Ultrastructural changes of tomatoes (*Lycopersicon esculentum*) root colonized by *Glomus mosseae* and *Ralstonia solanacearum*

Monther Mohumad Tahat*, Kamaruzaman Sijam and Radziah Othman

Plant Protection Department, Faculty of Agriculture, Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.

Accepted 14 November, 2011

The colonization of plant root cell by mycorrhizal fungi is one of the mechanisms involved for the understanding of plant bio-protection against soil-borne pathogens. The aim of current study was to investigate and describe tomato (*Lycopersicon esculentum*) root ultra-structural modifications caused by *Glomus mosseae* and the bacterial wilt *Ralstonia solanacearum*. In scanning electron microscopy (SEM) observations, the root cells presented several arbuscules and mature spores of *G. mosseae*. In transmission electron microscopy (TEM) observations, many entry points on the cell wall were detected in addition to nucleus, cell organs and many mitochondria. The results evidenced that the presence of *G. mosseae* can change the root architecture dramatically. *R. solanacearum* was inhibited by the endophytic fungi. *G. mosseae* structure can help the plant to prevent the pathogen bacterial invasion totally due to root architecture system changes.

Key words: Mycorrhizal fungi, bacterial wilt, tomato, root cell, scanning electron microscopy, transmission electron microscopy.

INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) can acts as a bio-protectional effect against soil-borne diseases (Harrier and Watson, 2004; Akkopru and Demir, 2005; Tahat et al., 2010) as well as being able to play a great role in nearly all physiological aspects of the host (Hayman, 1983). AMF improves plant bio-fertilizer (Tahat et al., 2008c), helps in phytoremediation (Mathur et al., 2007; Ngakou et al., 2007), plant nutrition support (Mahmood and Rizvi, 2010), and salt stress (Shokri and Maadi, 2009). Safir (1968) was the first to report the study on interaction of plant pathogenic fungi and species of AMF, followed by many reports confirming the reduction of disease severity as a result of AMF (Sharma and Johri, 2002).

Mycorrhizal fungi biodiversity is affected by the soil types (sandy, sandy loam and loam soil) and plant species (*Catharanthus roseus*, *Ocimum* species and *Asparagus racemosus*) (Gaur and Kaushik, 2011; Tahat et al., 2008a, b). The major challenges for the mycorrhizologist are the determination of fungus-signaling mechanisms and the understanding of arbuscular mycorrhizal colonization process (Gadkar et al., 2001). The nature biotrophic of fungi obligation has reflected the harmonious symbiotic relationship (Williams, 1992). *Glomus mosseae* induces systemic resistance against *Phytophthora parasitica* in tomato (*Lycopersicon esculentum*) tissue the cellular and molecular plant defense reactions are associated with this resistance as well as that of arbuscule-containing cortical cells (Cordier et al., 1998). The forming of hyphae, coils and arbuscules are the results of mycorrhizal fungi colonization for the root cortex intercellularly and intracellularly (Genre et al., 2005). The living arbuscules considered as the site of transfer between endophytic fungi and the host implies that the process is an active one (Yawney and Schultz, 1990). Arbuscules formed were branched structures inside the host root cortical cell wall, and its protoplast was branched outside (Gross et al., 2003). Host plasmalemma invigilates and proliferates around the developing fungus (Bonfante and Perotto, 1995).
preferential site for plant-fungal nutrient exchange depends on branched structures such as hyphae, coils and arbuscules (Smith and Smith, 1990). The aim of this study was to evaluate the anatomical changes in tomato root structure due to the colonization by *G. mosseae* and *Ralstonia solanacearum* using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

MATERIALS AND METHODS

Biological materials and growth conditions

G. mosseae spores were taken from the laboratory of Soil Microbiology, Faculty of Agriculture, Universiti Putra Malaysia. The spores were re-cultured in glasshouse for three months and stored under laboratory conditions at 15 to 20°C. Wet sieves technique was used to isolate and purify the AMF spores (Phillips and Hayman, 1970). Mature and healthy spores were isolated and collected from the pot culture. 100 spores for 100 g dry soil were added to the pots (20X20 cm) and mixed well with the soil before tomato planting.

A commercially, recommended, and certified tomato cultivar was used. The seeds were surface sterilized with 90% ethyl alcohol for 10 s, and washed with sterile distilled water. Three seeds were planted directly into the pot. Two weeks later, the seedlings were thinned to one seedling/pot. The plants were kept under glasshouse conditions at 25 to 30° C ± 2. The colonization percentage for the treatments was a preference for plant-fungal nutrient exchange depends on branched structures such as hyphae, coils and arbuscules (Smith and Smith, 1990). The aim of this study was to evaluate the anatomical changes in tomato root structure due to the colonization by *G. mosseae* and *Ralstonia solanacearum* using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

MATERIALS AND METHODS

Biological materials and growth conditions

G. mosseae spores were taken from the laboratory of Soil Microbiology, Faculty of Agriculture, Universiti Putra Malaysia. The spores were re-cultured in glasshouse for three months and stored under laboratory conditions at 15 to 20°C. Wet sieves technique was used to isolate and purify the AMF spores (Phillips and Hayman, 1970). Mature and healthy spores were isolated and collected from the pot culture. 100 spores for 100 g dry soil were added to the pots (20X20 cm) and mixed well with the soil before tomato planting.

A commercially, recommended, and certified tomato cultivar was used. The seeds were surface sterilized with 90% ethyl alcohol for 10 s, and washed with sterile distilled water. Three seeds were planted directly into the pot. Two weeks later, the seedlings were thinned to one seedling/pot. The plants were kept under glasshouse conditions at 25 to 30°C ± 2. The colonization percentage for the treatments was a preference for plant-fungal nutrient exchange depends on branched structures such as hyphae, coils and arbuscules (Smith and Smith, 1990). The aim of this study was to evaluate the anatomical changes in tomato root structure due to the colonization by *G. mosseae* and *Ralstonia solanacearum* using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

RESULTS

Ultra-structural results

The presence of typical hyphae and vesicles of AMF have been observed in the roots of various members of the solanaceae (Read and Smith, 2008). The aim of using SEM and TEM was to detect the structures of *G. mosseae* in tomato cells (vesicles, arbuscules, mature spore and hyphae). The images for *G. mosseae* show vesicles (V) attached with the arbuscules (AR) seen by SEM (Figure 1A). Small vacuoles were observed as a response of extensive colonization of tomato by *G. mosseae* (Figure 1B). Net of fungi arbuscules (AR) and different sizes of vesicles (V) were observed in the SEM images (Figure 1C); mature spore of *G. mosseae* (GS) (Figure 1D) was observed and huge number of nuclei was also observed by TEM (Figure 2A). Entry points of AMF in cell wall were detected clearly (Figure 2B) and plasmalemma of tomato cells was recognized (Figure 2C) while *G. mosseae* penetrated root and grow within and between cortical cells (Figure 2D).

DISCUSSION

G. mosseae is one of the endomycorrhizas fungi, which can enter host cortical and epidermal cells (Brundrett, 2002). This agrees with the results obtained from presented study, that the root of *G. mosseae* treatment showed the best performance in considered parameters. The current observations of SEM and TEM confirmed that the *G. mosseae* was able to colonize tomato cortical cells in the complex inoculation treatment (*G. mosseae + R. solanacearum*) (Figure 1A). The same observation...
Figure 1. Ultrastructural features of *Glomus mosseae* in tomato root (SEM). (*G. mosseae + R. solanacearum* treatment): A) *G. mosseae* vesicles (V) attached with the arbuscules (AR) seen by SEM; B) large number of small vacuoles observed as a response to the heavy infection by *G. mosseae*; C) net of fungi arbuscules (AR) and vesicles (V); D) scanning electron micrograph (SEM) of mature spore of *G. mosseae* (GS).
Figure 2. Ultrastrutural features of *Glomus mosseae* in tomato root (TEM). *G. mosseae + R. solanacearum* treatment. A) ICH, Intercellular hyphae penetrate into a root cell; TC, thicker wall induced by the penetration of AMF, huge number of nuclei (N) surrounding vesicles of *G. mosseae*; B) N, nucleus in colonized cells, new entry point in the cell wall (P); C) HC, host cytoplasm surrounding the arbuscules, it is rich in organelles, plastids, free ribosomes and rough endoplasmic reticulum. The thickness of the cytoplasmic varies from 0.50 nm upwards. D) N, nucleus in colonized cells (it appears larger than in uninfected cells). AMF, Arbuscular mycorrhizal fungi.

was obtained by Fusconi et al. (1999), who reported that *G. mosseae* vesicles were attached with the arbuscules seen by SEM. Large number of small vacuoles were observed as a response to the heavy colonization by *G. mosseae* (Figure 1B), these vacuoles act as a viable propagules
and storage structures (Plenchette and Strullu, 2003). The current results are closed to that reported by Wagg et al. (2011) who found that *Glomus intraradices* produced large numbers of vesicles in pine (*Pinus aphpremphous*) forest tree.

Net of arbuscules and vesicles V was observed in the SEM images (Figure 1C). The research conducted by Mahmood et al. (2004) recorded some images closed to the images observed in this study which illustrated the arbuscules and vesicles in huge number. Many researchers observed mature spores of several mycorrhizal species using SEM, for example, Roesti et al. (2010) observed *Glomus geosporum* and *Glomus constrictum*. Blaszkowski et al. (2010) observed *Glomus africanaum* and *Glomus iranicum* and Blaszkowski et al. (2006) observed *Glomus drummondii* and *Glomus walker*. In the current study, the Glomus spores was clearly observed by SEM (Figure 1D).

The anatomical and morphological changes due to the colonization of *G. mosseae* around tomato root were reported by Tahat et al. (2008c) who found that *G. mosseae* was able to increase root volume, length, size and weight. The clear effect of *Verticillium dahliae* on root cortex colonized by AMF suggest competition between AMF and the pathogen for host resources and/or space (Garmendia et al., 2005). In the current study, the inhibition of *R. solanacearum* was significantly observed, that is, no structures for the pathogen was shown in the complex treatment (*G. mosseae + R. solanacearum*) (Figure 1D). Mycorrhizal fungus structures were found in plenty amount which cause lignifications for the cell wall (Figure 1A and B). The infection of AMF occurs through the hyphae structure between root epidermal cells and the huge number of nuclei (Figure 2A). The nuclei were observed in colonized cells and new entry point in the cell wall (Figure 2B). The entire arbuscule was to be surrounded by the plasmalemma of the host cell (Figure 2C). AMF penetrates root and grow extensively between and within living cortical cells and affects many aspects of root metabolism (Figure 2C). SEM and TEM root cell observations suggested that *G. mosseae* was able to protect host cell from the invasion of *R. solanacearum* as a result of tomato roots colonization. The current results correlate with those reported by Cordier et al. (1998), who proposed that the AMF *G. mosseae* has the ability to confer bio-protection against *Phytophthora parasitica* in tomato roots. *G. mosseae* treatment nuclei where observed in round shape and in the central position (Figure 2B). The results reported in this study are in line with the results by Berta and Fusconi (1998), they demonstrated that in mycorrhizal *Allium porrum* cv. early Mech, nuclei are round, in central position and larger compared to the control treatment. The dramatic modifications of host cell architecture such as position and morphology of nucleus, invagination of the plant plasmalemma, and increase in the number of organelles are common features in tomato roots arbuscular mycorrhizal (AM) symbiosis (Bonfante and Perotto, 1995: Genre et al., 2008). Finally, *G. mosseae* in symbiosis with tomato plant was able to inhibit infection by *R. solanacearum* totally hence, no structures belonging to the pathogen was observed in the complex treatment (*G. mosseae + R. solanacearum*). The study observations matched with those reported by Carlsen et al. (2008), who documented that *Pythium ultimum* was totally prevented due to the colonization of clover plants cv. Sonja by *G. mosseae*. Finally, the present study concluded that the presence of mycorrhizal fungi benefits tomato plant protection against *R. solanacearum* and enhancing plant growth and developments. The current report results support the hypothesis that morphological changes in host root intercellular and intracellular lead to changes in plant health and resistance against soil borne diseases. More researches about the root anatomy structures using SEM and TEM technique are required for mycorrhizal future trend studies.

ACKNOWLEDGEMENT

The authors would like to acknowledge Institute of Bioscience (IBS), Universiti Putra Malaysia for supporting this project.

REFERENCES

dopt=Abstract PMID:20943558 [PubMed - indexed for MEDLINE].

