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Blast rice is the worst biological disaster in rice cultivation. It reduces the yield at least up to 40 to 50% 
(in the worst period of disease). In this study, the near-infrared hyper-spectral image was investigated to 
detect blast rice in Nipponbare at seedling stage. Two hundred rice seedlings were segregated into two 
classes: infected and healthy. All of rice seedlings were scanned with a hyper-spectral imaging system in 
the NIR (900 to 1700 nm) wavelength range. Principal component analysis (PCA) was performed on the 
images and the distribution of PCA scores within individual leaf were measured to develop linear 
discriminant analysis (LDA) models for predicting the infected leaves from healthy leaves. An LDA model 
classified all the leaves into infected and healthy categories, with an overall accuracy of 92% on 
validation set. Meanwhile, the classification model base on five selected wavelengths (1188, 1339, 1377, 
1432 and 1614 nm) was comparable to that base on the full-spectrum image data. 
 
Key words: Rice blast (Pyricularia), Nipponbare, near-infrared hyper-spectral image, principal component 
analysis, linear discriminant analysis. 

 
 
INTRODUCTION 
 
Rice Blast (Pyricularia) is a fungus disease which is 
favored by wet weather at rice growth period. According to 
the difference of infected position, rice blast is classified 
into seedling blast, leaf blast, rice node blast, neck blast 
and corn blast. As a result of rice blast, rice lost may be up 
to 40 to 50% at worst. With the climate becoming more 
severe, the rice blast has been a main biological disaster, 
especially at southern planting region in China. Statistics 
showed that the loss caused by rice blast is about 400 to 
500 million tons each year in China. The grain production 
has been influenced seriously, so how to control the rice 
blast is a serious subject in China. Nowadays, one of the 
most widely used methods of controlling the rice blast is 
spraying fungicide. Usually fungicides (often a mixture of 
two) are applied uniformly despite  numerous  variations  in  
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the disease pressure. However, most disease infestations 
are not evenly distributed across the field but in patches 
(Moshou et al., 2005). Uniformly spraying requires an 
excessive amount of fungicide, which increases the cost, 
pollutes the environment and results in the development of 
multi-resistant fungal strains (LaMondia and Douglas, 
1997). 

The dispersal of pathogens, usually starting as a small, 
visible focus within a crop (Rapilly, 1979). In certain 
conditions, the lesion caused by a successful infection 
(Zadoks and Vandenbosch, 1994) and pathogens can 
spread rapidly over large distances(Brown and Hovmoller, 
2002). Therefore, the early detection of the disease, which 
aims to determine when and where to target chemicals, 
could assist farmers to cut inputs in the culture and also 
significantly reduce residues of chemical in produce and 
environment. Disease detection can be conducted via 
micro-detection and macro-detection. The micro-detection 
is based on the molecular level (Putnam, 1995). The 
pathogens can be  detected  and   quantified   by   immunu- 
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logical and molecular methods such as enzyme-linked 
immunosorbent assay (ELISA), polymerase chain reaction 
(PCR) (Nutter and Esker, 2006; Jackson et al., 2007) and 
microscopy (Hilber and Schuepp, 1992). These methods 
are accurate but time-consuming and costly, most 
importantly requires professional operation, so it is 
impossible to be applied in real-time detection. On the 
other hand, macro-detection is based on remote sensing 
measurement. Remote sensing can obtain information 
about an object without having direct physical contact with 
it (De Jong and Van de Meer, 2006). For the detection of 
plant disease, general healthy leaves typically exhibit low 
reflectance at VIS wavelengths by photoactive pigments 
(chlorophylls, anthocyanins and carotenoids); high 
reflectance in the near-infrared (NIR) due to multiple 
scattering at the air-cell interfaces in the leaf internal tissue 
(Wiesler et al., 2002); and low reflectance in wide 
wavebands in the short wave infrared (SWIR) due to 
absorption by water, proteins, and other carbon 
constituents (Jacquemoud and Ustin, 2001; Woolley, 
1971). Once the plant subject to disease stress, change in 
spectral characteristics would be the best discrimination 
basis.  

The common optical sensors include spectrometer and 
digital imaging system. Whether spectrometer or digital 
imaging system, they can quantify disease on plant alone. 
As previously reported image or spectral analyses have 
demonstrated their abilities to characterize disease stress 
of plants (Nilsson and Johnsson, 1996; Riedell and 
Blackmer, 1999; Richardson et al., 2001; Diaz-Lago et al., 
2003; Karcher and Richardson, 2003; Yang et al., 2005). 
The detection of rice disease is usually based on 
spectrometer or multi-spectral imaging (Minekawa et al., 
2005; Yang et al., 2007; Liu et al., 2010; Zhang et al., 
2011). However, the previously related studies indicated 
that spectrometer cannot realize the visualization of 
disease stress. On the other hand, while the digital 
imaging systems can provide the visualization, it cannot 
provide enough spectral information. Therefore, disease 
discrimination based on digital image is not very accurate. 
Meanwhile, integrating the spectrum analysis and image 
process to detect the disease stress has seldom been 
documented. The hyper-spectral imaging system provided 
this possibility to integrate two types of data, including 
spectral information and image information. The 
hyper-spectral imaging system can acquire not only the 
spectral information, but also spatial information of object. 
Hyper-spectral imagery is new to plant disease severity 
measurement, and although it is still in the early phase of 
developmental use in plant disease detection and 
quantification, it offers interesting opportunities for 
application (Coops et al., 2003; Larsolle and Muhammed, 
2007; Huang et al., 2007; Qin et al., 2008).  

The objectives of this study were: (a) to investigate the 
use of hyper-spectral imaging in the NIR spectral range 
(900 to 1700 nm) for the detection of blast rice in seedling 
stage at early infection stage, (b) try to propose a more 
rapid   and   accurate   classification  method  to  detect  the 

 
 
 
 
disease stress and (c) to identify a reduced set of 
wavelengths/wavebands (feature wavelengths) to be used 
in a future development of a low cost imaging system.  
 
 
MATERIALS AND METHODS  

 
Samples 
 
Nipponbare was selected as the experimental variety in this study. 
All the samples were provided by 150 rice seedling plants. The rice 
blast (Pyricularia) was inoculated by spraying spore suspension after 
four true leaves have grown. One hundred rice plants inoculated with 
Pyricularia but not treated with any fungicide, provided infected rice 
seedlings leaves, while the other not inoculated with Pyricularia 
provided healthy rice seedlings leaves for comparison. One hundred 
and fifty leaves collected from rice plants were termed as the 
calibration set consisting of 75 healthy leaves and 75 infected leaves. 
Another 50 leaves were termed as the validation set, consisting of 25 
healthy leaves and 25 infected leaves. 
 
 
Hyper-spectral imaging systems  

 
A push-broom type hyper-spectral imaging system in the NIR 
wavelength range (900 to 1700 nm) was used for spectral 
measurements of rice seedlings. The imaging system consisted of a 
prism-grating-prism spectrograph (ImSpector N17E, Specim, 
Finland), a 12-bit near infrared camera (XLNIR, Xenics, Belgium), a 
C-mount focusing lens, a motorized carriage and a personal 
computer. The sample was placed on the mobile carriage that moved 
along a horizontal direction under the stationary camera. The 
illumination systems (Illumination, USA) consisting of dual linear light 
covering the full spectrum from 400 to 1800 nm were used for 
imaging illumination. Intensity of linear light was regulated through 
DC regulated fiber optic light source. The software kit (Isuzu Optics, 
Taiwan, China) was used to acquire the spectral image data. The 
schematic diagram of hyper-spectral imaging is shown in Figure 1. 
 
 
Image acquisition and calibration  

 
For imaging, rice seedlings in batches of 5 to 6 leaves per image 
were placed on the carriage and hyper-spectral image (also known 
as hyper-cubes) were collected in the diffuse reflectance mode. 
There are two types hypercube, one is healthy rice seedlings 
hyper-cube and the other is infected rice seedlings hyper-cube. 
Image size was 320 by 256 pixels by 256 wavebands within 900 to 
1700 nm range at a spectral resolution of approximately 5 nm. The 
exposure time was set at 4000 us. Dark current and white reference 
images were collected before imaging each sample to calibrate 
spectra at each pixel as percent reflectance value. A 
polytetrefluoroethylene panel with 99% reflectance (Spectralon, 
Labsphere, USA) was used to collect white reference images. Dark 
current response images were collected with the lamp off or a cap 
covering the focusing lens. Calibrated reflectance images (R) were 
calculated using the following Equation: 
 

raw dark

white dark

I I
R

I I

−

=

−
   

 
Where, Iraw is the non-calibrated original image of a sample; Iwhite is 
the image of the white reference; and Idark is the dark current image. 
Calibrated hyper-cubes were subset to keep 208 bands between 950 
and 1650 nm for further analyses. Data below 950 nm or above  1650  
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Figure 1. The schematic of hyper-spectral imaging system. 
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Figure 2. The spectral characteristic of rice seedlings (healthy and infected) and background. 

 
 
 
nm were excluded due to the presence of excessive noise in this 
range. 
 
 
Spectral characteristics and rice seedlings background 
separation 
 
In order to separate rice seedlings from the background, a threshold 
value was determined based on spectral differences between 
seedlings  and   image  background.  Representative  spectra  of  rice 

seedlings and background were extracted and visually observed 
using the region of interest (ROI) tool in the ENVI software 
(Version4.5; ITT Visual Information Solutions, Denver, CO, USA). 
The healthy leaf region and infected leaf region were manually 
selected at random from image to represent ‘healthy’ and ‘infected’. 
For each category, a representative spectrum was computed as the 
average of all pixel spectra in the respective category (Figure 2). 
Based on the spectral differences between seedlings and the image 
background as shown by the representative spectra, a threshold 
value of 2300 at 1466 nm was determined to separate rice  seedlings  
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Figure 3. (a) False color representation of a hyper-spectral image of the 
healthy rice seedlings; (b) a binary mask image of (a); (c) applied mask image 
to (a);(d) false color representation of a hyper-spectral image of the infected 
rice seedlings; (e) a binary mask image of (d); (f) applied mask image to (d). 

 
 
 
from the image background for subsequent analyses. A binary mask 
image was created for each hypercube by thresholding the image 
band at 1466 nm where pixel intensities less than 2300 were labeled 
as seedlings (white) and values greater than 2300 were labeled as 
background (dark) (Figure 3b and e).  
 
 
Spectral characteristics of healthy rice seedlings and infected 
rice seedlings 

 
The healthy rice seedlings were selected to represent ‘healthy’ 
categories (Figure 3a). Similarly, the infected rice seedlings were 
selected to represent ‘infected’ categories (Figure 3d). A binary mask 
image was created to separate the objects from background; the rice 
seedlings were marked (white) and background was marked as 
(dark) (Figure 3b and e). The image applied the mask image (Figure 
3c and f) to eliminate the background information. The rice seedlings 
original spectra (Figure 4a) were mean-normalized by dividing each 
spectrum with its mean value computed along the wavelength 
direction to visualize spectral similarities or differences due to the 
extent of infection, thus minimizing the effect of lighting 
inconsistencies within the image plane (Figure 4b). 

Principal component analysis (PCA) 
 
Principal component analysis (PCA) is a widely used statistical 
technique for data reduction (He et al., 2007; Liu and He, 2008; Liu et 
al., 2008). Using inbuilt ENVI subroutine PC_ROTATE, PCA was 
performed on the full-spectrum (950 to 1650 nm) hyper-spectral 
images. Image background was excluded from these calculations 
using a binary mask image created for each hypercube to separate 
seedlings from the background as earlier explained. For each rice 
seedling, mean values of the first 5 PCA scores (mpc1 to mpc5) and 
the corresponding standard deviation values (sdpc1 to sdpc5) were 
extracted for further analysis. The ENVI subroutine 
ENVI_STATS_DOIT was used to compute these image statistics. A 
macro was written in IDL software (Version 7.0.2; ITT Visual 
Information Solutions, Denver, CO, USA) to automate the process of 
PCA calculations and extraction of mean and standard deviation 
values of PCA scores for each rice seedling in all the images in a 
batch mode.  

Based on the loadings (Eigenvectors) of the first five principal 
components (PC), a set of five significant wavelengths were selected 
maintaining the overall behaviors of all first five principal 
components. PCA scores of the  images  were  recalculated  with  the  
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Figure 4. (a) The original spectral characteristics of healthy and infected rice seedlings. (b) Normalized spectral response with healthy rice seedlings and infected rice seedlings. 

 
 
 
five selected wavelengths. Similarly, mean and standard 
deviation values of PCA scores were extracted using an IDL 
macro. The purpose of the second PC_ROTATE was not for 
data reduction, but was done to generate orthogonal 
components and to compute within seedlings variations in 
the rotated planes so that the same set of features as for the 
full-spectrum could be used for seedlings classification. The 
PCA score measurements from the full-spectrum and 
selected wavelengths were used to develop and compare 
classification models. 
 
 
Classification 

 
The PCA scores data along with the target values were 
imported into the SAS software (version 9.2, SAS Inc., USA) 
to develop classification models. The variables with 
significant contribution towards desired classification were 
selected from the PCA score measurements of the 
calibration data set using stepwise discriminant analysis. 

Linear discriminant analysis (LDA) classifier models were 
developed based on the selected variables using 
discriminate analysis. Data from the calibration sample set 
was used to develop the LDA classifier model using the full 
cross-validation (leave one out) option, while data from the 
validation sample set was used for performance evaluation 
of the models. The following describes the analysis process:  
 
(a) PCA was performed on the full-spectrum (950 to 1650 
nm) hyper-spectral images using inbuilt ENVI subroutine 
PC_ROTATE for all of samples.  
(b) Mean values of the first 5 PCA scores images (mpc1 to 
mpc5) and the corresponding standard deviation values 
(sdpc1 to sdpc5) were extracted using inbuilt ENVI 
subroutine ENVI_STATS_DOIT. 
(c) Stepwise discriminant analysis was used to select 
variables with significant contribution towards desired 
classification. 
(d) Linear discriminant analysis (LDA) classifier models 
were developed based on the above selected variables. 

 (e) Five significant wavelengths were selected based on 
the loadings of the first 5 PCA scores images and PCA was 
performed again. The statistics of PCA score images were 
also calculated again. 
(f) Similarly, the stepwise discriminant analysis was 
performed again and the linear discriminant analysis (LDA) 
classifier models were developed based on the selected 
variables again. 
(g) The classifier models based on full-spectrum and 
selected wavelengths were compared. 
 
 

RESULTS  
 
Visual and spectral characteristics 
 
False color representation of hyper-spectral 
images of healthy seedlings and infected seedlings 
exhibited observable visual differences  (Figure  3c  
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Figure 5. (a)Score images of the first five principal components (PC1 to PC5) of the image of rice 
seedlings in Figure 3a. (b) Score images of the first five principal components (PC1 to PC5) of the 
image of rice seedlings in Figure 3d. 

 
 
 

and f). The infected region appeared red than the healthy 
region. Representative spectra of healthy seedlings and 
infected seedlings as well as the image background 
extracted from one of the hyper-spectral images are 
shown in Figure 2. Each spectrum shown is the average of 
all pixel spectra in the respective category. In contrast to 
the spectral response of the seedlings, the image 
background exhibited higher response in the 1400 to 1500 
nm range of the spectrum. Based on these spectral 
differences, the image background could be separated 
from seedlings using a simple threshold value in a single 
image band in the 1400 to 1500 nm range as shown in 
Figure 2, which is produced from the image band at 
1466nm using a threshold value of 2300. 

A mask produced could be used to extract and analyze 
seedlings spectra excluding image background from 
analyses. Figure 4b shows the normalized spectra of the 
seedlings eliminating intensity differences caused by 
illumination inconsistencies within the image plane. 
Healthy and infected seedlings exhibited differently 
shaped spectral characteristics. The spectral charac- 
teristics are consistent with literature report (Curran, 1989). 
Especially in the 1200 and 1400 nm band, there are 
obviously two absorption regions due to the O-H bending 
and extension. Healthy seedlings exhibited deep 
absorption in the 1450 nm band, and this is due to the strong 
absorption by water in the healthy organization.  

While for the  disease  leaves,  the  collapse  of  the  cells 

result in water loss, and infected region produce browning. 
Therefore, the low absorption will appear in the 
corresponding bands. Moreover, in the 1200 nm band, the 
different of the absorption performance is not obvious. 
Probably the reason is that absorb waveform stack by 
many biochemical substances (cellulose, starch, lignin 
and water) made absorption characteristics not obvious.  
 
 
Principal component analysis (PCA) 
 
The first 10 principal components (PC1 to PC10) 
explained over 95.78% of the variance in hyper-spectral 
image data, with the first five components explaining more 
than 95.07% of the variance in the data. Contribution of 
PC6 to PC10 combined was approximately 0.71%. The 
first five principal component scores of the healthy rice 
seedlings (Figure 3a) and infected seedlings (Figure 3d) 
are shown in Figure 5a and b. These score images contain 
information related to classification; however, none of the 
principal components alone contained sufficient infor- 
mation to fully segregate healthy rice seedlings and 
infected rice seedlings. Accurate classification required a 
combination of PC score features. The stepwise dis- 
criminant analysis selected a set of seven significant 
features for the classification base on full spectrum (Table 
1). Two mean score features (mpc1 and mpc2) and five 
standard deviation features (sdpc1 to sdpc 5)  were  selec- 
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Table 1. Feature selection for classification into healthy rice seedlings and infected rice seedlings 
categories base on full-spectrum (950 to 1650 nm). 
 

Variable in the model Partial R2 P-Value Wilk’s lambda 

sdpc2 0.3286 <.0001 0.6713 

mpc1 0.4225 <.0001 0.3877 

sdpc1 0.2462 <.0001 0.2922 

sdpc5 0.0917 0.0002 0.2654 

sdpc3 0.0399 0.0161 0.2548 

sdpc4 0.0396 0.0168 0.2447 

mpc2 0.0249 0.0600 0.2387 
 
 
 

Table 2. Feature selections for classification into healthy rice seedlings and infected rice seedlings 

categories base on five selected wavebands (1188, 1339, 1377, 1432 and 1614 nm). 
 

Variable in the model Partial R2 P-Value Wilk’s lambda 

mpc1 0.3786 <.0001 0.6214 

sdpc5 0.1308 <.0001 0.5401 

mpc3 0.0449 0.0100 0.5159 

sdpc4 0.0498 0.0068 0.4902 
 

mpc1 to mpc5: Mean values of the 1st five principal component scores computed over a single rice seedling. 
sdpc1 to sdpc5: Standard deviation values of the 1st 5 principal component scores computed over a single rice 
seedling. 

 
 
 

Table 3. Infected and healthy classification results for an LDA model based on selected PCA score features extracted 
from full spectrum (950 to 1650 nm). 
 

Actual class 
Number of rice seedlings classified into class 

Healthy Infected Total Accuracy (%) 

Calibration set     

Healthy 69 6 75 92 

Infected 2 73 75 97.3 

Total 71 79 150 94.65 

     

Validation set  

Healthy 21 4 25 84 

Infected 0 25 25 100 

Total 21 29 50 92 
 
 
 

ted. Mean score features (mpc1) contributed the most 
towards the target healthy and infected classification, 
followed by the standard deviation of PC2 (sdpc2) and 
standard deviation of PC1 (sdpc1). Meanwhile, the 4 
significant features for the classification base on 5 
selected wavebands (1188, 1339, 1377, 1432 and 1614 
nm) were also selected (Table 2). 
 
 
PCA based classification 
 
Classification results for healthy and infected categories 
based on PCA scores computed from the  entire  spectrum 

had an overall accuracy of 94.65 and 92% for the 
calibration and validation data sets, respectively (Table 3). 
Class-by-class classification accuracies for healthy and 
infected were 84 and 100%, respectively on the validation 
set. In addition, false positives and false negatives for the 
infected category were 16 and 0%, respectively on the 
validation set. As would be expected, classification 
accuracy was higher for the calibration data set than for 
the independent validation set. The behavior of the first 
five loading functions could be approximated by a set of 
five wavelengths or wavebands (Figure 6). Using the five 
selected wavebands (1188, 1339, 1377, 1432 and 
1614nm),  the  overall  classification  accuracy  for   healthy  
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Figure 6. Loadings (Eigenvectors) of the first five principal components (PC1 to PC5). Wavelengths 
marked with circles approximate the behaviors of the five loading functions. 

 
 

Table 4. Infected and healthy classification results for an LDA model based on selected PCA score features 
extracted from 5 selected wavebands (1188, 1339, 1377, 1432 and 1614 nm). 
 

Actual class 
Number of rice seedlings classified into class 

Healthy Infected Total Accuracy (%) 

Calibration set     

healthy 66 9 75 88 % 

infected 15 60 75 80% 

total 81 69 150 83.92% 

  

Validation set     

healthy 20 5 25 80% 

infected 5 20 25 80% 

Total 25 25 50 80% 
 
 

 
and infected categories (Table 4) was 80% on the 
validation data set. Rice seedlings classification based on 
the five selected wavebands was comparable to that 
based on the full-spectrum (950 to 1650 nm). These 
results demonstrate that the infected rice seedlings can be 
detected with five selected wavebands. The fact that a few 
specific wavebands showed a potential for the detection of 
blast rice suggests that it may be possible to solve this 
problem using a low cost imaging system built around a 
monochrome digital camera and a set of optical filters in a 
motorized filter wheel. For industrial uptake, the lower cost 
of such a multi-spectral approach would be appealing. 
Such a system would initially have the potential  to  identify 

rice blast base on the canopy information imagery. 
Subsequent studies in this laboratory will continue to 
explore this possibility. 
 
 
DISSCUSSION 
 
In this study, we try to capture the near-infrared hyper- 
spectral image of rice blast disease on rice seedling, and 
built the classification model to indentify the rice blast 
disease. In order to compress the high-dimensional image 
information, the PCA analysis was employed. The 
statistics was  calculated  based  on  the  first  5 PCA  score 



 
 
 
 
images and the stepwise discriminant analysis was 
developed. Based on the result of this research, the 
identification was realized only based on the statistics of 
first 5 PCA score images extracted from full-spectrum 
images. The changes of spectral characteristics caused by 
rice blast can be represented with the first 5 PCA score 
images. For classification model with image features 
calculated with first 5 PCA score images extracted from full 
spectrum (950 to 1650 nm), healthy and infected rice 
seedlings can be classified with an overall accuracy of 
92% in the validation set.  

Although, using the statistics of first 5 PCA score images 
can identify the rice blast disease effectively, but for pros- 
pects of practical applications, a few feature wavelengths 
contributed the most towards the target healthy and 
infected classification appears more appealing. Hence, we 
extracted a set of five wavebands and tried to use this 
image to build the simplified model. The result indicated 
that identification can be completed basically based on the 
information of five wavebands and with an overall 
accuracy of 80% in the validation set. This preliminary 
research results is encouraging and indicates that using 
the information of a few wavelengths to identify the rice 
blast disease is feasible.  
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