldwin Farmer secondary dosimeter and Frickie dosimeter.

Determination of activities of SOD, CAT, GSH-Px and MDA contents

Blood sample were collected on day seven for the determination of the activities of SOD, CAT, GSH-Px and MDA contents. The determination of anti-oxidative function was performed according to the kit introduction.

Statistical analysis

All the data were expressed as mean ± standard deviation (SD). Statistical analysis was conducted by using Prism 5.0 statistical software. The significance between the treatments was evaluated by ANOVA. Differences were considered statistically significant with P < 0.05.

RESULTS

Activity of superoxide enzyme

To evaluate whether gingerol influenced the SOD activities...
in blood, blood samples were collected for determination of activities of SOD in different dose of ZOE treated groups. As shown in Figure 1, SOD activities in 400, 800 and 1600 mg/kg of ZOE treated groups were significantly higher than that in control group \((p<0.05)\), and 800 mg/kg of ZOE treated group showed the highest SOD activities in blood. These indicate that ZOE at dose of 800 mg/kg B.W. had the best effect on increasing SOD activities in blood of mice.

Activity of catalase

To determine whether ZOE could increase activities of CAT in blood, mice were bled for blood samples after administration of different doses of ZOE once daily for five days. As shown in Figure 2, 200, 400, 800 and 1600 mg/kg B.W. of ZOE treated groups showed significantly higher CAT activities when compared with the control group \((p<0.05)\). 800 mg/kg B.W. of ZOE treated group showed the best effect on increasing CAT activities. These results demonstrate that ZOE at the dose of 800 mg/kg had the best effect by promoting CAT synthesis and increasing CAT activities in blood.

Activity of glutathione peroxidase

To evaluate whether ZOE could increase GSH-Px activities in blood, mice were bled for blood samples on day seven after administration of different doses of ZOE. As shown in Figure 3, GSH-Px activities in ZOE treated group increased along with an increase in ZOE dose, and GSH-Px activity in 800 mg/kg B.W. was significantly higher than that in the control group \((p<0.05)\). The results indicate that 800 mg/kg B.W. of ZOE had the best effect by increasing GSH-Px activities in the blood of mice.

Contents of malondialdehyde

To determine whether ZOE could decrease lipid peroxidation, blood samples were collected from mice on day seven to determine the levels of MDA in blood. As shown in Figure 4, MDA contents decreased along with an increase in the ZOE dose of up to 800 mg/kg body weight but, 1600 mg/kg B.W. of ZOE treated group did not show a better effect on reducing MDA content in blood when compared with other dose of ZOE treated group (Figure 2). These results demonstrate that ZOE of 800 mg/kg B.W. showed the best effect by eliminating lipid peroxides.

Radio-protective effect of ZOE

To determine whether ZOE could improve anti-oxidative function of irradiated mice, blood was collected for the determination of SOD, CAT, GSH-Px activities and MDA contents. As shown in Table 1, activities of SOD, CAT and GSH-Px were significantly higher in ZOE + IR group than in DDW + IR group \((p<0.05)\), while MDA content decreased significantly in ZOE + IR group when compared with DDW + IR group \((p<0.05)\). The results indicate that...
administration of ZOE before irradiation could enhance anti-oxidative function, thus providing protection against radiation-induced decrease in anti-oxidative ability and increase in lipid peroxidation.

DISCUSSION

Z. officinale roscoe is commonly used as one important spice in our daily life. Ginger and ginger extract have been
Du et al. 2613

Figure 4. MDA contents of ZOE treated mice. Mice were sampled for blood samples on day seven after administration of ZOE at the doses of 0, 100, 200, 400, 800 and 1600 mg/kg B.W. for five consecutive days, and MDA contents were determined by TBA method according to the kit specifications. Means without a common letter differ at \(p < 0.05 \).

Table 1. SOD, CAT, GSH-Px activities and MDA content (mean ± SD) in blood of mice treated with 800 mg/kg B.W. of ZOE once daily for five days before exposure to 5 Gy \(\gamma \)-radiation

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD (U/ml)</th>
<th>CAT (U/g Hb)</th>
<th>GSH-PX (U/mg Hb)</th>
<th>MDA (nmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDW + IR group</td>
<td>57.70±10.36</td>
<td>35.16±8.14</td>
<td>139.34±5.11</td>
<td>82.10±4.31</td>
</tr>
<tr>
<td>ZOE + IR group</td>
<td>115.78±9.99a</td>
<td>54.44±8.40a</td>
<td>167.33±14.06a</td>
<td>31.73±7.74a</td>
</tr>
</tbody>
</table>

\(n = 10 \) for each group; IR, irradiation; \(ZOE + IR \) group when compared with DDW + IR group; \(a p < 0.05 \).

reported for their pharmacological activities. There are also several reports showing that \textit{Z. officinale} extracts (ZOE) can enhance anti-oxidative function and decrease lipid peroxides against irradiation at the lethal dose (Jegetia et al., 2003, 2004). However, few reports are known about the effects of ginger extract on anti-oxidative function of the irradiated mice exposed to non-lethal dose of \(\gamma \)-ray. In this study, we demonstrate that ZOE can promote anti-oxidative ability in 5 Gy of \(\gamma \)-ray-irradiated mice.

\(\text{O}_2 \) is reduced to \(\text{H}_2\text{O} \) after receiving four electrons under the normal physiological condition, but partial reduction of \(\text{O}_2 \) induces the highly reactive oxygen species (ROS), including the superoxide anion (\(\text{O}_2^- \)), hydrogen peroxide (\(\text{H}_2\text{O}_2 \)), and the hydroxyl radical (OH). ROS can attack the bioactive molecules such as DNA protein and lipids, and damage their structures and functions, leading to aberrant downstream signaling or stimulation of apoptosis (Finkel, 1998; Thanickal et al, 2000). SOD, CAT and GSH-Px are important anti-oxidative enzymes which can scavenge the superfluous free radicals, thereby protecting cells from damage and decreasing the deleterious species or lipid peroxides, such as MDA (Curello et al., 1987; Anscher et al., 2005). In this study, the content of the antioxidant enzymes such as SOD, CAT and GSH-Px increased in a dose-dependent pattern up to 800 mg/kg body weight after mice were treated with ZOE, but content of these antioxidant enzymes increased above 800 mg/Kg body weight (Figures 1, 2 and 3). It suggests that ZOE has the strong anti-oxidative effect, and the antioxidant effect is dose-dependent.

MDA is an important oxidative metabolite of polyunsaturated fatty acids, which consists of the biomembrane (Buege et al, 1978). MDA is often seen as an indicator of the oxidation status in cells or tissues. So, the high level of MDA is detrimental to cells and tissues, and leads to lose of their normal bio-function (Cheng et al, 2011). In this study, MDA content was the lowest in 800 mg/kg ZOE treated group, and it decreased significantly when compared with control group (Figure 4). However, MDA
content increased in 1600 mg/kg ZOE treated group. These results suggest that ZOE at a proper dose showed strong anti-oxidative ability. This is in agreement with the research of Motawi et al. (2011) which reported that ginger extract is an attractive candidate for the treatment of liver fibrosis induced by CCl₄ by down regulating free radicals elevation and enhancing hepatic antioxidant levels. It implied that ZOE at the optimum dose of 800 mg/kg may effectively scavenge the excessive free radicals and other deleterious substances.

Radiation is a factor that produces free radicals, and can change the normal structure and function of cells and tissues. Finally, the radiation leads to the radiation disease (Jensh, 1985). In this study, the administration of ZOE (800 mg/kg body weight) after the radiation enhanced the activities of SOD, CAT and GSH-Px when compared with the concurrent DDW + IR group, but MDA content was significantly decreased (Table 1). So, it implied that 800 mg/kg body weight of ZOE can improve antioxidative damage and inhibit the lipid peroxidation caused by irradiation, thereby protecting against radiation-induced sickness and mortality (Anschcer et al., 2005).

In summary, the data presented here clearly indicate that ZOE at 800 mg/kg body weight had radioprotection against radiation-induced antioxidant damage by scavenging the excessive free radicals and lipid peroxides caused by irradiation. However, the specific mechanism of ZOE in enhancing antioxidant activity needs further investigation in the future.

ACKNOWLEDGEMENTS

This work was supported by the program for Changing Scholars and Innovative Research Team in University (IRT0848), and Sichuan Education Commission (Project No. 092A072). We also thank the Institute of Biotechnology and Nuclear-technology, Sichuan Academy of Agricultural Science, for providing the necessary irradiation facilities.

REFERENCES

Platel K, Srinivasan K (1996). Influence of dietary spices on their active...